JPH09303743A - Operation method of combustion furnace - Google Patents

Operation method of combustion furnace

Info

Publication number
JPH09303743A
JPH09303743A JP14679896A JP14679896A JPH09303743A JP H09303743 A JPH09303743 A JP H09303743A JP 14679896 A JP14679896 A JP 14679896A JP 14679896 A JP14679896 A JP 14679896A JP H09303743 A JPH09303743 A JP H09303743A
Authority
JP
Japan
Prior art keywords
combustion
fluidized bed
furnace
gas
combustible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14679896A
Other languages
Japanese (ja)
Other versions
JP2747673B2 (en
Inventor
Yukiya Ito
征矢 伊藤
Shuichi Morioka
修一 守岡
Zenshi Okada
善嗣 岡田
Yukio Kubo
幸雄 久保
Taisuke Shibata
泰典 柴田
Katsuya Morimoto
勝哉 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP14679896A priority Critical patent/JP2747673B2/en
Publication of JPH09303743A publication Critical patent/JPH09303743A/en
Application granted granted Critical
Publication of JP2747673B2 publication Critical patent/JP2747673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent deposit from generating on the furnace wall and the heating surface by a method wherein an SO2 gas of which the concentration is higher than the combustion atmosphere of combustible, is made to co-exist, and the combustible containing a chlorine compound is burnt together with calcium compounds. SOLUTION: Combustible, e.g. a converted fuel, contains approx. 0.9% of chlorine, and approx. 3% of calcium. This converted fuel is fed to an upper part of a fluidized bed 22 from a combustible feeder 25, and is burnt by combustion air being fed from a combustion air feeding pipe 26. By this combustion of the converted fuel, deist generates on the furnace wall or the surface of a heat transfer tube 24. As a method to suppress the generation of deposit, a sulfuric compound which generates S or SO2 by combustion, is fed from an S portion feeder 40. Or, the sulfuric compound which generates S or SO2 by combustion is fed by mixing with the converted fuel, from a combustible feeder 25. Or, SO2 gas is fed to the combustion air from an SO2 gas feeding pipe 41.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、灰分の付着を防止
することができる燃焼炉の運転方法、詳しくは、塩素化
合物及びカルシウム化合物を含有する可燃物の燃焼、カ
ルシウム化合物を供給しながら塩素化合物を含有する可
燃物を燃焼させる場合、又はごみ転換燃料の燃焼におい
て、伝熱管、炉壁等への灰分の付着を抑制又は剥離・解
消して付着を防止する方法に関するものである。なお、
ごみ転換燃料(RDF:Refuse Derived
Fuel)とは、産業廃棄物、都市ごみ等にカルシウ
ム化合物を加えて成型した燃料を言う。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a combustion furnace capable of preventing ash from adhering, and more particularly, to combustion of combustibles containing chlorine compounds and calcium compounds, and chlorine compounds while supplying calcium compounds. The present invention relates to a method for suppressing the adhesion of ash to a heat transfer tube, a furnace wall, or the like, or for preventing or removing the ash from adhering to combustible materials containing ash or burning refuse-converted fuel. In addition,
Waste conversion fuel (RDF: Refuse Derived)
Fuel) refers to a fuel formed by adding a calcium compound to industrial waste, municipal waste, and the like.

【0002】[0002]

【従来の技術】塩素化合物を含有する可燃物として、都
市ごみ、廃プラスチックなどがあり、これらの可燃物の
燃焼方法としては、ストーカ炉による燃焼法、流動床燃
焼法が知られている。これらの方法では廃熱ボイラーを
設けたり、流動層内に伝熱管を設けて熱回収を行なって
いる。これら可燃物の燃焼によって、可燃物に含有され
ている塩素化合物からHClガスが発生することが知ら
れている。このHClは伝熱管を腐食し、伝熱管の温度
を高くすると腐食が激しくなるので、伝熱管の温度が高
くならないようにして、腐食を抑制している。このた
め、蒸気温度を低くする必要性から、熱回収効率が低く
なり熱回収効率を高める研究が進められている。また、
腐食を抑制する手段として、耐食材料の開発、あるいは
CaO、Ca(OH)2 、CaCO3 などのCa化合物
を添加してHClと反応させて、HCl濃度を少なくす
る方法が行われている。
2. Description of the Related Art Combustible materials containing chlorine compounds include municipal waste and waste plastics. As a method of burning these combustible materials, a combustion method using a stoker furnace and a fluidized bed combustion method are known. In these methods, a waste heat boiler is provided or a heat transfer tube is provided in a fluidized bed to recover heat. It is known that the combustion of these combustibles generates HCl gas from chlorine compounds contained in the combustibles. This HCl corrodes the heat transfer tube, and if the temperature of the heat transfer tube is increased, the corrosion becomes severe. Therefore, the corrosion is suppressed by preventing the temperature of the heat transfer tube from increasing. Therefore, since it is necessary to lower the steam temperature, heat recovery efficiency is lowered, and researches for improving the heat recovery efficiency are underway. Also,
As means for suppressing corrosion, a method of developing a corrosion-resistant material or a method of adding a Ca compound such as CaO, Ca (OH) 2 , CaCO 3 and reacting with HCl to reduce the HCl concentration has been used.

【0003】また、特開平5−215309号公報に
は、流動層のガス分散管内の付着物を剥離させるため
に、水蒸気を断続的に供給する流動床燃焼方法が記載さ
れている。しかし、この公報に記載された方法は、水蒸
気の衝突エネルギーを利用して機械的に付着物を剥離さ
せるものに過ぎず、SO2 ガスとの反応のような化学的
過程は何も利用していない。また、特開平6−2567
80号公報には、塩分やPVCを含む粉砕されたごみ
に、硫黄粉末又は硫黄を含有する燃料成分が混合され、
塊状に成形され、乾燥されてなるごみ混合燃料組成物が
記載されている。しかし、この公報記載の発明の目的
は、塩化水素に見合う量の硫黄を混合してごみ混合燃料
組成物を製造し、この組成物の燃焼により発生する塩化
水素ガスが硫黄により無害化されて、塩化水素による伝
熱管等の腐食を防止するもので、燃焼雰囲気よりも高い
濃度のSO2 ガスを共存させて可燃物を燃焼させること
により、伝熱管等の付着を防止することは何も記載され
ていない。
Further, Japanese Patent Application Laid-Open No. Hei 5-215309 describes a fluidized bed combustion method in which steam is intermittently supplied in order to peel off deposits in a gas dispersion tube of a fluidized bed. However, the method described in this publication merely uses the collision energy of water vapor to mechanically separate the deposits, and does not utilize any chemical process such as reaction with SO 2 gas. Absent. In addition, JP-A-6-2567
No. 80 discloses that pulverized waste containing salt or PVC is mixed with sulfur powder or a fuel component containing sulfur,
A refuse mixture fuel composition formed into a lump and dried is described. However, the object of the invention described in this publication is to produce a refuse-mixed fuel composition by mixing sulfur in an amount corresponding to hydrogen chloride, and hydrogen chloride gas generated by burning this composition is rendered harmless by sulfur, It is intended to prevent corrosion of heat transfer tubes and the like due to hydrogen chloride, and there is no description of preventing the adhesion of heat transfer tubes or the like by burning combustibles in the presence of SO 2 gas at a higher concentration than the combustion atmosphere. Not.

【0004】[0004]

【発明が解決しようとする課題】燃焼ガス中のHCl濃
度を下げるために、Ca化合物を含有する可燃物を用い
るか、可燃物にCa化合物を添加してHCl濃度を少な
くする方法を採用すると、燃焼炉の炉壁、伝熱管の表面
に付着物が成長することがある。特に伝熱管の表面に付
着物が成長すると、伝熱管での収熱が少なくなるなどの
弊害が発生する。このため、ボイラープラントであれば
所定の性能が出なくなるなどの重大なトラブルとなる。
燃焼炉が、ストーカ炉であれば、炉壁及び後流の廃熱ボ
イラーの伝熱管の表面に付着物が成長する。燃焼炉が流
動層燃焼炉の場合には、流動層内の層内伝熱管、水冷壁
管及び過熱器管等の表面に付着物が成長する。また、C
lを含有する可燃物をCa化合物が存在する条件で、部
分燃焼させる時にも、炉壁、伝熱面の表面に付着物が成
長することが明らかになり、このような付着の防止を解
決する必要が生じている。
In order to lower the HCl concentration in the combustion gas, a method of using a combustible containing a Ca compound or adding a Ca compound to the combustible to reduce the HCl concentration is adopted. Deposits may grow on the furnace wall of the combustion furnace and the surface of the heat transfer tube. In particular, when deposits grow on the surface of the heat transfer tube, adverse effects such as a decrease in heat collection in the heat transfer tube occur. For this reason, a serious trouble such as a failure in a predetermined performance occurs in a boiler plant.
If the combustion furnace is a stoker furnace, deposits grow on the furnace wall and on the surface of the heat transfer tube of the waste heat boiler downstream. When the combustion furnace is a fluidized bed combustion furnace, deposits grow on the surfaces of the in-bed heat transfer tube, the water cooling wall tube, the superheater tube and the like in the fluidized bed. Also, C
It is clear that even when the combustible containing l is partially burned in the presence of the Ca compound, the deposit grows on the furnace wall and the surface of the heat transfer surface, and the prevention of such adhesion is solved. There is a need.

