JPH09303103A - Closed loop cooling type turbine rotor blade - Google Patents

Closed loop cooling type turbine rotor blade

Info

Publication number
JPH09303103A
JPH09303103A JP12188696A JP12188696A JPH09303103A JP H09303103 A JPH09303103 A JP H09303103A JP 12188696 A JP12188696 A JP 12188696A JP 12188696 A JP12188696 A JP 12188696A JP H09303103 A JPH09303103 A JP H09303103A
Authority
JP
Japan
Prior art keywords
blade
cooling
passage
turbine
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12188696A
Other languages
Japanese (ja)
Inventor
Katsuyasu Ito
勝康 伊藤
Takanari Okamura
隆成 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12188696A priority Critical patent/JPH09303103A/en
Publication of JPH09303103A publication Critical patent/JPH09303103A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a closed loop cooling type turbine rotor blade to perform effective cooling of a turbine blade, uniformize a metal temperature, increase cooling efficiency, and improve thermal efficiency. SOLUTION: A turbine rotor blade 20 is formed such that the interior of a turbine blade is formed in a hollow state and a blade cooling flow passage 25 is formed, and a cooling medium M is fed to a blade cooling flow passage 25 through a feed passage 26 from the bottom part of a blade-filled part 22 to cool the interior of the blade. A recovery passage 27 independent from the feed passage 26 is formed in the blade-filled part 22 and the cooling medium M to cool a blade effective part 21 through the blade cooling flow passage 25 is guided by the recovery passage 27 and recovered to the outside of the blade. The cooling medium M after cooling of the turbine blade is all recovered by the recovery passage 27 to employ a closed loop type cooling structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンの冷
却翼において翼内部を中空構造とし、翼根元部より翼内
部に冷却媒体を導入する閉ループ冷却形タービン動翼に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a closed-loop cooling type turbine rotor blade having a hollow structure inside the cooling blade of a gas turbine and introducing a cooling medium from the root of the blade into the blade.

【0002】[0002]

【従来の技術】発電プラントに用いられるガスタービン
は、図13に示すように、一般に構成されており、ター
ビン1と同軸に設けられた圧縮機2の駆動によって圧縮
された圧縮空気を燃焼器3に供給し、燃焼器3のライナ
部分3aで燃料を燃焼させ、その燃焼による高温の燃焼
ガスをトランジションピース4及びタービン1の静翼5
を経て動翼6に案内し、この動翼6を回転駆動させてタ
ービンlの仕事をさせるように構成されている。
2. Description of the Related Art A gas turbine used in a power plant is generally constructed as shown in FIG. 13, and a compressed air compressed by driving a compressor 2 provided coaxially with the turbine 1 is burned by a combustor 3 Of the combustion gas to burn the fuel in the liner portion 3a of the combustor 3, and the high temperature combustion gas resulting from the combustion is supplied to the transition piece 4 and the vanes 5 of the turbine 1.
And is guided to the moving blades 6 and is rotated to drive the turbine 1.

【0003】ガスタービンの熱効率を向上させるために
は、タービン入口温度を高温にするとよいことが知られ
ており、そのために、タービン入口温度の上昇が図られ
ている。タービン入口温度の上昇に伴い、タービン1の
燃焼器3や静翼5,動翼6にも高温に耐え得る材料を使
用する必要性が高まり、耐熱性超合金材料がタービン部
品として開発され、用いられるようになっている。
In order to improve the thermal efficiency of the gas turbine, it is known that the turbine inlet temperature should be high, and therefore, the turbine inlet temperature is increased. As the turbine inlet temperature rises, the need to use materials that can withstand high temperatures for the combustor 3 of the turbine 1, the stationary blades 5, and the moving blades 6 has increased, and heat-resistant superalloy materials have been developed and used as turbine parts. It is designed to be used.

【0004】現在ガスタービンの高温部材として使用し
ている耐熱性超合金材料の限界温度は、800〜900
℃である一方、タービン入口温度は約1300℃程度に
達し、耐熱性超合金材料の限界温度をはるかに超えてい
る。したがって、ガスタービンのタービン翼を限界温度
内に保持し、ガスタービンの信頼性を維持するために、
内部冷却構造の開発が要求され、さらには遮熱コーティ
ングを採用した冷却翼の使用が必須となっている。
The critical temperature of the heat resistant superalloy material currently used as a high temperature member of a gas turbine is 800 to 900.
Meanwhile, the turbine inlet temperature reaches about 1300 ° C., which is far above the limit temperature of the heat-resistant superalloy material. Therefore, in order to keep the turbine blades of the gas turbine within the limit temperature and maintain the reliability of the gas turbine,
The development of an internal cooling structure is required, and the use of cooling blades with a thermal barrier coating is essential.

【0005】一般にタービン翼の冷却は圧縮機2の途中
段や吐出空気の一部を抽出し、冷却媒体として燃焼器3
をバイパスして温度が低い状態でガスタービン1の静翼
5や動翼6に送ることが多い。燃焼器3からの燃焼ガ
ス、ひいてはガス通路部の温度が高くなればなるほど多
くの冷却媒体Mが必要になるが、冷却媒体Mは燃焼器3
とガス通路部をパイパスするため、タービン翼冷却後に
ガス通路部に混合するまでは出力の発生に寄与しない。
In general, for cooling the turbine blade, the middle stage of the compressor 2 and a part of the discharged air are extracted, and the combustor 3 is used as a cooling medium.
Is often sent to the stationary blades 5 and the moving blades 6 of the gas turbine 1 by bypassing the gas. The higher the temperature of the combustion gas from the combustor 3, and thus the temperature of the gas passage, the more the cooling medium M is required.
Since the gas passage is bypassed, it does not contribute to the generation of output until the gas is mixed in the gas passage after cooling the turbine blade.

【0006】したがって、この冷却媒体Mの量が多いほ
ど燃焼器への供給量が減少し、ガスタービンの熱効率は
低下し、ガス通路部の入口温度の上昇で得られた、より
高い熱効率を冷却媒体Mの増加で相殺してしまう場合も
あり得る。したがって、ガスタービンの熱効率の上昇の
ためには、できるだけ少ない冷却媒体Mで、効率よくタ
ービン翼の冷却を実施することが重要である。
Therefore, as the amount of the cooling medium M increases, the supply amount to the combustor decreases, the thermal efficiency of the gas turbine decreases, and the higher thermal efficiency obtained by increasing the inlet temperature of the gas passage is cooled. There is a possibility that the increase in the medium M may offset each other. Therefore, in order to increase the thermal efficiency of the gas turbine, it is important to efficiently cool the turbine blades with as little cooling medium M as possible.

【0007】現在採用されている1300℃級の代表的
なガスタービンの冷却動翼6の縦断面を図14に示す。
動翼6は翼有効部7、翼植込み部8、翼シャンク部9お
よび翼有効部7が取り付く翼プラットホーム10から構
成されている。冷却媒体Mは3個の供給通路11a,1
1b,11cに分割されて供給される。各供給通路11
a,11b,11cは翼有効部7において、対流冷却効
果を高めるために絞りを形成し、それぞれ絞り冷却流路
12a,12b,12cとして冷却媒体Mの流速を高め
ると共に乱流促進リブ13を設けて流れの乱れを促進さ
せ、温度の均一化を図っている。
FIG. 14 shows a vertical section of a cooling blade 6 of a typical gas turbine of 1300 ° C. class which is currently adopted.
The moving blade 6 is composed of a blade effective portion 7, a blade implanting portion 8, a blade shank portion 9 and a blade platform 10 to which the blade effective portion 7 is attached. The cooling medium M has three supply passages 11a, 1a.
It is divided into 1b and 11c and supplied. Each supply passage 11
In the blade effective portion 7, a, 11b, and 11c form throttles to enhance the convection cooling effect, and increase the flow velocity of the cooling medium M and provide the turbulent flow promoting ribs 13 as throttle cooling flow passages 12a, 12b, and 12c, respectively. It promotes turbulence in the flow and makes the temperature uniform.