【0005】付着の原因解明のために、付着物の組成分
析を行った結果、Ca、K及びClが多く、このことか
ら、CaCl2 、KCl等の塩化物が付着の主原因と考
えられる。上記の問題を解決するために、本発明者は鋭
意研究を重ねた結果、硫黄(S)を含有する可燃物を同
時に燃焼させると、付着物の成長が抑制されることを見
い出した。また、本発明者は、付着物が生成した時点で
Sを含有する可燃物を同時に燃焼させると、付着物が剥
離することを見い出した。
[0005] As a result of analyzing the composition of the adhered substance to elucidate the cause of the adhered substance, Ca, K and Cl were found to be large. Therefore, chlorides such as CaCl 2 and KCl are considered to be the main cause of the adhered substance. In order to solve the above-mentioned problems, the present inventors have conducted intensive studies and, as a result, have found that when combustibles containing sulfur (S) are simultaneously burned, the growth of deposits is suppressed. In addition, the present inventor has found that when the combustibles containing S are simultaneously burned at the time when the deposits are generated, the deposits are separated.

【0006】本発明は上記の知見に基づいてなされたも
ので、その目的は、燃焼炉内の燃焼雰囲気よりも高い濃
度のSO2 ガスと共存させて、前記の可燃物を燃焼させ
ることにより、付着物の生成を抑制する方法を提供する
ことにある。また、本発明の他の目的は、燃焼炉内の燃
焼雰囲気よりも高い濃度のSO2 ガスを間欠的に共存さ
せて、前記の可燃物を燃焼させることにより、生成した
付着物を剥離する方法を提供することにある。
The present invention has been made on the basis of the above findings, and an object of the present invention is to burn the above combustibles in the presence of SO 2 gas at a higher concentration than the combustion atmosphere in a combustion furnace. An object of the present invention is to provide a method for suppressing the generation of deposits. Another object of the present invention is to provide a method for exfoliating adhered matter by burning the combustible material by intermittently coexisting SO 2 gas at a higher concentration than the combustion atmosphere in the combustion furnace. Is to provide.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の燃焼炉の運転方法は、塩素化合物を含有
する可燃物をカルシウム化合物とともに燃焼炉で燃焼さ
せるに際し、付着物の生成を抑制するために、前記可燃
物の燃焼雰囲気よりも高い濃度のSO2 ガスを共存させ
て燃焼させるように構成されている。また、本発明の方
法は、塩素化合物を含有する可燃物をカルシウム化合物
とともに部分燃焼流動層及び熱回収流動層を有する層内
循環流動層炉で燃焼させるに際し、付着物の生成を抑制
するために、層内循環流動層炉の熱回収流動層に熱回収
流動層の雰囲気よりも高い濃度のSO2 ガスを共存させ
て燃焼させることを特徴としている。
In order to achieve the above object, a method of operating a combustion furnace according to the present invention is characterized in that when combustibles containing chlorine compounds are burned in a combustion furnace together with calcium compounds, the formation of deposits is performed. In order to suppress the combustion, the combustion is performed in the presence of SO 2 gas at a higher concentration than the combustion atmosphere of the combustibles. Further, the method of the present invention, when combustibles containing a chlorine compound together with a calcium compound in the in-bed circulating fluidized bed furnace having a partial combustion fluidized bed and a heat recovery fluidized bed, in order to suppress the formation of deposits is characterized in that burning coexist SO 2 gas concentration higher than the atmosphere of the heat recovery fluidized bed heat recovery fluidized bed layers in a circulating fluidized bed furnace.

【0008】また、本発明の方法は、塩素化合物を含有
する可燃物をカルシウム化合物とともに燃焼炉で燃焼さ
せるに際し、付着物を剥離させるために、前記可燃物の
燃焼雰囲気よりも高い濃度のSO2 ガスを間欠的に共存
させて燃焼させることを特徴としている。さらに、本発
明の方法は、塩素化合物を含有する可燃物をカルシウム
化合物とともに部分燃焼流動層及び熱回収流動層を有す
る層内循環流動層炉で燃焼させるに際し、付着物を剥離
させるために、層内循環流動層炉の熱回収流動層に熱回
収流動層の雰囲気よりも高い濃度のSO2 ガスを間欠的
に共存させて燃焼させることを特徴としている。
In the method of the present invention, when a combustible containing a chlorine compound is burned together with a calcium compound in a combustion furnace, SO 2 having a concentration higher than that of the combustion atmosphere of the combustible is used in order to separate the deposit. It is characterized by intermittently coexisting gas and burning. Further, the method of the present invention, when combustibles containing a chlorine compound together with a calcium compound in a circulating fluidized bed furnace having a partial combustion fluidized bed and a heat recovery fluidized bed, in order to peel off the deposits, It is characterized in that SO 2 gas having a higher concentration than the atmosphere of the heat recovery fluidized bed is intermittently coexisted in the heat recovery fluidized bed of the internal circulation fluidized bed furnace and burned.

【0009】上記の方法において、燃焼炉としては、流
動層炉、ストーカ炉、及び層内循環流動層炉の部分燃焼
流動層炉のいずれかが用いられる。また、SO2 ガスの
間欠供給の場合は、伝熱管からの収熱量が少なくなると
実施され、収熱量が回復すると停止されるように運転さ
れる。また、SO2 ガスの間欠供給は、一定時間毎に実
施するように運転することもある。可燃物の燃焼は、塩
素化合物及びカルシウム化合物を含有する可燃物の燃
焼、カルシウム化合物を供給しながら塩素化合物を含有
する可燃物を燃焼させること、及びごみ転換燃料の燃焼
の少なくともいずれかである。また、共存のSO2 ガス
は、硫黄の燃焼により発生するSO2 、硫黄化合物の燃
焼により発生するSO2 、及び燃焼空気に同伴されたS
2 の少なくともいずれかであればよい。燃焼させると
SO2 ガスを発生させる化合物としては、S以外に、硫
安、硫化鉄、硫化銅等を挙げることができる。この場
合、共存のSO2 ガスは、可燃物のClに関するS/C
lモル比が0.5〜10の範囲になるように供給され
る。S/Clモル比は、0.5以上であればよく、通常
は0.5〜10、望ましくは0.5〜5である。S/C
lモル比が0.5未満の場合は、付着物の抑制効果が少
ない。また、付着物の剥離効果が少ない。S/Clモル
比が10を超える場合は、排ガス中のSO2 濃度が高く
なるため、このSO2 を吸収するための設備が必要とな
り、吸収剤の費用も高くなる。このため、付着物の抑制
効果あるいは剥離効果は高くなるが、経済的でなくな
る。
In the above method, any one of a fluidized bed furnace, a stoker furnace, and a partial combustion fluidized bed furnace of a circulating fluidized bed furnace is used as a combustion furnace. In the case of intermittent supply of SO 2 gas, the operation is performed when the amount of heat collected from the heat transfer tube is reduced, and is stopped when the amount of heat recovered is recovered. The intermittent supply of the SO 2 gas may be operated so as to be performed at regular intervals. The combustion of the combustible material is at least one of combustion of a combustible material containing a chlorine compound and a calcium compound, combustion of a combustible material containing a chlorine compound while supplying a calcium compound, and combustion of a refuse conversion fuel. Also, SO 2 gas of coexistence, SO 2 generated by the combustion of sulfur, SO 2 generated by the combustion of a sulfur compound, and is entrained in the combustion air S
At least one of O 2 may be used. Examples of the compound that generates SO 2 gas when burned include ammonium sulfate, iron sulfide, copper sulfide, and the like, in addition to S. In this case, the coexisting SO 2 gas is converted into S / C for combustible Cl.
Supplied such that the molar ratio is in the range of 0.5 to 10. The S / Cl molar ratio may be 0.5 or more, usually 0.5 to 10, and preferably 0.5 to 5. S / C
When the molar ratio is less than 0.5, the effect of suppressing the deposit is small. Also, the effect of removing the adhered substance is small. If the S / Cl molar ratio exceeds 10, the concentration of SO 2 in the exhaust gas becomes high, so equipment for absorbing this SO 2 is required, and the cost of the absorbent increases. For this reason, the effect of suppressing the adhered matter or the effect of peeling increases, but is not economical.

【0010】Sを含有する可燃物の燃焼によって生成す
るSO2 ガスが、CaCl2 、KCl等の塩化物と下記
の式(1)、(2)によって反応するため、CaC
2 、KCl等の塩化物が存在しなくなる。このため、
Sを含有する可燃物を同時に燃焼させると付着がなくな
る。 CaCl2 +SO2 +H2 O+1/2O2 =CaSO4 +2HCl (1) 2KCl+SO2 +H2 O+1/2O2 =K2 SO4 +2HCl (2) CaCl2 、KCl等の塩化物に基づく炉壁、伝熱面の
表面への付着物は、SO2 ガスを共存させることによっ
て、上記式(1)及び式(2)で付着性の少ないCaS
4 、K2 SO4 等に転換されるので、付着が抑制さ
れ、その結果、付着を防止することができる。また、S
2 ガスを間欠的に共存させる場合は、生成したCaC
2 、KCl等が付着性の少ないCaSO4 、K2 SO
4 等に転換されるので、付着物が剥離し、その結果、付
着を防止することができる。
Since SO 2 gas generated by the combustion of combustibles containing S reacts with chlorides such as CaCl 2 and KCl according to the following equations (1) and (2), CaC
Chloride such as l 2 and KCl disappears. For this reason,
If the combustibles containing S are burned at the same time, there is no adhesion. CaCl 2 + SO 2 + H 2 O + 1 / 2O 2 = CaSO 4 + 2HCl (1) 2KCl + SO 2 + H 2 O + 1 / 2O 2 = K 2 SO 4 + 2HCl (2) Furnace walls and heat transfer surfaces based on chlorides such as CaCl 2 and KCl The deposit on the surface of CaS is caused by the coexistence of SO 2 gas, so that CaS is less adherent in the above formulas (1) and (2).
Since it is converted to O 4 , K 2 SO 4, etc., the adhesion is suppressed, and as a result, the adhesion can be prevented. Also, S
When O 2 gas intermittently coexists, the generated CaC
CaSO 4 , K 2 SO with low adhesion of l 2 , KCl, etc.
Since it is converted to 4 or the like, the adhered substance is peeled off, and as a result, adhesion can be prevented.

【0011】付着の防止(抑制)試験は、図4に示すル
ツボ試験設備で実施した。1は電気炉、2はルツボ、3
は空気分散板、4は空気供給管、5は流動層で約0.5
mmの珪砂を流動物質として使用している。6は空気冷却
の模擬伝熱管、7は模擬伝熱管内部に設けた温度計、8
は流動層内の温度計、9は燃料供給口である。6の空気
冷却の模擬伝熱管内に供給する空気量を変えて、空気冷
却模擬伝熱管6の外表面に取り付けた熱電対(温度計
7)で計測される温度を自由に設定できるようになって
いる。10は排気管、11は風箱である。なお、温度計
7は空気冷却模擬伝熱管6の内側から取り付けている
が、管の外表面の温度を計測できるように構成されてい
る。
The adhesion prevention (suppression) test was carried out in the crucible test facility shown in FIG. 1 is an electric furnace, 2 is a crucible, 3
Is an air distribution plate, 4 is an air supply pipe, and 5 is a fluidized bed of about 0.5.
mm silica sand is used as the fluid material. 6 is a simulated heat transfer tube for air cooling, 7 is a thermometer provided inside the simulated heat transfer tube, 8
Is a thermometer in the fluidized bed, and 9 is a fuel supply port. The temperature measured by a thermocouple (thermometer 7) attached to the outer surface of the air cooling simulation heat transfer tube 6 can be freely set by changing the amount of air supplied into the air cooling simulation heat transfer tube 6. ing. 10 is an exhaust pipe, and 11 is a wind box. The thermometer 7 is attached from the inside of the simulated air-cooled heat transfer tube 6, but is configured to measure the temperature of the outer surface of the tube.

【0012】試験燃料は、都市ごみから製造されたRD
Fを使用した。このRDFには、都市ごみに含まれてい
るClが概略1%、RDFの製造時に添加したCaが概
略3%程度含まれている。このRDFの燃焼を実施した
結果、空気冷却模擬伝熱管6の外表面に付着物が生成し
て成長するに従って、空気冷却模擬伝熱管6の表面温度
が低下するのが観察された。これは、空気冷却模擬伝熱
管6の表面の付着物の生成により、流動層5から伝熱管
6への熱の供給が少なくなったためである。試験条件
は、流動層5の温度が750℃、空気冷却模擬伝熱管6
の表面温度が550℃、空塔速度が概略0.5m /s
で、1時間、RDFを燃焼させて空気冷却模擬伝熱管6
の表面に付着物を生成させた。生成した付着物の重量は
概略1.5g であった。この付着物の分析を実施した結
果、CaCl2 、KCl等の塩化物を主成分とする化合
物が認められた。使用したRDFには、正確には、0.
9%のCl分及び0.1%のS分が含有されている。こ
のClが燃焼して全てHClになるとすると、概略10
00ppm の濃度になる。ついで、RDFに粉末のS(硫
黄)を添加して同様な試験を実施した。Sの添加量は、
RDFの1%、2%、3%、4%、5%及び10%添加
で、生成した付着物の重量は表1のようになった。な
お、添加したSは、燃焼して全てSO2 になるとすれ
ば、RDFの1%添加で概略1000ppm のSO2 濃度
になる。
The test fuel is RD manufactured from municipal waste.
F was used. This RDF contains approximately 1% of Cl contained in municipal waste and approximately 3% of Ca added during the production of RDF. As a result of performing the combustion of the RDF, it was observed that the surface temperature of the simulated air-cooled heat transfer tube 6 was reduced as the deposits formed on the outer surface of the simulated air-cooled heat transfer tube 6 grew. This is because the supply of heat from the fluidized bed 5 to the heat transfer tubes 6 was reduced due to the generation of deposits on the surface of the air cooling simulation heat transfer tubes 6. The test conditions are as follows: the temperature of the fluidized bed 5 is 750 ° C .;
Has a surface temperature of 550 ° C and a superficial velocity of approximately 0.5 m / s
Then, the RDF is burned for one hour to simulate air-cooled heat transfer tubes 6
A deposit was formed on the surface of the. The weight of the deposit formed was approximately 1.5 g. As a result of analysis of the deposits, compounds mainly composed of chlorides such as CaCl 2 and KCl were recognized. The RDF used is exactly 0.
It contains 9% Cl and 0.1% S. Assuming that all of this Cl is burned into HCl, approximately 10
The concentration becomes 00 ppm. Next, a similar test was performed by adding powdered S (sulfur) to the RDF. The amount of S added
With the addition of 1%, 2%, 3%, 4%, 5% and 10% of RDF, the weight of the deposits formed was as shown in Table 1. Incidentally, the added S is, if all the burning becomes SO 2, becomes SO 2 concentration schematic 1000ppm 1% addition of RDF.

【0013】[0013]

【表1】 [Table 1]

【0014】表1から明らかなように、S添加量(対R
DF%)0.5%でもかなり付着の抑制効果が認めら
れ、S添加量4%以上では付着は殆ど認められなかっ
た。また、Sの添加によって付着物は淡黄色から白色へ
の変化が認められた。テストNO.4〜6(S添加量
0.5〜2%)の付着物の分析によって、白色の付着物
には、Ca、K、Sが認められたが、Clは殆ど含まれ
ていなかった。この白色の付着物の主成分はCaS
4 、K2 SO4 等の硫酸塩であると考えられる。Sの
添加量が少ないと、CaCl2 、KCl等の塩化物が一
旦付着するが、付着したCaCl2 、KCl等が前述し
た式(1)及び式(2)に示した反応によって、CaS
4 、K2 SO4 等の硫酸塩になったものと考えられ
る。さらに、Sの添加量が多くなると、CaCl2 、K
Cl等の塩化物の生成量も少なくなり、付着が起こらな
くなるものと考えられる。テストNO.9は、RDF中
のCl分を2倍の1.8%として、S分を2%添加した
結果を示したもので、Cl分が多くなると添加するS分
も多くしないと、付着を防止することができないことが
明らかになった。RDFとともに供給したSは、燃焼し
てSO2 ガスになるので、燃焼ガスにSO2 ガスを入れ
た試験と、燃焼してSO2 ガスになる硫安を供給して同
様な試験を実施した。その結果を表2に示す。
As is clear from Table 1, the amount of S added (versus R)
(DF%) Even at 0.5%, a considerable effect of suppressing the adhesion was observed, and when the amount of S added was 4% or more, almost no adhesion was observed. Further, a change in the attached matter from pale yellow to white was observed by the addition of S. Test No. Analysis of the deposits of 4 to 6 (S content 0.5 to 2%) revealed that Ca, K, and S were found in the white deposits, but Cl was hardly contained. The main component of this white deposit is CaS
It is considered to be a sulfate such as O 4 and K 2 SO 4 . If the amount of S added is small, chlorides such as CaCl 2 and KCl will once adhere, but the adhered CaCl 2 , KCl and the like will react with CaS due to the reactions shown in the above formulas (1) and (2).
It is considered that sulfates such as O 4 and K 2 SO 4 were formed. Further, when the added amount of S increases, CaCl 2 , K
It is considered that the generation amount of chlorides such as Cl is also reduced, so that adhesion does not occur. Test No. No. 9 shows the result of adding 2% of the S content by doubling the Cl content in the RDF to 1.8%. When the Cl content increases, the addition of the S content does not increase, preventing the adhesion. It turns out that you can't. Since S supplied together with the RDF burns into SO 2 gas, a test in which SO 2 gas was added to the combustion gas and a similar test were conducted by supplying ammonium sulfate to be burned into SO 2 gas. The results are shown in Table 2.