【0008】動翼6の前縁部供給通路11aに流入した
冷却媒体Mは翼有効部内径側から外径側の方向に流れな
がら、内部対流冷却を行いつつフィルム冷却孔15から
外部に吹き出し、動翼6の前縁部側にフィルム膜をつく
って高温の主流ガス(燃焼ガス)から翼を保護する。ま
た、動翼6のタービン軸方向中央部供給通路11bに流
人した冷却媒体Mは翼有効部内径側から外径側に流れた
後、反転して再び内径側に案内されるというように、い
わゆるサーペンタインと呼ばれる曲がりくねった流路
(ジグザグ流路)を形成しながら対流冷却し、同様にフ
ィルム冷却孔15からタービン翼背側の外部に吹き出
し、高温の主流ガスから翼を保護する。動翼6の後縁部
供給通路11cも同様に冷却媒体Mは外径側に流れなが
ら対流冷却し、後縁吹き出し孔16から外部に流れる。
The cooling medium M that has flowed into the leading edge supply passage 11a of the moving blade 6 flows from the inner diameter side of the blade effective portion to the outer diameter side while performing internal convection cooling and is blown to the outside from the film cooling hole 15. A film film is formed on the front edge side of the moving blade 6 to protect the blade from a high temperature mainstream gas (combustion gas). Further, the cooling medium M flowing into the turbine axial direction central portion supply passage 11b of the moving blade 6 flows from the inner diameter side of the blade effective portion to the outer diameter side, then is inverted and guided again to the inner diameter side. Convection cooling is performed while forming a meandering flow path (zigzag flow path) called a so-called serpentine, and is similarly blown from the film cooling hole 15 to the outside on the back side of the turbine blade to protect the blade from high-temperature mainstream gas. Similarly, in the trailing edge portion supply passage 11c of the moving blade 6, the cooling medium M is convectively cooled while flowing to the outer diameter side, and flows from the trailing edge blowing hole 16 to the outside.

【0009】[0009]

【発明が解決しようとする課題】ガスタービンプラント
においては、ガスタービンの熱効率向上のために、ター
ビン入口温度を高くすることが効果的である。しかし、
ガスタービン入口温度が1300℃を超えると必要な冷
却媒体量(現在では圧縮機の吐出空気が主流)が著しく
増大する。
In a gas turbine plant, it is effective to raise the turbine inlet temperature in order to improve the thermal efficiency of the gas turbine. But,
When the gas turbine inlet temperature exceeds 1300 ° C., the required cooling medium amount (currently, the discharge air of the compressor is the mainstream) increases significantly.

【0010】動翼6冷却後の冷却媒体Mを燃焼ガス中に
吹き出す開ループ形のガスタービン冷却構造の場合、冷
却媒体Mの増大はガス温度の希釈、主流ガス(燃焼ガ
ス)との混合損失、ポンピング動力の増大によりガスタ
ービンの性能低下を招くおそれがある。また冷却媒体量
の増大はガスタービンを用いた発電プラントの熱効率の
低下をも招く。さらに不純物が混在するような粗悪燃料
に対しては、翼表面に形成した小孔が目詰まりを生じ、
フィルム冷却機能を損うので適用できない。
In the case of the open-loop type gas turbine cooling structure in which the cooling medium M after cooling the moving blades 6 is blown into the combustion gas, the increase of the cooling medium M causes dilution of the gas temperature and loss of mixing with the mainstream gas (combustion gas). However, there is a possibility that the performance of the gas turbine may deteriorate due to the increase in pumping power. Further, an increase in the amount of cooling medium also causes a decrease in the thermal efficiency of a power plant using a gas turbine. Furthermore, for poor fuel such as impurities mixed, the small holes formed on the blade surface will be clogged,
Not applicable because it impairs the film cooling function.

【0011】またタービン翼の冷却においては以下の課
題が挙げられる。
Further, the following problems are raised in cooling the turbine blade.

【0012】(1) タービン翼の前縁部と後縁部は主流ガ
ス側との熱伝達率が大きく、更に翼構造上、翼面の伝熱
面積に対して冷却側の伝熱面積を余り大きくすることが
できなく、冷却が困難な部位でありメタル温度が他のタ
ービン翼部位に比べて相対的に高くなる傾向がある。特
にタービン翼の後縁部は冷却通路面積を大きくできない
ため、冷却媒体Mの流量の割には流入する熱量が大きく
なり、図15のように他のタービン翼部位に対して、相
対的に流れ方向の冷却媒体Mの圧力低下および温度上昇
が大きくなり、冷却能力が低下する。
(1) The leading edge portion and the trailing edge portion of the turbine blade have a large heat transfer coefficient with the mainstream gas side, and due to the blade structure, the heat transfer area on the cooling side is excessive with respect to the heat transfer area on the blade surface. The temperature cannot be increased and cooling is difficult, and the metal temperature tends to be relatively higher than other turbine blade parts. In particular, since the cooling passage area cannot be increased at the trailing edge portion of the turbine blade, the amount of heat that flows in becomes large relative to the flow rate of the cooling medium M, and the flow rate becomes relatively large with respect to other turbine blade portions as shown in FIG. The pressure drop and the temperature rise of the cooling medium M in the direction increase, and the cooling capacity decreases.

【0013】(2) タービン翼の先端部は冷却媒体Mの吹
き出しによって、冷却媒体Mが温度上昇するため、効果
的な冷却が難しくなりメタル温度が相対的に高くなる傾
向がある。
(2) Since the temperature of the cooling medium M rises due to the blowing of the cooling medium M at the tip of the turbine blade, effective cooling becomes difficult and the metal temperature tends to be relatively high.

【0014】(3) タービン翼の翼面の熱伝達率分布は、
図16のようにタービン翼の背側と腹側で大きな差があ
り、従来は翼背側のフィルム冷却併用により翼面メタル
温度を均一に冷却している。しかしながら、フィルム冷
却孔から吹き出される冷却媒体Mと主流ガスとの混合に
よるガスタービンの性能低下を防ぐために、冷却媒体M
の吹き出しによるフィルム冷却を無くしタービン翼内部
からの対流冷却とした場合、タービン翼の背側のメタル
温度を許容値内に冷却しようとすると腹側は過冷却にな
り背側と腹側との温度差が大きくなる。これは、タービ
ン翼の冷却に無駄な冷却媒体量の増加や熱応力の増加を
招く恐れがある。
(3) The heat transfer coefficient distribution on the blade surface of the turbine blade is
As shown in FIG. 16, there is a large difference between the back side and the ventral side of the turbine blade, and conventionally, the blade surface metal temperature is uniformly cooled by using the film cooling on the blade back side together. However, in order to prevent the deterioration of the performance of the gas turbine due to the mixing of the cooling medium M blown out from the film cooling holes and the mainstream gas, the cooling medium M
If convection cooling from the inside of the turbine blade is done by eliminating the film cooling caused by the blowout of air, if the metal temperature on the back side of the turbine blade is tried to cool within the allowable value, the ventral side will be overcooled and the temperature difference between the backside and the ventral side will be Grows larger. This may lead to an increase in the amount of cooling medium that is useless for cooling the turbine blade and an increase in thermal stress.

【0015】本発明は、上述した事情を考慮してなされ
たもので、タービン翼の冷却を効果的に行ないメタル温
度を均一化するとともに、冷却効率を増大して熱効率の
向上を図るようにした閉ループ冷却形タービン動翼を提
供することを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and it is intended to effectively cool the turbine blade to make the metal temperature uniform and to increase the cooling efficiency to improve the thermal efficiency. An object is to provide a closed-loop cooled turbine blade.