【0015】[0015]

【表2】 [Table 2]

【0016】なお、硫安をRDFの4%添加した条件で
は、硫安中のS分が燃焼してSO2ガスになるとした時
のSO2 ガス濃度は、概略1000ppm になる。表1、
2から明らかなように、S添加、SO2 ガス添加及び硫
安添加のいずれも、付着防止に有効であることがわか
る。また、加えたSと可燃物中のClとのモル比が0.
5以上あれば、付着防止効果が得られることが明らかで
ある。またS/Clモル比は5で十分な効果が認められ
た。したがって、余裕をみてS/Clモル比を10にし
ておけば十分である。S/Clモル比10以上は、排ガ
スのSO2 濃度が高くなるなどの弊害があるので、好ま
しくない。また、経済的にも不利となる。
[0016] In the conditions of adding 4% ammonium sulfate RDF, SO 2 gas concentration when the S content in the ammonium sulfate was to become SO 2 gas and combustion will outline 1000 ppm. Table 1,
As is clear from FIG. 2, it can be seen that addition of S, addition of SO 2 gas and addition of ammonium sulfate are all effective in preventing adhesion. Further, the molar ratio of the added S to Cl in the combustibles is 0.1.
It is clear that an adhesion prevention effect can be obtained if the number is 5 or more. A sufficient effect was recognized when the S / Cl molar ratio was 5. Therefore, it is sufficient to set the S / Cl molar ratio to 10 with a margin. An S / Cl molar ratio of 10 or more is not preferred because it has adverse effects such as an increase in the SO 2 concentration of the exhaust gas. In addition, it is economically disadvantageous.

【0017】また、付着物の剥離試験を、前述と同じ構
成の図4に示すルツボ試験設備で実施した。試験燃料
は、都市ごみから製造されたRDFを使用した。このR
DFには都市ごみに含まれているClが概略1%、RD
Fの製造時に添加したCaが概略3%程度含くまれてい
る。このRDFの燃焼を実施した結果、空気冷却模擬伝
熱管6の外表面に付着物が生成して成長するに従って、
空気冷却模擬伝熱管6の表面温度が低下するのが観察さ
れた。これは、空気冷却模擬伝熱管6の表面の付着物の
生成により、流動層5から伝熱管6への熱の供給が少な
くなったためである。試験条件は、流動層5の温度が7
50℃、空気冷却模擬伝熱管6の表面温度が550℃、
空塔速度が概略0.5m /s で、1時間RDFを燃焼さ
せて空気冷却模擬伝熱管6の表面に付着物を生成させ
た。生成した付着物の重量は概略1.5g であった。こ
の付着物の分析を実施した結果、CaCl2 、KCl等
の塩化物を主成分とする化合物が認められた。使用した
RDFには、正確には、0.9%のCl分及び0.1%
のS分が含有されている。このClが燃焼して全てHC
lになるとすると、概略1000ppm の濃度になる。つ
いで、RDFに粉末のS(硫黄)を添加して試験を継続
実施した。Sの添加量と試験時間を変えた結果、表3の
ようになった。なお、添加したSは、燃焼して全てSO
2 になるとすれば、RDFの2%添加で概略2000pp
m のSO2 濃度になる。
Further, a peeling test of the adhered substance was carried out using a crucible test facility shown in FIG. The test fuel used was RDF manufactured from municipal waste. This R
DF contains approximately 1% Cl contained in municipal solid waste, RD
Approximately 3% of Ca added during the production of F is included. As a result of the combustion of the RDF, as deposits are generated and grown on the outer surface of the simulated air-cooled heat transfer tube 6,
It was observed that the surface temperature of the air cooling simulated heat transfer tube 6 decreased. This is because the supply of heat from the fluidized bed 5 to the heat transfer tubes 6 was reduced due to the generation of deposits on the surface of the air cooling simulation heat transfer tubes 6. The test conditions are that the temperature of the fluidized bed 5 is 7
50 ° C., the surface temperature of the air cooling simulation heat transfer tube 6 is 550 ° C.,
The superficial velocity was approximately 0.5 m / s, and the RDF was burned for 1 hour to produce deposits on the surface of the simulated air-cooled heat transfer tube 6. The weight of the deposit formed was approximately 1.5 g. As a result of analysis of the deposits, compounds mainly composed of chlorides such as CaCl 2 and KCl were recognized. The RDF used contains exactly 0.9% Cl content and 0.1%
Is contained. This Cl burns and all HC
If it becomes 1, the concentration becomes approximately 1000 ppm. Then, the test was continued by adding powdered S (sulfur) to the RDF. As a result of changing the addition amount of S and the test time, the results are as shown in Table 3. The added S is burned and all SO
If it is 2, schematic 2000pp 2% addition of RDF
m 2 SO 2 concentration.

【0018】[0018]

【表3】 [Table 3]

【0019】表3から明らかなように、S添加量(対R
DF%)2%でも付着物の剥離効果が認められ、S添加
量を多くすると、より短時間で付着物の剥離が認められ
た。また、Sの添加によって付着物は淡黄色から白色へ
の変化が認められた。テストNO.18及び21の付着
物の分析によって、白色の付着物にはCa、K、Sが認
められたが、Clは殆ど含まれていなかった。この白色
の付着物の主成分はCaSO4 、K2 SO4 等の硫酸塩
であると考えられる。Sの添加量が少ないと、付着物の
剥離には長い時間が必要であるが、Sの添加量を多くす
ると、より短時間で付着物の剥離が可能となる。前述し
た式(1)及び式(2)に示した反応によって、CaC
2 、KCl等の塩化物がCaSO4 、K2 SO4 等の
硫酸塩に変化したことにより、付着物が剥離したものと
考えられる。テストNO.24は、RDFの燃焼を2倍
の2時間実施して、その後、Sを添加して付着物の剥離
試験をした結果を示している。付着量が多いと剥離に要
する時間が長くなることが明らかになった。RDFとと
もに供給したSは、燃焼してSO2 ガスになるので、燃
焼ガスにSO2 ガスを入れた試験と、燃焼してSO2
スになる硫安を供給して同様な試験を実施した。その結
果を表4に示す。
As is clear from Table 3, the amount of S added (vs. R
(DF%) 2% also exhibited the effect of peeling off the deposits, and when the added amount of S was increased, the detachment of the deposits was observed in a shorter time. Further, a change in the attached matter from pale yellow to white was observed by the addition of S. Test No. Analysis of deposits 18 and 21 showed Ca, K, S in the white deposit but little Cl. It is considered that the main components of the white deposit are sulfates such as CaSO 4 and K 2 SO 4 . If the added amount of S is small, it takes a long time to peel off the attached matter, but if the added amount of S is increased, the attached matter can be removed in a shorter time. By the reaction shown in the above-mentioned equations (1) and (2), CaC
It is considered that the deposits were separated due to the change of chlorides such as l 2 and KCl to sulfates such as CaSO 4 and K 2 SO 4 . Test No. No. 24 shows the result of performing the RDF combustion twice, for 2 hours, and then adding S to conduct a peeling test of the deposits. It became clear that the larger the amount of adhesion, the longer the time required for peeling. Since S supplied together with the RDF burns into SO 2 gas, a test in which SO 2 gas was added to the combustion gas and a similar test were conducted by supplying ammonium sulfate to be burned into SO 2 gas. The results are shown in Table 4.

【0020】[0020]

【表4】 [Table 4]

【0021】なお、硫安をRDFの8%添加した条件で
は、硫安中のS分が燃焼してSO2ガスになるとした時
のSO2 ガス濃度は、概略2000ppm になる。表3、
4から明らかなように、S添加、SO2 ガス添加及び硫
安添加のいずれも、付着物の剥離に有効であることがわ
かる。
Under the condition that ammonium sulfate is added at 8% of RDF, the SO 2 gas concentration when the S component in the ammonium sulfate is burned to be SO 2 gas is approximately 2000 ppm. Table 3,
As is clear from FIG. 4, it is found that any of the addition of S, the addition of SO 2 gas, and the addition of ammonium sulfate are effective in removing the deposits.