【0016】本発明の他の目的は、燃焼ガス温度が高温
の場合にも良好な冷却を行い、かつ粗悪燃料に対しても
適用可能で翼冷却機能が損われることがない閉ループ冷
却形タービン動翼を提供するにある。
Another object of the present invention is to provide a closed loop cooling type turbine engine which performs good cooling even when the combustion gas temperature is high, is applicable to poor fuel, and does not impair the blade cooling function. To provide wings.

【0017】[0017]

【課題を解決するための手段】本発明に係る閉ループ冷
却形タービン動翼は、上述した課題を解決するために、
請求項1に記載したように、タービン翼の翼内部を中空
にして翼冷却流路を形成し、翼植込部の底部から供給通
路を経て翼冷却流路に冷却媒体を供給し、翼内部を冷却
するタービン動翼において、前記翼植込部に翼冷却流路
から冷却媒体をタービン翼外に回収可能な回収通路を供
給通路から独立して設け、上記回収通路でタービン翼冷
却後の冷却媒体全量を回収するように構成したものであ
る。
In order to solve the above-mentioned problems, a closed-loop cooling type turbine rotor blade according to the present invention is provided.
As described in claim 1, the inside of the blade of the turbine blade is made hollow to form a blade cooling flow path, and the cooling medium is supplied to the blade cooling flow path from the bottom portion of the blade implantation portion through the supply passage, In a turbine rotor blade for cooling a turbine blade, a recovery passage for recovering a cooling medium from the blade cooling passage to the outside of the turbine blade is provided in the blade implantation portion independently of the supply passage, and the cooling passage cools the turbine blade after cooling. It is configured to collect the entire amount of the medium.

【0018】また、上述した課題を解決するために、本
発明に係る閉ループ冷却形タービン動翼は、請求項2に
記載したように、タービン翼の翼植込部に形成される冷
却媒体の供給通路をタービン翼の前縁側および後縁側の
いずれか一方に、その他方に冷却媒体の回収通路をそれ
ぞれ独立させて設けたものである。
Further, in order to solve the above-mentioned problems, the closed-loop cooling type turbine rotor blade according to the present invention, as described in claim 2, supplies the cooling medium formed in the blade implanting portion of the turbine blade. The passage is provided at either the leading edge side or the trailing edge side of the turbine blade, and the cooling medium recovery passage is independently provided at the other side.

【0019】さらに、上述した課題を解決するために、
本発明に係る閉ループ冷却形タービン動翼は、請求項3
に記載したように、タービン翼の翼内部に形成される翼
冷却流路は、供給通路からの冷却媒体が最初に翼有効部
の前縁部および後縁部に供給可能な流路構造に形成され
たものである。
Further, in order to solve the above-mentioned problems,
A closed-loop cooling type turbine rotor blade according to the present invention is claim 3.
As described above, the blade cooling flow passage formed inside the blade of the turbine blade is formed in a flow passage structure in which the cooling medium from the supply passage can be first supplied to the leading edge portion and the trailing edge portion of the blade effective portion. It was done.

【0020】さらにまた、上述した課題を解決するため
に、本発明に係る閉ループ冷却形タービン動翼は、請求
項4に記載したように、タービン翼の翼植込部に形成さ
れる供給通路は、翼シャンク部で前側供給通路と後側供
給通路に分岐され、分岐された供給通路の一方は、翼シ
ャンク部で回収通路と交差させたものである。
Further, in order to solve the above-mentioned problems, in the closed-loop cooling type turbine rotor blade according to the present invention, as described in claim 4, the supply passage formed in the blade implanting portion of the turbine blade is The blade shank portion is branched into a front supply passage and a rear supply passage, and one of the branched supply passages intersects with the recovery passage at the blade shank portion.

【0021】また、上述した課題を解決するために、本
発明に係る閉ループ冷却形タービン動翼は、請求項5に
記載したように、タービン翼の翼有効部に形成される翼
冷却流路は、前側冷却流路と後側冷却流路とを備え、前
側冷却流路は、翼シャンク部の前側供給通路に連通して
タービン翼前縁側の翼有効部を外径方向に流れ、翼チッ
プ部で流れの向きを反転させて内径方向に向う流路構造
とする一方、後側冷却流路は、翼シャンク部の後側供給
通路に連通してタービン翼後縁側の翼有効部を外径方向
に流れ、翼チップ部で流れの向きを反転させて内径方向
に向う流路構造に構成し、タービン翼の前縁と後縁間の
翼中央付近に形成される戻り流路に前側冷却流路と後側
冷却流路とが合流せしめられて回収通路に連通されたも
のである。
In order to solve the above-mentioned problems, according to the closed-loop cooling type turbine rotor blade of the present invention, as described in claim 5, the blade cooling flow path formed in the blade effective portion of the turbine blade is , A front cooling flow passage and a rear cooling flow passage, the front cooling flow passage communicates with the front supply passage of the blade shank portion, flows in the blade effective portion on the leading edge side of the turbine blade in the outer diameter direction, and the blade tip portion While the flow direction is reversed by the flow path structure toward the inner diameter direction, the rear cooling flow path communicates with the rear supply passage of the blade shank and the effective blade portion on the trailing edge side of the turbine blade in the outer diameter direction. To the inner side of the turbine blade by reversing the flow direction at the blade tip, and the front cooling channel is formed in the return channel formed near the blade center between the leading and trailing edges of the turbine blade. And the rear cooling flow passage are joined together and communicated with the recovery passage.

【0022】さらに、上述した課題を解決するために、
本発明に係る閉ループ冷却形タービン動翼は、請求項6
に記載したように、タービン翼の前縁と後縁間の翼中央
部付近に形成される戻り流路は翼チップ部に形成される
入口側に合流部を形成し、この合流部に冷却媒体の流れ
を内径方向に案内する案内壁を備えたものである。
Further, in order to solve the above-mentioned problem,
A closed-loop cooled turbine blade according to the present invention is defined in claim 6.
As described above, the return flow path formed near the central portion of the blade between the leading edge and the trailing edge of the turbine blade forms a merging portion on the inlet side formed in the blade tip portion, and a cooling medium is formed at this merging portion. Is provided with a guide wall that guides the flow of the fluid in the inner diameter direction.

【0023】さらにまた、上述した課題を解決するため
に、本発明に係る閉ループ冷却形タービン動翼は、請求
項7に記載したように、タービン翼は翼プラットホーム
内に翼前縁側キャビティ,中央キャビティ,および翼後
縁側キャビティを形成し、翼チップ部内に先端キャビテ
ィを形成する一方、冷却媒体の供給通路は、分岐されて
翼前縁側キャビティおよび翼後縁側キャビティに連通
し、中央キャビティは冷却媒体の回収通路に連通してお
り、前記翼前縁側、中央および翼後縁側キャビティから
翼有効部の翼面に沿って複数の冷却流路が延びて翼チッ
プ部の先端キャビティに連通されたものである。
Further, in order to solve the above-mentioned problems, a closed-loop cooling type turbine rotor blade according to the present invention has, as described in claim 7, a turbine blade having a blade leading edge side cavity and a central cavity in a blade platform. , And a blade trailing edge side cavity are formed, and a tip cavity is formed in the blade tip portion, while the cooling medium supply passage is branched to communicate with the blade leading edge side cavity and the blade trailing edge side cavity, and the central cavity is A plurality of cooling flow passages are communicated with the recovery passageway and extend from the blade leading edge side, center and blade trailing edge side cavities along the blade surface of the blade effective portion to communicate with the tip cavity of the blade tip portion. .