【0022】[0022]

【発明の実施の形態】図1は本発明の燃焼炉の運転方法
を実施する装置の一例を示している。本例は燃焼炉とし
て流動層燃焼炉を適用したものである。流動層本体20
の下部には、空気分散板21が設けられており、その上
部に流動層22を形成させて、流動層の中には伝熱管2
4を設けている。可燃物は可燃物供給機25から流動層
22の上部に供給され、燃焼用空気供給管26から供給
される燃焼用空気によって燃焼される。燃焼排ガスは空
塔部27を通り、熱回収部28を経て集塵部29を通
り、排風機30から煙突31を経て系外に排出される。
32は2次空気供給管、33は風箱である。
FIG. 1 shows an example of an apparatus for implementing a method of operating a combustion furnace according to the present invention. In this example, a fluidized bed combustion furnace is applied as the combustion furnace. Fluidized bed body 20
An air distribution plate 21 is provided at the lower part of the tube, and a fluidized bed 22 is formed at the upper part thereof.
4 are provided. The combustibles are supplied to the upper part of the fluidized bed 22 from the combustibles supply device 25 and are combusted by the combustion air supplied from the combustion air supply pipe 26. The combustion exhaust gas passes through the empty tower section 27, passes through the heat recovery section 28, passes through the dust collection section 29, and is discharged from the exhaust fan 30 through the chimney 31 to the outside of the system.
32 is a secondary air supply pipe, and 33 is a wind box.

【0023】可燃物は、例えばRDFで、概略0.9%
のClと概略3%のCaを含有している。RDFは可燃
物供給機25から流動層22の上部に供給され、燃焼用
空気供給管26から供給される燃焼用空気によって燃焼
される。流動層22の温度は、RDFの燃焼によって発
生した燃焼熱の一部を伝熱管24によって収熱すること
によって800℃前後に制御されている。RDFの燃焼
によって、炉壁又は伝熱管24の表面に付着物が生成す
る。この付着物の生成を抑制して防止する方法として、 (1) S又は燃焼によってSO2 を生成する硫黄化合
物を、S分供給機40から供給する方法。 (2) S又は燃焼によってSO2 を生成する硫黄化合
物を、可燃物供給機25からRDFと混合して供給する
方法。 (3) 燃焼用空気に、SO2 ガス供給管41からSO
2 ガスを供給する方法。 の少なくともいずれかを採用する。なお、S分供給機4
0は、例えば空気搬送式のものである。また、付着物の
剥離方法として、 (1) S又は燃焼によってSO2 を生成する硫黄化合
物を、S分供給機40から間欠的に供給する方法。 (2) S又は燃焼によってSO2 を生成する硫黄化合
物を、可燃物供給機25からRDFと間欠的に混合して
供給する方法。 (3) 燃焼用空気に、SO2 ガス供給管41からSO
2 ガスを間欠的に供給する方法。 の少なくともいずれかを採用する。
The combustible is, for example, about 0.9% by RDF.
Of Cl and approximately 3% of Ca. The RDF is supplied to the upper part of the fluidized bed 22 from the combustible material supply device 25 and is burned by the combustion air supplied from the combustion air supply pipe 26. The temperature of the fluidized bed 22 is controlled to about 800 ° C. by collecting a part of the combustion heat generated by the combustion of the RDF by the heat transfer tube 24. Deposits are produced on the furnace wall or the surface of the heat transfer tube 24 by the combustion of the RDF. As a method of suppressing and preventing the formation of the deposit, (1) a method of supplying S or a sulfur compound that generates SO 2 by combustion from the S component supply device 40. (2) A method in which S or a sulfur compound that generates SO 2 by combustion is mixed with the RDF from the combustible material supply device 25 and supplied. (3) SO 2 gas is supplied from the SO 2 gas supply pipe 41 to the combustion air.
2 gas supply method. Adopt at least one of In addition, S minute feeder 4
0 is, for example, a pneumatic type. In addition, as a method of removing the deposit, (1) a method of intermittently supplying S or a sulfur compound that generates SO 2 by combustion from the S component supply device 40. (2) A method in which S or a sulfur compound that generates SO 2 by combustion is intermittently mixed with RDF from the combustible material supply device 25 and supplied. (3) SO 2 gas is supplied from the SO 2 gas supply pipe 41 to the combustion air.
2 A method of intermittently supplying gas. Adopt at least one of

【0024】図2は本発明の燃焼炉の運転方法を実施す
る装置の他の例を示している。本例は燃焼炉として層内
循環流動層炉を適用したものである。部分燃焼流動層2
3の横に、熱回収流動層50を層内仕切51で区分して
設け、伝熱管24は、熱回収流動層50の中に設けられ
ている部分燃焼流動層23の流動物質は層内仕切51の
上部から熱回収流動層50に入り、伝熱管24によって
収熱されて温度が低くなって、層内仕切51の下部の開
口部52から部分燃焼流動層23に循環される。熱回収
流動層50には、空気搬送式のS分供給機53を設けて
いる。また、熱回収流動層の下側の風箱54には流動化
空気供給管56が接続されており、この流動化空気供給
管56にもSO2 ガス供給管58が接続されている。5
9は風箱仕切である。
FIG. 2 shows another example of an apparatus for carrying out the method for operating a combustion furnace according to the present invention. In this embodiment, an in-bed circulating fluidized bed furnace is applied as a combustion furnace. Partial combustion fluidized bed 2
3, a heat recovery fluidized bed 50 is separately provided by an in-layer partition 51, and the heat transfer tube 24 is provided with a partial combustion fluidized bed 23 provided in the heat recovery fluidized bed 50, and a fluid material of the partial combustion fluidized bed 23 is provided inside the layer. The heat enters the heat recovery fluidized bed 50 from the upper part of the bed 51, the heat is collected by the heat transfer tubes 24, the temperature of the bed becomes lower, and the heat is circulated from the opening 52 at the lower part of the in-layer partition 51 to the partial combustion fluidized bed 23. The heat-recovery fluidized bed 50 is provided with an air-conveying S-content feeder 53. A fluidizing air supply pipe 56 is connected to the wind box 54 below the heat recovery fluidized bed, and an SO 2 gas supply pipe 58 is also connected to the fluidizing air supply pipe 56. 5
9 is a wind box partition.

【0025】図3は本発明の燃焼炉の運転方法を実施す
る装置のさらに他の例を示している。本例は燃焼炉とし
て、ストーカ炉を適用したものである。可燃物供給機6
0から例えば、RDFを炉内の火格子上に供給して燃焼
させる。62は炉壁、63は燃焼用空気供給管、64は
SO2 ガス供給管である。
FIG. 3 shows still another example of the apparatus for implementing the method of operating a combustion furnace according to the present invention. In this example, a stoker furnace is applied as a combustion furnace. Combustible material feeder 6
From 0, for example, RDF is supplied onto a grate in a furnace and burned. 62 is a furnace wall, 63 is a combustion air supply pipe, and 64 is an SO 2 gas supply pipe.

【0026】[0026]

【実施例】【Example】

実施例1 図1に示す流動層燃焼炉において、RDFの燃焼を行っ
た結果、20時間の運転で付着物は伝熱管24の表面
に、0.3mm程度生成した。この付着物の生成によっ
て、伝熱管24から回収する熱量が少なくなった。この
付着物の生成があるので、長時間の連続運転には問題と
なる。そこで、燃焼を停止し伝熱管24の付着物を除去
して、RDFの2%のS(単体硫黄)を空気搬送式のS
分供給機40から流動層22の層内に供給しながらRD
Fの燃焼を行った。その結果、伝熱管24の表面は、5
0時間の運転でわずかに白色の付着物が確認できた程度
で、付着物の生成を抑制・防止することができた。排ガ
ス中のSO2 濃度は、Ca量が少ないと未反応のまま排
出されるので、Sの添加量によっては排煙処理が必要に
なる。
Example 1 As a result of burning RDF in the fluidized bed combustion furnace shown in FIG. 1, an adhering matter was formed on the surface of the heat transfer tube 24 by about 0.3 mm in 20 hours of operation. Due to the formation of the deposits, the amount of heat recovered from the heat transfer tube 24 was reduced. The formation of the deposits causes a problem in long-time continuous operation. Therefore, the combustion is stopped, the deposits on the heat transfer tube 24 are removed, and 2% of SDF (single sulfur) of the RDF is transferred to the air-conveying S
RD while supplying the fluidized bed 22 from the dispenser 40
The combustion of F was performed. As a result, the surface of the heat transfer tube 24 becomes 5
The generation of the deposits was able to be suppressed / prevented to the extent that white deposits were slightly observed after the operation for 0 hours. If the amount of Ca is small, the SO 2 concentration in the exhaust gas is exhausted without being reacted, so that depending on the amount of S added, a smoke exhaust treatment is required.

【0027】実施例2 図1に示す流動層燃焼炉において、空塔部27に2次空
気供給口32を設けて、Clが含まれている廃プラスチ
ックの部分燃焼をCaOを添加しながら行った。その結
果、20時間の運転で伝熱管24の表面に、0.5mm程
度付着物が生成した。この付着物の生成によって、伝熱
管24から回収する熱量が少なくなった。この付着物の
生成があるので、長時間の連続運転は問題となる。そこ
で、部分燃焼を停止して伝熱管24の付着物を除去し
て、RDFの2%のS(単体硫黄)を空気搬送式のS分
供給機40から流動層22の層内に供給しながら、空気
比0.3でRDFの部分燃焼を行った。その結果、伝熱
管24の表面は、20時間の運転でわずかに白色の付着
物が確認できた程度で、付着物の生成を抑制・防止する
ことができた。
Example 2 In the fluidized bed combustion furnace shown in FIG. 1, a secondary air supply port 32 was provided in the empty tower portion 27, and partial combustion of waste plastic containing Cl was performed while adding CaO. . As a result, a deposit of about 0.5 mm was formed on the surface of the heat transfer tube 24 during the operation for 20 hours. Due to the formation of the deposits, the amount of heat recovered from the heat transfer tube 24 was reduced. Because of the formation of the deposits, continuous operation for a long time becomes a problem. Therefore, the partial combustion is stopped to remove the deposits on the heat transfer tubes 24, and 2% S (single sulfur) of RDF is supplied into the fluidized bed 22 from the air-conveying S content feeder 40. , Partial combustion of RDF was performed at an air ratio of 0.3. As a result, the surface of the heat transfer tube 24 was able to suppress and prevent the generation of the attached matter to the extent that a slightly white attached matter was confirmed after the operation for 20 hours.

【0028】実施例3 図1に示す流動層燃焼炉で、燃焼用空気にSO2 ガスを
供給して、SO2 濃度が2000ppm になるようにし
て、RDFの燃焼を行った結果、伝熱管24の表面は、
20時間の運転でわずかに白色の付着物が確認できた程
度で、付着物の生成を抑制・防止することができた。
Example 3 In the fluidized bed combustion furnace shown in FIG. 1, RDF was burned by supplying SO 2 gas to the combustion air so that the SO 2 concentration became 2000 ppm. The surface of
The production of the deposit was able to be suppressed or prevented to the extent that a slightly white deposit could be confirmed in the operation for 20 hours.

【0029】実施例4 図2に示す層内循環流動層炉において、Sを供給しない
場合は、20時間の運転で伝熱管24の表面に0.2mm
の付着が認められたのに対して、RDFの2%量のS
(単体硫黄)を、S分供給機40、53の両方から同量
ずつ供給することによって、伝熱管24の付着物は殆ど
認められなかった。また、RDFの2%のS(単体硫
黄)をS分供給機53から供給することによって、伝熱
管24の付着物は殆ど認められなかった。
Example 4 In the in-bed circulating fluidized-bed furnace shown in FIG.
Of the RDF, whereas the adhesion of
By supplying the same amount of (simple sulfur) from both the S component feeders 40 and 53, deposits on the heat transfer tube 24 were hardly observed. In addition, by supplying 2% of RDF S (single sulfur) from the S component supply device 53, almost no deposits on the heat transfer tube 24 were recognized.

【0030】実施例5 図3に示すストーカ炉において、Sを供給しない場合
は、10時間の運転で炉壁62に0.2mmの付着が認め
られたのに対して、RDFの2%量のS(単体硫黄)
を、RDFと混合して供給することによって、炉壁62
の付着物は殆ど認められなかった。
Example 5 In the stoker furnace shown in FIG. 3, when S was not supplied, 0.2 mm of adhering to the furnace wall 62 was observed after 10 hours of operation, whereas 2% of RDF was used. S (single sulfur)
Is mixed with RDF and supplied to the furnace wall 62.
Almost no deposit was observed.

【0031】実施例6 図1に示す流動層燃焼炉において、RDFの燃焼を行っ
た結果、20時間の運転で付着物は伝熱管24の表面
に、0.3mm程度生成した。この付着物の生成によっ
て、伝熱管24から回収する熱量が少なくなった。この
付着物の生成があるので、長時間の連続運転には問題と
なる。そこで、20時間の運転に引き続き、RDFの2
%のS(単体硫黄)を空気搬送式のS供給機40から流
動層22の層内に供給しながらRDFの燃焼を1時間継
続した。運転停止後に伝熱管24の表面を観察した結
果、白色の付着物がわずかに確認できた程度で、付着物
の大部分を剥離することができた。排ガス中のSO2
度は、Ca量が少ないと未反応のまま排出されるので、
Sの添加量によっては排煙処理が必要になる。
Example 6 As a result of burning RDF in the fluidized bed combustion furnace shown in FIG. 1, deposits were formed on the surface of the heat transfer tube 24 by about 0.3 mm in 20 hours of operation. Due to the formation of the deposits, the amount of heat recovered from the heat transfer tube 24 was reduced. The formation of the deposits causes a problem in long-time continuous operation. Therefore, following the 20-hour operation, the RDF 2
The combustion of the RDF was continued for 1 hour while supplying S (single sulfur) in the fluidized bed 22 from a pneumatic conveying type S feeder 40. As a result of observing the surface of the heat transfer tube 24 after the operation was stopped, most of the attached matter was able to be peeled off to the extent that a white attached matter was slightly confirmed. Since the SO 2 concentration in the exhaust gas is discharged as unreacted when the amount of Ca is small,
Depending on the amount of S added, smoke exhaust treatment is required.

【0032】実施例7 図1に示す流動層燃焼炉において、空塔部27に2次空
気供給口32を設けて、Clが含まれている廃プラスチ
ックの部分燃焼をCaOを添加しながら行った。その結
果、20時間の運転で伝熱管24の表面に、0.5mm程
度付着物が生成した。この付着物の生成によって、伝熱
管24から回収する熱量が少なくなった。この付着物の
生成があるので、長時間の連続運転は問題となる。そこ
で、20時間の運転に引き続き、RDFの2%のS(単
体硫黄)を空気搬送式のS分供給機40から流動層22
の層内に供給しながらRDFの燃焼を1時間継続した。
運転停止後に伝熱管24の表面を観察した結果、白色の
付着物がわずかに確認できた程度で、付着物の大部分を
剥離することができた。
Example 7 In the fluidized bed combustion furnace shown in FIG. 1, a secondary air supply port 32 was provided in the empty tower portion 27, and partial combustion of waste plastic containing Cl was performed while adding CaO. . As a result, a deposit of about 0.5 mm was formed on the surface of the heat transfer tube 24 during the operation for 20 hours. Due to the formation of the deposits, the amount of heat recovered from the heat transfer tube 24 was reduced. Because of the formation of the deposits, continuous operation for a long time becomes a problem. Therefore, after 20 hours of operation, 2% S (single sulfur) of RDF is supplied from the air-conveying S-content supplier 40 to the fluidized bed 22.
The combustion of the RDF was continued for 1 hour while supplying into the layer.
As a result of observing the surface of the heat transfer tube 24 after the operation was stopped, most of the attached matter was able to be peeled off to the extent that a white attached matter was slightly confirmed.

【0033】実施例8 図1に示す流動層燃焼炉でRDFの燃焼を行った結果、
20時間の運転で付着物は伝熱管24の表面に、0.3
mm程度生成した。そこで、20時間の運転に引き続き、
燃焼用空気にSO2 濃度が2000ppmになるようにS
2 ガスを供給しRDFの燃焼を1時間継続した。その
結果、運転停止後に伝熱管24の表面を観察した結果、
付着物殆ど認められず付着物を剥離することができた。
Example 8 As a result of burning RDF in the fluidized bed combustion furnace shown in FIG.
After 20 hours of operation, the deposits are deposited on the surface of the heat transfer tube 24 by 0.3 mm.
Generated about mm. So, after 20 hours of driving,
S so that the SO 2 concentration becomes 2000 ppm in the combustion air
O 2 gas was supplied and the combustion of RDF was continued for 1 hour. As a result, as a result of observing the surface of the heat transfer tube 24 after the operation was stopped,
Almost no deposit was observed, and the deposit could be peeled off.