【0024】一方、上述した課題を解決するために、本
発明に係る閉ループ冷却形タービン動翼は、請求項8に
記載したように、タービン翼の翼冷却流路は翼シャンク
部で外側冷却流路と内側冷却流路に分岐される一方、外
側冷却流路は、翼有効部の前縁部を翼チップ部に向って
延び、翼チップ部で向きを変えて翼前縁側から翼後縁側
に延びた後、翼チップ部の後縁側で向きを変えて翼有効
部の後縁部を翼シャンク部に向って延びるように形成さ
れ、また内側冷却流路は、外側冷却流路の内側をジグザ
グ状に流れる流路構造に構成され、翼シャンク部で外側
冷却流路と内側冷却流路とが合流して回収通路に連通さ
れたものである。
On the other hand, in order to solve the above-mentioned problems, in the closed-loop cooling type turbine rotor blade according to the present invention, as described in claim 8, the blade cooling flow path of the turbine blade is an outer cooling flow at the blade shank portion. The outer cooling flow path extends toward the blade tip part from the leading edge of the blade effective part while changing its direction at the blade tip part from the blade leading edge side to the blade trailing edge side. After extending, it is formed so as to change its direction on the trailing edge side of the blade tip portion and to extend the trailing edge portion of the blade effective portion toward the blade shank portion, and the inner cooling flow passage is zigzag inside the outer cooling flow passage. The flow path structure has a uniform flow shape, and the outer cooling flow path and the inner cooling flow path join together at the blade shank portion and communicate with the recovery path.

【0025】他方、上述した課題を解決するために、本
発明に係る閉ループ冷却形タービン動翼は、請求項9に
記載したように、タービン翼の翼プラットホーム内に翼
背側キャビティと翼腹側キャビティを有し、翼背側およ
び翼腹側キャビティの一方に冷却媒体の供給通路を連通
させ、他方のキャビティに冷却媒体の回収通路を連通さ
せる一方、翼背側および翼腹側キャビティから翼有効部
の翼面に沿って翼背側冷却流路と翼腹側冷却流路がそれ
ぞれ延びて翼チップ部に形成される先端キャビティに連
通させたものである。
On the other hand, in order to solve the above-mentioned problems, a closed-loop cooling type turbine rotor blade according to the present invention has, as described in claim 9, a blade back side cavity and a blade vent side inside a blade platform of a turbine blade. It has a cavity and connects the cooling medium supply passage to one of the blade back side and the blade side cavity and the cooling medium recovery passage to the other cavity, while the blade is effective from the blade back side and the blade side cavity. The blade back side cooling passage and the blade back side cooling passage extend respectively along the blade surface of the portion and communicate with the tip cavity formed in the blade tip portion.

【0026】さらに、上述した課題を解決するために、
本発明に係る閉ループ冷却形タービン動翼は、請求項1
0に記載したように、タービン翼の翼有効部の翼面に沿
って配置された複数の冷却流路は、翼有効部の翼面側の
内壁に冷却媒体の乱流促進用リブを設けたものである。
Further, in order to solve the above-mentioned problems,
A closed-loop cooled turbine blade according to the present invention is defined in claim 1.
As described in No. 0, the plurality of cooling channels arranged along the blade surface of the blade effective portion of the turbine blade are provided with ribs for promoting turbulent flow of the cooling medium on the inner wall on the blade surface side of the blade effective portion. It is a thing.

【0027】さらにまた、上述した課題を解決するため
に、本発明に係る閉ループ冷却形タービン動翼は、請求
項11に記載したように、タービン翼の翼プラットホー
ム内に形成されるキャビティと翼チップ部に形成される
先端キャビティに連通する翼有効部の複数の冷却流路
は、流路入口部および流路出口部の少なくとも一方に流
路絞り部を設けたものである。
Further, in order to solve the above-mentioned problems, a closed-loop cooled turbine blade according to the present invention has a cavity and a blade tip formed in a blade platform of a turbine blade as described in claim 11. The plurality of cooling passages of the blade effective portion communicating with the tip cavity formed in the portion are provided with a passage narrowing portion in at least one of the passage inlet portion and the passage outlet portion.

【0028】[0028]

【発明の実施の形態】以下、本発明の実施の形態につい
て添付図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0029】[第1実施形態]図1は本発明に係る閉ル
ープ冷却形タービン動翼の第1実施形態を示す縦断面図
であり、図2は図1のII−II線に沿う横断面図、図3は
図1の III−III 線に沿う断面図である。
[First Embodiment] FIG. 1 is a vertical sectional view showing a first embodiment of a closed-loop cooling type turbine rotor blade according to the present invention, and FIG. 2 is a horizontal sectional view taken along line II-II of FIG. 3 is a sectional view taken along line III-III in FIG.

【0030】閉ループ冷却形タービン動翼20は、図1
3に示される従来のガスタービンと同様にガスタービン
のタービン軸に周方向に沿って多数植設される。タービ
ン動翼20は、高温の主流ガス(燃焼ガス)を通過さ
せ、膨張させるタービン翼(羽根)を形成する翼有効部
21と、タービン軸のロータディスク(図示せず)に植
設される翼根元部としての翼植込部22と、翼有効部2
1および翼植込部22を接続する翼シャンク部23と、
翼有効部21が取り付けられる翼プラットホーム24と
から構成される。
The closed loop cooled turbine blade 20 is shown in FIG.
Similar to the conventional gas turbine shown in FIG. 3, a large number are planted along the circumferential direction on the turbine shaft of the gas turbine. The turbine rotor blade 20 includes a blade effective portion 21 that forms a turbine blade (blade) that allows a high-temperature mainstream gas (combustion gas) to pass through and expands the blade, and a blade that is planted in a rotor disk (not shown) of the turbine shaft. Wing implant part 22 as a root part and wing effective part 2
1 and a wing shank portion 23 connecting the wing implant portion 22,
The blade effective part 21 is attached to the blade platform 24.

【0031】タービン動翼20の内部は、冷却媒体Mの
通路を形成するために中空形状になっており、翼内部に
タービン翼を冷却する翼冷却流路25が形成される。ま
た、翼植込部22にはタービン翼の軸方向(長手方向)
に延びる2つの通路26,27が形成される。通路の一
方は冷却媒体Mの供給通路26でタービン動翼20の前
縁側に、通路の他方は冷却媒体Mの回収通路27でター
ビン動翼20の後縁側にそれぞれ独立して形成される。
冷却媒体Mには空気や蒸気・水が考えられる。
The inside of the turbine rotor blade 20 has a hollow shape to form a passage of the cooling medium M, and a blade cooling flow passage 25 for cooling the turbine blade is formed inside the blade. Further, the blade implanting portion 22 has an axial direction (longitudinal direction) of the turbine blade.
Two passages 26, 27 are formed which extend to the. One of the passages is independently formed in the supply passage 26 for the cooling medium M on the leading edge side of the turbine moving blade 20, and the other passage is formed in the recovery passage 27 for the cooling medium M independently on the trailing edge side of the turbine moving blade 20.
The cooling medium M may be air, steam or water.

【0032】冷却媒体Mの供給通路26は翼植込部22
の底部からタービン翼長手方向(外径方向)に延び、翼
シャンク部23において、2股に分岐され、冷却媒体M
を翼有効部21の前縁部および後縁部に供給できるよう
に前側供給通路26aと後側供給通路26bに分かれて
いる。後側供給通路26bは翼シャンク部23で冷却媒
体Mの回収通路72と立体に交差し、供給通路26と回
収通路27とを独立させている。
The supply passage 26 for the cooling medium M has a blade-implanted portion 22.
Of the cooling medium M extending in the longitudinal direction (outer diameter direction) of the turbine blade from the bottom portion of the
Is divided into a front side supply passage 26a and a rear side supply passage 26b so that the air can be supplied to the front edge portion and the rear edge portion of the blade effective portion 21. The rear side supply passage 26b three-dimensionally intersects with the recovery passage 72 for the cooling medium M at the blade shank portion 23, and makes the supply passage 26 and the recovery passage 27 independent.

【0033】前側供給通路26aは翼有効部21のター
ビン翼前縁部を外径方向(タービン翼長手方向外側)に
延びる翼冷却流路25の前縁流路28に通じている。こ
の前縁流路28は翼有効部21の翼先端部である翼チッ
プ部29で向きを180度反転して内径方向(タービン
翼長手方向内側)に向って延び、さらに翼プラットホー
ム24である翼ルート部で再び向きを180度反転して
外径方向に延設されてジグザグ状に延び、翼チップ部2
9で戻り流路30に連通される。この戻り流路30はタ
ービン翼の前縁と後縁間の翼中央部付近で翼有効部21
の長手方向に亘って延びており、翼ルート部24で回収
通路27に連通される。
The front side supply passage 26a communicates the leading edge portion of the turbine blade of the blade effective portion 21 with the leading edge passage 28 of the blade cooling passage 25 extending in the outer radial direction (outer side in the longitudinal direction of the turbine blade). The leading edge flow passage 28 extends inwardly (inwardly in the longitudinal direction of the turbine blade) by reversing the direction by 180 degrees at the blade tip portion 29, which is the blade tip portion of the blade effective portion 21, and further serves as the blade platform 24. At the root portion, the direction is reversed again by 180 degrees, and it is extended in the outer diameter direction and extends in a zigzag shape.
9 is connected to the return flow path 30. The return flow passage 30 is located near the central portion of the blade between the leading edge and the trailing edge of the turbine blade and the blade effective portion 21.
Of the blade root portion 24 and communicates with the recovery passage 27 at the blade root portion 24.

【0034】一方、後側供給通路26bも同様に、翼有
効部21のタービン翼後縁部を外径方向(長手方向外
側)に延びる翼冷却流路25の後縁流路31に通じてい
る。この後縁流路31は翼有効部21の翼チップ部29
で向きを180度反転して内径方向(長手方向内側)に
向って延び、さらに翼プラットホーム24であるルート
部で再び180度向きを反転させて外径方向に延設され
てジグザグ状に延び、翼チップ部29で戻り流路30に
合流して内径方向に向い、冷却媒体Mの回収通路27に
案内される。戻り流路30の入口側である翼チップ部2
9の合流部には、案内壁32を設けて冷却媒体Mの合流
がスムーズに行われるように案内している。案内壁32
は冷却媒体Mの流れをスムーズに案内するように、戻り
流路30の入口部内に先細形状に突出し、滑かな湾曲案
内面を形成している。
On the other hand, similarly, the rear side supply passage 26b also communicates the trailing edge portion of the turbine blade of the effective blade portion 21 with the trailing edge passage 31 of the blade cooling passage 25 extending in the outer diameter direction (outward in the longitudinal direction). . The trailing edge passage 31 is formed by the blade tip portion 29 of the blade effective portion 21.
The direction is reversed by 180 degrees and extends toward the inner diameter direction (the inner side in the longitudinal direction). Further, the root portion, which is the blade platform 24, reverses the direction again by 180 degrees and is extended in the outer diameter direction and extends in a zigzag shape. The blade tip portion 29 joins the return passage 30 and faces the inner diameter direction, and is guided to the recovery passage 27 for the cooling medium M. Blade tip part 2 which is the inlet side of the return flow path 30
A guide wall 32 is provided at the merging portion of 9 to guide the cooling medium M so that the cooling medium M smoothly merges. Guide wall 32
In order to smoothly guide the flow of the cooling medium M, is projected in a tapered shape in the inlet portion of the return passage 30 to form a smoothly curved guide surface.

【0035】このタービン動翼20においては、タービ
ン翼の翼有効部21の前側と後側にジクザグ状冷却流路
33,34を2系統独立させて形成し、閉ループ形の翼
冷却流路25を構成している。このタービン動翼20
は、タービン翼の翼有効部21内に形成される翼冷却流
路25の2系統の冷却流路33,34は、タービン翼を
冷却する冷却媒体Mが初めに前縁流路28と後縁流路3
1に案内され、タービン翼の前縁側および後縁側を積極
的に冷却している。
In this turbine rotor blade 20, two zigzag cooling flow passages 33 and 34 are formed independently on the front side and the rear side of the blade effective portion 21 of the turbine blade, and a closed loop type blade cooling flow passage 25 is formed. I am configuring. This turbine rotor blade 20
In the two cooling passages 33 and 34 of the blade cooling passage 25 formed in the blade effective portion 21 of the turbine blade, the cooling medium M for cooling the turbine blade is first fed to the leading edge passage 28 and the trailing edge. Channel 3
1, the front and rear edges of the turbine blade are actively cooled.

【0036】タービン翼の前側および後側冷却流路3
3,34には、冷却流路を横断するように複数の乱流促
進リブ13を流路長手方向に間隔をおいて設けている。
乱流促進リブ13は、翼有効部7の対流冷却効果を高め
るための絞りを兼ねており、この乱流促進リブ13によ
り冷却流路33,34内を流れる冷却媒体Mの流速を高
めるとともに流れの乱れを促進させ、冷却媒体Mの温度
の均一化を図っている。
Front and rear cooling channels 3 of the turbine blade
A plurality of turbulent flow promoting ribs 13 are provided at 3, 34 at intervals in the flow channel longitudinal direction so as to cross the cooling flow channel.
The turbulent flow promoting rib 13 also serves as a throttle for increasing the convective cooling effect of the blade effective portion 7, and the turbulent flow promoting rib 13 increases the flow velocity of the cooling medium M flowing in the cooling flow passages 33 and 34 while flowing. Of the cooling medium M is promoted, and the temperature of the cooling medium M is made uniform.

【0037】次に、閉ループ冷却形のタービン動翼の通
常時の動作を説明する。
Next, the normal operation of the closed-loop cooling type turbine blade will be described.

【0038】この閉ループ冷却形タービン動翼20は、
ガスタービンのタービン軸に形成されるロータディスク
(図示せず)に周方向に多数植込される。タービン動翼
20は図示しないタービン動翼とタービン軸方向に対向
してタービン段落が構成される。
The closed-loop cooled turbine blade 20 is
Many are circumferentially implanted in a rotor disk (not shown) formed on the turbine shaft of the gas turbine. The turbine rotor blade 20 is opposed to a turbine rotor blade (not shown) in the turbine axial direction to form a turbine stage.

【0039】タービン動翼20は、ガスタービンの運転
時に冷却媒体Mにより冷却される。ガスタービンの冷却
時には、翼植込部22の供給通路26に供給される冷却
媒体Mは、翼シャンク部23で前側供給通路26aと後
側供給通路26bに分流して翼冷却流路25の前側冷却
流路33と後側冷却流路34にそれぞれ案内される。
The turbine rotor blade 20 is cooled by the cooling medium M during the operation of the gas turbine. At the time of cooling the gas turbine, the cooling medium M supplied to the supply passage 26 of the blade implanting portion 22 is divided into the front supply passage 26a and the rear supply passage 26b by the blade shank portion 23, and the front side of the blade cooling flow passage 25 is obtained. The cooling channel 33 and the rear cooling channel 34 are respectively guided.