【0034】実施例9 図2に示す層内循環流動層炉において、Sを供給しない
場合は、20時間の運転で伝熱管24の表面に0.2mm
の付着が認められた。この20時間のRDFの運転に引
き続いて、RDFの2%量のS(単体硫黄)をS分供給
機40、53の両方から同量ずつ1時間供給した。その
結果、伝熱管24の表面に付着は認められず、付着物の
剥離が確認できた。また、20時間のRDF運転後に、
RDFの2%のS(単体硫黄)をS分供給機53からの
み1時間供給することによって、伝熱管24の付着物は
殆ど認められなかった。
Embodiment 9 In the in-bed circulating fluidized-bed furnace shown in FIG.
Was observed. Subsequent to the operation of the RDF for 20 hours, S (single sulfur) in an amount of 2% of the RDF was supplied by the same amount from both the S feeders 40 and 53 for 1 hour. As a result, no adhesion was recognized on the surface of the heat transfer tube 24, and peeling of the attached matter was confirmed. Also, after 20 hours of RDF operation,
By supplying 2% of RDF (single sulfur) from the S supply unit 53 for 1 hour, almost no deposits on the heat transfer tube 24 were observed.

【0035】実施例10 図3に示すストーカ炉において、Sを供給しない場合
は、10時間の運転で炉壁62に0.2mmの付着が認め
られたので、引き続いてRDFの2%量のS(単体硫
黄)を、RDFと混合して1時間供給すると、炉壁62
の付着物は殆ど認められなく、付着物の剥離が確認でき
た。
Example 10 In the stoker furnace shown in FIG. 3, when S was not supplied, since 0.2 mm was adhered to the furnace wall 62 after 10 hours of operation, 2% of RDF in (Single sulfur) mixed with RDF and supplied for one hour
Almost no deposit was observed, and peeling of the deposit was confirmed.

【0036】上記のように、RDF等の燃焼によって、
炉壁、伝熱管表面に付着物が生成するが、これは、炉内
の肉眼観察あるいは収熱量の変化で確認できる。S等の
供給は、連続供給すれば付着防止効果は大きいが、環境
面及び費用面の問題があり、例えば、収熱量が減少すれ
ばS分の供給を行い、収熱量が回復すればS分の供給を
停止する。あるいは、一定時間毎、例えば、1ケ月毎、
1000時間毎等に間欠的にS分の供給を繰り返して実
施するようにしても良い。
As described above, by the combustion of RDF or the like,
Adhesion is generated on the furnace wall and the surface of the heat transfer tube, which can be confirmed by visual observation inside the furnace or by a change in the amount of heat collected. The supply of S and the like has a large effect of preventing adhesion if continuously supplied, but has environmental and cost problems. For example, if the amount of heat collected decreases, the supply of S is performed, and if the amount of heat recovered recovers, the amount of S is reduced. Stop supplying. Alternatively, every fixed time, for example, every month,
The supply of S may be repeated intermittently every 1000 hours or the like.

【0037】[0037]

【発明の効果】本発明は上記のように構成されているの
で、つぎのような効果を奏する。 (1) 燃焼炉内の燃焼領域に、Sもしくは硫安のよう
な燃焼によってSO2 ガスを生成する物質、又はSO2
ガスを、燃焼雰囲気よりも高い濃度となるように加える
ことにより、炉壁又は伝熱管表面への付着物の生成を抑
制・防止することができる。 (2) 層内循環流動層炉では、伝熱管を設けている熱
回収流動層内に、Sもしくは硫安のような燃焼によって
SO2 ガスを生成する物質、又はSO2 ガスを、燃焼雰
囲気よりも高い濃度となるように加えることにより、炉
壁又は伝熱管表面への付着物の生成を抑制・防止するこ
とができる。 (3) 燃焼炉内の燃焼領域に、Sもしくは硫安のよう
な燃焼によってSO2 ガスを生成する物質、又はSO2
ガスを、燃焼雰囲気よりも高い濃度となるように間欠的
に加えることにより、炉壁又は伝熱管表面の付着物を剥
離することができる。 (4) 層内循環流動層炉では、伝熱管を設けている熱
回収流動層内に、Sもしくは硫安のような燃焼によって
SO2 ガスを生成する物質、又はSO2 ガスを、燃焼雰
囲気よりも高い濃度となるように間欠的に加えることに
より、炉壁又は伝熱管表面の付着物を剥離することがで
きる。
As described above, the present invention has the following effects. (1) A substance that generates SO 2 gas by combustion, such as S or ammonium sulfate, or SO 2 in a combustion region in a combustion furnace.
By adding the gas so as to have a higher concentration than the combustion atmosphere, it is possible to suppress and prevent the generation of deposits on the furnace wall or the heat transfer tube surface. (2) In an in-bed circulating fluidized-bed furnace, a substance that generates SO 2 gas by combustion such as S or ammonium sulfate or SO 2 gas is supplied to a heat recovery fluidized bed provided with a heat transfer tube in a heat recovery atmosphere. By adding so as to have a high concentration, generation of deposits on the furnace wall or the heat transfer tube surface can be suppressed or prevented. (3) Substances that generate SO 2 gas by combustion, such as S or ammonium sulfate, or SO 2
By intermittently adding the gas so as to have a higher concentration than the combustion atmosphere, it is possible to remove the deposits on the furnace wall or the heat transfer tube surface. (4) In the in-bed circulating fluidized-bed furnace, a substance that generates SO 2 gas by combustion such as S or ammonium sulfate or SO 2 gas in a heat recovery fluidized bed provided with a heat transfer tube is disposed in a heat recovery fluidized bed. By intermittently adding such that the concentration becomes high, it is possible to peel off the deposits on the furnace wall or the heat transfer tube surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃焼炉の運転方法を実施する装置の一
例で、流動層燃焼炉を示す概略説明図である。
FIG. 1 is a schematic explanatory view showing a fluidized-bed combustion furnace as an example of an apparatus for carrying out a method for operating a combustion furnace according to the present invention.

【図2】本発明の燃焼炉の運転方法を実施する装置の他
の例で、層内循環流動層炉を示す概略説明図である。
FIG. 2 is a schematic explanatory view showing another example of the apparatus for performing the operation method of the combustion furnace of the present invention, which is an in-bed circulating fluidized bed furnace.

【図3】本発明の燃焼炉の運転方法を実施する装置のさ
らに他の例で、ストーカ炉を示す概略説明図である。
FIG. 3 is a schematic explanatory view showing a stoker furnace in still another example of the apparatus for performing the operation method of the combustion furnace of the present invention.

【図4】付着の抑制・防止試験及び付着物の剥離試験を
行ったルツボ試験装置である。
FIG. 4 is a crucible test apparatus that has been subjected to an adhesion suppression / prevention test and an adhesion detachment test.

【符号の説明】[Explanation of symbols]

20 流動層本体 22 流動層 23 部分燃焼流動層 24 伝熱管 25 可燃物供給機 26 燃焼用空気供給管 32 2次空気供給管 40 S分供給機 41 SO2 ガス供給管 50 熱回収流動層 53 S分供給機 56 流動化空気供給管 58 SO2 ガス供給管 60 可燃物供給機 62 炉壁 63 燃焼用空気供給管 64 SO2 ガス供給管Reference Signs List 20 fluidized bed main body 22 fluidized bed 23 partial combustion fluidized bed 24 heat transfer tube 25 combustible material supply device 26 combustion air supply tube 32 secondary air supply tube 40 S supply device 41 SO 2 gas supply tube 50 heat recovery fluidized bed 53 S Dispenser 56 Fluidized air supply pipe 58 SO 2 gas supply pipe 60 Combustibles supply machine 62 Furnace wall 63 Combustion air supply pipe 64 SO 2 gas supply pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 善嗣 神戸市中央区東川崎町1丁目1番3号 川 崎重工業株式会社神戸本社内 (72)発明者 久保 幸雄 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 柴田 泰典 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 森本 勝哉 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Zenji Okada, 1-3 1-3 Higashikawasaki-cho, Chuo-ku, Kobe City Kawasaki Seki Heavy Industries, Ltd. Kobe headquarters (72) Inventor Yukio Kubo 1-1, Kawasaki-cho, Akashi-shi, Hyogo Issue Kawasaki Heavy Industries, Ltd. Akashi Plant (72) Inventor Yasunori Shibata 1-1 Kawasaki-cho, Akashi-shi, Hyogo Prefecture Kawasaki Heavy Industries Ltd. Akashi Plant (72) Inventor Katsuya Morimoto 1-1, Kawasaki-cho, Akashi-shi, Hyogo Kawasaki Heavy industry Akashi factory