【0040】前側供給流路33に案内された冷却媒体M
は最初に翼有効部21の前縁流路28に導かれ、翼有効
部21の前縁部を冷却しながら外径方向(タービン翼長
手方向外側)に流れ、翼チップ部29で流れを180度
反転させる。翼チップ部29で反転した冷却媒体Mは続
いて内径方向に向って流れた後、翼ルート部24で再度
反転しながら前側冷却流路33をジグザグ状に流れ、タ
ービン翼の翼前縁側から翼中間部にかけてタービン動翼
20を対流冷却していた。
Cooling medium M guided to the front side supply passage 33
Is first guided to the leading edge flow path 28 of the blade effective portion 21, flows in the outer diameter direction (outer side of the turbine blade longitudinal direction) while cooling the leading edge portion of the blade effective portion 21, and the flow is 180 at the blade tip portion 29. Flip it once. The cooling medium M reversed in the blade tip portion 29 subsequently flows in the inner diameter direction, and then flows in a zigzag shape through the front side cooling flow path 33 while being reversed again in the blade root portion 24, from the blade leading edge side of the turbine blade. The turbine rotor blade 20 was convectively cooled toward the middle portion.

【0041】一方、後側供給流路34に案内された冷却
媒体Mも同様に最初に翼有効部21の後縁流路31に導
かれ、翼冷却部21の後縁部を冷却しながら外径方向
(タービン翼長手方向外側)に流れ、翼チップ部29で
流れを180度反転させる。翼チップ部29で流れが反
転した冷却媒体Mは続いて内径方向に向って流れた後、
さらに翼ルート部24で再度反転して外径方向に流れ、
後側冷却流路34をジングザグ状に流れ、タービン翼の
翼後縁側から翼中間部にかけてタービン動翼20を対流
冷却している。
On the other hand, the cooling medium M guided to the rear side supply flow path 34 is also first introduced to the trailing edge flow path 31 of the blade effective portion 21 while being cooled while cooling the rear edge portion of the blade cooling portion 21. It flows in the radial direction (outer side in the longitudinal direction of the turbine blade), and the flow is reversed by 180 degrees at the blade tip portion 29. The cooling medium M whose flow is reversed in the blade tip portion 29 subsequently flows in the inner diameter direction,
Furthermore, it is reversed again at the blade root portion 24 and flows in the outer diameter direction,
The turbine cooling blade 20 flows in the rear cooling flow path 34 in a zing-zag manner to convectively cool the turbine rotor blade 20 from the blade trailing edge side of the turbine blade to the blade intermediate portion.

【0042】タービン翼の翼有効部21に形成された前
側および後側冷却流路33,34を通ってタービン動翼
20を対流冷却した冷却媒体Mは、最終的に翼チップ部
29で合流しながら合流流路である戻り流路30に案内
され、流れを内径方向(タービン翼の長手方向内側)に
変えて、さらに翼中央部付近の翼有効部21を冷却しつ
つ冷却媒体Mの回収通路27に導かれる。この回収通路
27から冷却媒体Mはタービン翼の翼外に全量が取り出
される。
The cooling medium M convectively cooling the turbine rotor blade 20 through the front and rear cooling flow passages 33, 34 formed in the blade effective portion 21 of the turbine blade finally merges in the blade tip portion 29. While being guided by the return flow path 30 which is a confluent flow path, the flow is changed in the inner diameter direction (the inner side in the longitudinal direction of the turbine blade), and the blade effective portion 21 in the vicinity of the blade central portion is cooled while the recovery passage for the cooling medium M is provided. Guided to 27. The entire amount of the cooling medium M is taken out of the recovery passage 27 to the outside of the turbine blade.

【0043】このタービン動翼20においては、翼内部
に冷却媒体Mの閉じた翼冷却流路25を構成し、冷却媒
体Mを翼有効部21から翼外に吹き出すことがないの
で、主流ガス(燃焼ガス)のガス通路に案内されること
はない。冷却媒体Mは、主流ガスのガス通路に吹き出さ
れることなく、タービン翼の翼全体を閉ループで有効に
冷却している。
In this turbine rotor blade 20, since the blade cooling flow path 25 in which the cooling medium M is closed is formed inside the blade and the cooling medium M is not blown out from the blade effective portion 21 to the outside of the blade, the mainstream gas ( It is not guided to the gas passage of the combustion gas). The cooling medium M effectively cools the entire blade of the turbine blade in a closed loop without being blown out into the gas passage of the mainstream gas.

【0044】このタービン動翼20は、まだ温度上昇し
ていない冷却媒体Mをタービン翼の前縁部と後縁部に最
初に供給し、熱伝達率の大きなタービン翼の翼外表面、
特に、翼前縁部と後縁部の翼外表面を初めに効率よく対
流冷却することができ、局所的なホットスポットの発生
を有効的に防止する一方、タービン翼の翼全体のメタル
温度を少ない冷却媒体で均一に冷却している。
The turbine rotor blade 20 first supplies the cooling medium M, which has not yet risen in temperature, to the leading edge portion and the trailing edge portion of the turbine blade, so that the outer surface of the turbine blade having a large heat transfer coefficient,
In particular, the outer surfaces of the leading and trailing edges of the blade can be efficiently convectively cooled first, effectively preventing the occurrence of local hot spots, while reducing the metal temperature of the entire blade of the turbine blade. Cools uniformly with less cooling medium.

【0045】また、このタービン動翼20においては、
タービン翼の翼有効部21にジグザグ状の翼冷却流路2
5が形成され、冷却媒体Mは翼有効部21の前側および
後側冷却流路33,34をジグザグ状に流れて対向冷却
した後、合流部に設けられた案内壁32により、流れを
内径方向(タービン翼の長手方向内側)に揃えてからス
ムーズに合流せしめられる。合流部から戻り流路30に
案内される冷却媒体Mは、各冷却流路33,34を流れ
る冷却媒体Mの動圧を打ち消しあう流れ(合流)を避け
ることができ、冷却媒体Mの圧力損失の増加を抑えるこ
とができる。
Further, in this turbine rotor blade 20,
A zigzag blade cooling channel 2 is provided in the blade effective portion 21 of the turbine blade.
5, the cooling medium M flows in the front and rear cooling flow paths 33, 34 of the blade effective portion 21 in a zigzag manner to be counter-cooled, and then the flow is directed in the inner diameter direction by the guide wall 32 provided at the confluence portion. After aligning (inside the turbine blade in the longitudinal direction), they can be smoothly merged. The cooling medium M guided from the merging portion to the return flow passage 30 can avoid a flow (merging) that cancels out the dynamic pressure of the cooling medium M flowing through the cooling flow passages 33 and 34, and the pressure loss of the cooling medium M. Can be suppressed.

【0046】図4は、閉ループ冷却形タービン動翼20
の第1実施形態における変形例を示すものである。
FIG. 4 shows a closed-loop cooled turbine blade 20.
9 shows a modification of the first embodiment of FIG.

【0047】この変形例に示されたタービン動翼20
は、タービン翼の翼植込部22のタービン軸方向後縁側
を冷却媒体Mの供給通路26Aとし、前縁側を回収通路
27Aとしたものであり、タービン軸のタービンロータ
(図示せず)内に形成される冷却媒体Mの流路形態に応
じて供給通路26Aと回収通路27Aを選択することが
できる。
The turbine rotor blade 20 shown in this modified example
Is a supply passage 26A for the cooling medium M on the trailing edge side in the turbine axis direction of the blade-implanted portion 22 of the turbine blade, and a recovery passage 27A on the leading edge side, and is provided in a turbine rotor (not shown) of the turbine shaft. The supply passage 26A and the recovery passage 27A can be selected according to the flow passage form of the formed cooling medium M.

【0048】他の構成は、図1に示したタービン動翼2
0と異ならないので同一符号を付して説明を省略する。
Another structure is the turbine rotor blade 2 shown in FIG.
Since it is not different from 0, the same reference numerals are given and description thereof is omitted.

【0049】[第2の実施形態]図5は本発明に係る閉
ループ冷却形タービン動翼の第2実施形態を示す縦断面
図であり、図6はおよび図7は図5のVI−VI線およびVI
I −VII 線に沿う断面図である。
[Second Embodiment] FIG. 5 is a vertical sectional view showing a second embodiment of a closed-loop cooling type turbine rotor blade according to the present invention. FIGS. 6 and 7 are VI-VI lines in FIG. And VI
FIG. 7 is a sectional view taken along the line I-VII.

【0050】第2実施形態に示された閉ループ冷却形タ
ービン動翼20Aは図1に示すタービン動翼20と外形
形状や構造を同じくするとともに、翼植込部22や翼シ
ャンク部23の通路構成を同じくするので、共通部分に
は、同一符号を付して説明を省略する。
The closed-loop cooling type turbine rotor blade 20A shown in the second embodiment has the same external shape and structure as the turbine rotor blade 20 shown in FIG. 1, and the passage configuration of the blade implanting portion 22 and blade shank portion 23. Since they are the same, the same parts are denoted by the same reference numerals and the description thereof will be omitted.

【0051】図5に示されたタービン動翼20Aは、タ
ービン翼の翼プラットホーム(翼ルート部)24の内部
に3つの独立したキャビティ37a,37b,37cを
翼前縁から翼後縁に向って順次形成する一方、翼チップ
部29に共通の先端キャビティ38を形成する。翼プラ
ットホーム24内に形成される翼前縁側キャビティ37
aと翼後縁側キャビティ37cには、冷却媒体Mの共通
通路26から分岐された前側供給通路26aと後側供給
通路26bとがそれぞれ連通している。また、中間キャ
ビティ37bには冷却媒体Mの回収通路27が連通して
いる。
The turbine rotor blade 20A shown in FIG. 5 has three independent cavities 37a, 37b, 37c in the blade platform (blade root portion) 24 of the turbine blade from the blade leading edge to the blade trailing edge. While forming sequentially, the common tip cavity 38 is formed in the blade tip portion 29. Blade leading edge side cavity 37 formed in the blade platform 24
The front side supply passage 26a and the rear side supply passage 26b branched from the common passage 26 for the cooling medium M communicate with the a and the blade trailing edge side cavity 37c, respectively. A recovery passage 27 for the cooling medium M communicates with the intermediate cavity 37b.

【0052】一方、タービン翼の翼プラットホーム24
内に形成された各キャビティ37a,37b,37cか
ら翼有効部21を長手方向に延びる冷却孔39a,39
b,39cが複数個づつ列状に、タービン翼面に沿って
形成され、翼冷却流路39が構成される。翼冷却流路3
9を構成する各冷却孔39a,39b,39cはタービ
ン翼の前縁側と中間と後縁側とに大別され、前縁側冷却
孔列39A、中間冷却孔列39Bおよび後縁側冷却孔列
39Cからなる冷却流路を構成する。これらの冷却孔列
39A,39B,39Cからなる冷却流路は翼チップ部
29に設けた共通の先端キャビティ38に連通してい
る。
On the other hand, the blade platform 24 of the turbine blade
Cooling holes 39a, 39 extending in the longitudinal direction of the blade effective portion 21 from the cavities 37a, 37b, 37c formed therein.
A plurality of b and 39c are formed in a row along the turbine blade surface to form a blade cooling flow path 39. Blade cooling channel 3
Each of the cooling holes 39a, 39b, 39c forming 9 is roughly divided into a leading edge side, an intermediate side and a trailing edge side of the turbine blade, and includes a leading edge side cooling hole row 39A, an intermediate cooling hole row 39B and a trailing edge side cooling hole row 39C. It constitutes a cooling channel. The cooling flow path composed of these cooling hole arrays 39A, 39B, 39C communicates with a common tip cavity 38 provided in the blade tip portion 29.

【0053】このタービン動翼20Aにおいては、図6
に示すように、前縁側冷却孔列39Aは3個の冷却孔3
9aを、中間冷却孔列39Bは7個の冷却孔39bを、
後縁側冷却孔列39Cは4個の冷却孔39cをそれぞれ
列状に備えた冷却流路の構成例が開示されているが、各
冷却流路を構成する冷却孔の個数は図6の例示内容に限
定されない。また、先端キャビティ38は共通化され、
図5には1個形成した例を示したが、必ずしも一個に限
定されず、前縁側キャビティと後縁側キャビティとにほ
ぼ翼中央部で分けて形成してもよい。
In this turbine rotor blade 20A, as shown in FIG.
As shown in FIG. 3, the leading edge side cooling hole row 39A includes three cooling holes 3
9a, the intermediate cooling hole row 39B has seven cooling holes 39b,
The trailing edge side cooling hole row 39C discloses a configuration example of a cooling flow path provided with four cooling holes 39c in a row, but the number of cooling holes forming each cooling flow path is as illustrated in FIG. Not limited to. Further, the tip cavity 38 is shared,
FIG. 5 shows an example in which one blade is formed, but the number is not necessarily limited to one, and may be formed separately in the leading edge side cavity and the trailing edge side cavity at approximately the blade central portion.

【0054】さらに、タービン翼の翼有効部21に形成
される各冷却孔39a,39b,39cにタービン翼の
翼外面側に対向する内壁にのみ冷却媒体Mの乱流促進リ
ブ35が設けられる一方、前縁側および後縁側冷却孔列
39A,39Cの各冷却孔39a,39cと先端キャビ
ティ38との連通部に流路絞り部40,40がそれぞれ
形成される。また、中間冷却孔列39Bの各冷却孔39
bと翼ルート部24の中間キャビティ37bとの接続部
にも流路絞り部41が形成されており、各流路絞り部4
0,41で各冷却孔39a,39b,39cの流路断面
積を絞り、流速を速めている。流路絞り部40,41は
各冷却孔39a,39b,39cの仕切壁43の端部に
膨出部を形成することにより構成される。
Further, in each of the cooling holes 39a, 39b, 39c formed in the blade effective portion 21 of the turbine blade, the turbulent flow promoting rib 35 for the cooling medium M is provided only on the inner wall facing the blade outer surface side of the turbine blade. The flow passage restricting portions 40, 40 are formed at the communicating portions of the cooling holes 39a, 39c of the front and rear edge side cooling hole rows 39A, 39C and the tip cavity 38, respectively. In addition, each cooling hole 39 of the intermediate cooling hole row 39B
b and the flow path throttle portion 41 are also formed at the connecting portion between the blade root portion 24 and the intermediate cavity 37b.
At 0 and 41, the flow passage cross-sectional areas of the cooling holes 39a, 39b and 39c are narrowed to accelerate the flow velocity. The flow path throttle portions 40 and 41 are formed by forming bulging portions at the ends of the partition wall 43 of the cooling holes 39a, 39b and 39c.

【0055】流路絞り部40,41は、複数の冷却流路
を構成する各冷却孔39a,39b,39cの流路入口
部および流路出口部の少なくとも一方に設けるようにし
てもよい。
The flow passage restricting portions 40 and 41 may be provided in at least one of the flow passage inlet portion and the flow passage outlet portion of each of the cooling holes 39a, 39b and 39c forming a plurality of cooling passages.

【0056】ガスタービン運転時におけるタービン動翼
20Aの冷却は次のようにして行なわれる。
Cooling of the turbine rotor blade 20A during operation of the gas turbine is performed as follows.