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 塩素化合物を含有する可燃物をカルシウ
ム化合物とともに燃焼炉で燃焼させるに際し、 付着物の生成を抑制するために、前記可燃物の燃焼雰囲
気よりも高い濃度のSO2 ガスを共存させて燃焼させる
ことを特徴とする燃焼炉の運転方法。
When burning a combustible containing a chlorine compound together with a calcium compound in a combustion furnace, an SO 2 gas having a higher concentration than the combustion atmosphere of the combustible is used in order to suppress the formation of deposits. A method of operating a combustion furnace, characterized in that the furnace is burned.
【請求項2】 塩素化合物を含有する可燃物をカルシウ
ム化合物とともに部分燃焼流動層及び熱回収流動層を有
する層内循環流動層炉で燃焼させるに際し、 付着物の生成を抑制するために、層内循環流動層炉の熱
回収流動層に熱回収流動層の雰囲気よりも高い濃度のS
2 ガスを共存させて燃焼させることを特徴とする燃焼
炉の運転方法。
2. A combustible material containing a chlorine compound is burned together with a calcium compound in an in-bed circulating fluidized bed furnace having a partially combusted fluidized bed and a heat recovery fluidized bed, in order to suppress the formation of deposits. The concentration of sulfur in the heat recovery fluidized bed of the circulating fluidized bed furnace is higher than that of the atmosphere in the heat recovery fluidized bed.
A method of operating a combustion furnace, wherein combustion is performed in the presence of O 2 gas.
【請求項3】 塩素化合物を含有する可燃物をカルシウ
ム化合物とともに燃焼炉で燃焼させるに際し、 付着物を剥離させるために、前記可燃物の燃焼雰囲気よ
りも高い濃度のSO2ガスを間欠的に共存させて燃焼さ
せることを特徴とする燃焼炉の運転方法。
3. When a combustible containing a chlorine compound is burned together with a calcium compound in a combustion furnace, an SO 2 gas having a concentration higher than that of the combustion atmosphere of the combustible is intermittently coexistent in order to remove deposits. A method for operating a combustion furnace, characterized in that the furnace is caused to burn.
【請求項4】 塩素化合物を含有する可燃物をカルシウ
ム化合物とともに部分燃焼流動層及び熱回収流動層を有
する層内循環流動層炉で燃焼させるに際し、 付着物を剥離させるために、層内循環流動層炉の熱回収
流動層に熱回収流動層の雰囲気よりも高い濃度のSO2
ガスを間欠的に共存させて燃焼させることを特徴とする
燃焼炉の運転方法。
4. When a combustible material containing a chlorine compound is burned together with a calcium compound in a fluidized-bed fluidized-bed furnace having a partially combusted fluidized bed and a heat recovery fluidized bed, an in-bed circulating fluidized bed is used to separate adhering substances. Higher concentration of SO 2 than heat recovery fluidized bed atmosphere
A method of operating a combustion furnace, characterized by intermittently coexisting and burning gas.
【請求項5】 燃焼炉が、流動層炉、ストーカ炉、及び
層内循環流動層炉の部分燃焼流動層炉のいずれかである
請求項1又は3記載の燃焼炉の運転方法。
5. The method for operating a combustion furnace according to claim 1, wherein the combustion furnace is any one of a fluidized bed furnace, a stoker furnace, and a partial combustion fluidized bed furnace of an intra-layer circulation fluidized bed furnace.
【請求項6】 SO2 ガスの間欠供給は、伝熱管からの
収熱量が少なくなると実施され、収熱量が回復すると停
止される請求項2又は4記載の燃焼炉の運転方法。
6. The operating method of a combustion furnace according to claim 2, wherein the intermittent supply of the SO 2 gas is performed when the amount of heat collected from the heat transfer tube is reduced, and is stopped when the amount of heat recovered is recovered.
【請求項7】 SO2 ガスの間欠供給が、一定時間毎に
実施される請求項2又は4記載の燃焼炉の運転方法。
7. The method for operating a combustion furnace according to claim 2, wherein the intermittent supply of the SO 2 gas is performed at regular intervals.
【請求項8】 可燃物の燃焼が、塩素化合物及びカルシ
ウム化合物を含有する可燃物の燃焼、カルシウム化合物
を供給しながら塩素化合物を含有する可燃物を燃焼させ
ること、及びごみ転換燃料の燃焼の少なくともいずれか
である請求項1〜7のいずれかに記載の燃焼炉の運転方
法。
8. The combustion of the combustible material includes burning a combustible material containing a chlorine compound and a calcium compound, burning a combustible material containing a chlorine compound while supplying a calcium compound, and burning a waste conversion fuel. The method for operating a combustion furnace according to any one of claims 1 to 7, which is any one of the above.
【請求項9】 共存のSO2 ガスが、硫黄の燃焼により
発生するSO2 、硫黄化合物の燃焼により発生するSO
2 、及び燃焼空気に同伴されたSO2 の少なくともいず
れかである請求項1〜8のいずれかに記載の燃焼炉の運
転方法。
9. The coexisting SO 2 gas is SO 2 generated by combustion of sulfur, and SO generated by combustion of sulfur compound.
The method for operating a combustion furnace according to any one of claims 1 to 8, wherein the method is at least one of SO 2 and SO 2 entrained in combustion air.
【請求項10】 共存のSO2 ガスが、可燃物のClに
関するS/Clモル比が0.5〜10の範囲になるよう
に供給される請求項1〜9のいずれかに記載の燃焼炉の
運転方法。
10. The combustion furnace according to claim 1, wherein the coexisting SO 2 gas is supplied such that the S / Cl molar ratio of combustibles with respect to Cl is in the range of 0.5 to 10. Driving method.
JP14679896A 1996-05-15 1996-05-15 Operating method of combustion furnace Expired - Lifetime JP2747673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14679896A JP2747673B2 (en) 1996-05-15 1996-05-15 Operating method of combustion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14679896A JP2747673B2 (en) 1996-05-15 1996-05-15 Operating method of combustion furnace

Publications (2)

Publication Number Publication Date
JPH09303743A true JPH09303743A (en) 1997-11-28
JP2747673B2 JP2747673B2 (en) 1998-05-06

Family

ID=15415779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14679896A Expired - Lifetime JP2747673B2 (en) 1996-05-15 1996-05-15 Operating method of combustion furnace

Country Status (1)

Country Link
JP (1) JP2747673B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082756A1 (en) * 2017-10-25 2019-05-02 住友重機械工業株式会社 Circulating fluidized bed boiler and operating method of same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082756A1 (en) * 2017-10-25 2019-05-02 住友重機械工業株式会社 Circulating fluidized bed boiler and operating method of same
KR20200071719A (en) 2017-10-25 2020-06-19 스미도모쥬기가이고교 가부시키가이샤 Circulating fluidized bed boiler and its operation method
JPWO2019082756A1 (en) * 2017-10-25 2020-11-12 住友重機械工業株式会社 Circulating fluidized bed boiler and its operation method

Also Published As

Publication number Publication date
JP2747673B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
EP0767343A2 (en) Heat recovery system and power generation system
US6883444B2 (en) Processes and systems for using biomineral by-products as a fuel and for NOx removal at coal burning power plants
SI9620065A (en) Process for the dry desulphurisation of a combustion gas
CA2445182C (en) Processes and systems for using biomineral by-products as a fuel and for nox removal at coal burning power plants
EP1399695B1 (en) Flue gas purification device for an incinerator
JPH09506037A (en) Flue gas cooling and purification method
JP2747673B2 (en) Operating method of combustion furnace
JP2004347145A (en) Aluminum deposition preventing method for rpf fired circulation fluidized bed boiler
JP2004084965A (en) Combustion exhaust gas processing equipment
JP3074617B2 (en) Superheated steam generation method and device by refuse incineration
WO2021085155A1 (en) Denitration and corrosion reducing method for waste incineration facility
JP2741358B2 (en) Removal method of deposits in fluidized bed combustion in bed
JP2748217B2 (en) Removal method of hydrogen chloride in fluidized bed waste incinerator
JP2004263952A (en) Heat recovering method and device from exhaust gas
TWI391610B (en) A circulating fluidized bed, an operating system having the circulating fluidized bed, and a driving method of the circulating fluidized bed
JPH0735322A (en) Method and apparatus for incinerating chlorine-containing refuse
JP2714641B2 (en) Removal method of deposits in fluidized bed combustion
JP3038655B1 (en) Prevention method of dioxin generation in incinerator and incinerator
JPH11201425A (en) Thermal decomposition melting combustion device of waste
JP3459778B2 (en) Incineration method of plastic garbage bags and municipal waste including plastics
JP3654932B2 (en) Fluidized bed waste incineration method and apparatus
JPH1144414A (en) Thermally decomposing melt combustion equipment for waste
JPS594808A (en) Combustion of substance containing chloric component
CN112500905A (en) Coke inhibitor and application thereof in biomass power generation boiler
JPS62284118A (en) Supply of sludge for fluidized bed type sludge combustion furnace

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 16

EXPY Cancellation because of completion of term