【0057】ガスタービンの冷却時には、空気あるいは
蒸気等の冷却媒体Mがタービン動翼20Aに供給され
る。タービン動翼20Aの翼植込部22の供給通路26
に案内された冷却媒体Mは、翼シャンク部23で前側お
よび後側供給通路26a,26bに分岐され、翼前縁側
および翼後縁側キャビティ37a,37cに流入せしめ
られる。
When cooling the gas turbine, a cooling medium M such as air or steam is supplied to the turbine rotor blade 20A. Supply passage 26 of blade implanting portion 22 of turbine rotor blade 20A
The cooling medium M guided by is branched into the front and rear supply passages 26a and 26b at the blade shank portion 23, and is made to flow into the blade leading edge side and the blade trailing edge side cavities 37a and 37c.

【0058】翼前縁側キャビティ37aに案内された冷
却媒体Mは、このキャビティ37aから翼有効部21の
前縁側冷却流路である前縁側冷却孔列39Aに導かれ、
この冷却孔列39Aの各冷却孔39aを外径方向(ター
ビン翼の長手方向外側)に流れて翼チップ部29の先端
キャビティ38に導かれる。
The cooling medium M guided to the blade leading edge side cavity 37a is guided from this cavity 37a to the leading edge side cooling hole row 39A which is the leading edge side cooling passage of the blade effective portion 21,
The cooling holes 39a of the cooling hole row 39A flow in the outer diameter direction (outward in the longitudinal direction of the turbine blade) and are guided to the tip cavity 38 of the blade tip portion 29.

【0059】一方、後縁側キャビティ37cに案内され
た冷却媒体Mも同様に、翼有効部21の後縁側冷却流路
である後縁側冷却孔列39Cに導かれ、この冷却孔列3
9Cの各冷却孔39cを外径方向に流れて翼チップ部2
9の先端キャビティ38に至る。
On the other hand, the cooling medium M guided to the trailing edge side cavity 37c is similarly guided to the trailing edge side cooling hole row 39C which is the trailing edge side cooling flow passage of the blade effective portion 21, and this cooling hole row 3
9C of each cooling hole 39c flows in the outer diameter direction and the blade tip portion 2
9 to the tip cavity 38.

【0060】冷却媒体Mは翼有効部21の前縁側冷却孔
列39Aと後縁側冷却孔列39Cを半径方向に流れなが
ら、タービン翼の前縁部と後縁部を最初に内部から積極
的に対流冷却する。
While the cooling medium M flows in the leading edge side cooling hole row 39A and the trailing edge side cooling hole row 39C of the blade effective portion 21 in the radial direction, the leading edge portion and the trailing edge portion of the turbine blade are first positively positively applied from the inside. Convection cooling.

【0061】このとき、各冷却孔列39A,39Cの冷
却孔39a,39bには乱流促進リブ35が設けられて
おり、このリブ効果により流れの乱れが促進され、温度
の均一化を図って対流冷却効果を増大させている。
At this time, the cooling holes 39a and 39b of the cooling hole arrays 39A and 39C are provided with the turbulent flow promoting ribs 35, and the turbulent flow is promoted by the rib effect, and the temperature is made uniform. Increasing the effect of convection cooling.

【0062】タービン翼の前縁部および後縁部を半径方
向に流れながら冷却した冷却媒体Mは翼チップ部29の
先端キャビティ38に案内され、この先端キャビティ3
8で合流した後、中間冷却孔列39Bの各冷却孔39b
を内径方向に流れながら、乱流促進リブ35で冷却効果
を増加させつつ対流冷却し、翼ルート部24の中間キャ
ビティ37bを経て回収通路27に導かれ、この回収通
路27からタービン翼の翼外に取り出される。
The cooling medium M, which has been cooled while flowing in the leading and trailing edges of the turbine blade in the radial direction, is guided to the tip cavity 38 of the blade tip portion 29, and this tip cavity 3
After joining at 8, each cooling hole 39b of the intermediate cooling hole row 39B
Flowing in the inner diameter direction, is convectively cooled while increasing the cooling effect by the turbulent flow promoting ribs 35, is guided to the recovery passage 27 via the intermediate cavity 37b of the blade root portion 24, and from the recovery passage 27 to the outside of the blade of the turbine blade. Taken out.

【0063】閉ループ冷却形タービン動翼20Aによれ
ば、まだ温度上昇していない冷却媒体Mが翼根元部であ
る翼植込部22および翼シャンク部23を経て翼有効部
21の前縁側冷却孔列39Aおよび後縁側冷却孔列39
Cに最初に案内され、各冷却孔列39A,39Cの冷却
孔39a,39c内を外径方向に流れながら乱流促進リ
ブ35のリブ効果により、タービン翼の前縁部および後
縁部を積極的に内部から冷却する。このため、第1実施
形態のタービン動翼20と同様に、図5に示されたター
ビン動翼20Aは、冷却困難なタービン翼の前縁部およ
び後縁部を効果的に冷却し、翼有効部全体を均一に冷却
することが可能となる。しかも、分岐された冷却媒体M
を一箇所から回収することが可能となる。
According to the closed-loop cooling type turbine rotor blade 20A, the cooling medium M, which has not yet risen in temperature, passes through the blade-implanting portion 22 and the blade shank portion 23, which are the blade root portions, and the cooling holes on the leading edge side of the blade effective portion 21. Row 39A and trailing edge side cooling hole row 39
The turbulent flow promoting rib 35 positively guides the leading edge portion and the trailing edge portion of the turbine blade while being first guided by C and flowing in the cooling holes 39a and 39c of the cooling hole rows 39A and 39C in the outer diameter direction. Cooling from inside. Therefore, similarly to the turbine rotor blade 20 of the first embodiment, the turbine rotor blade 20A shown in FIG. 5 effectively cools the leading edge portion and the trailing edge portion of the turbine blade, which is difficult to cool, so that the blade is effective. It is possible to uniformly cool the entire part. Moreover, the branched cooling medium M
Can be collected from one place.

【0064】この閉ループ冷却形タービン動翼は、図6
に示すように、少なくともタービン翼の翼面を対向する
各冷却孔39a,39b,39cに乱流促進リブ35を
設け、熱交換可能な冷却面積を増大させる一方、各冷却
孔39a,39b,39cを通る冷却媒体Mの流れを乱
し、乱流を促進させて均一冷却するようにしたので、タ
ービン翼の翼面に対向する冷却側面の熱伝達率を増大さ
せることができ、冷却媒体Mの流量減少を図ることがで
きる。
This closed-loop cooled turbine blade is shown in FIG.
As shown in FIG. 5, at least the cooling holes 39a, 39b, 39c facing at least the blade surfaces of the turbine blades are provided with the turbulent flow promoting ribs 35 to increase the cooling area capable of heat exchange, while the cooling holes 39a, 39b, 39c are provided. Since the flow of the cooling medium M passing therethrough is disturbed and the turbulent flow is promoted for uniform cooling, the heat transfer coefficient of the cooling side surface facing the blade surface of the turbine blade can be increased, and the cooling medium M The flow rate can be reduced.

【0065】タービン翼の翼有効部21に形成される冷
却孔列39A,39B,39Cの各冷却孔39a,39
b,39cの内部側面には乱流促進リブ35を設けない
ため、各冷却孔39a,39b,39cを通る冷却媒体
Mの圧力損失の増加を最小限に抑えることができる。ま
た、翼有効部21に形成される冷却孔列39A,39
B,39Cの各冷却孔39a,39b,39cは冷却流
路39を構成しているが、各冷却孔39a,39b,3
9cに形成される流路絞り部40,41の絞り量を予め
調節することにより、各冷却孔39a,39b,39c
内を流れる冷却媒体Mの流量をタービン翼の翼面熱伝達
率に応じて調整することができ、タービン動翼のメタル
温度のより均一化を図ることができる。
Cooling holes 39a, 39 of cooling hole rows 39A, 39B, 39C formed in the blade effective portion 21 of the turbine blade.
Since the turbulent flow promoting ribs 35 are not provided on the inner side surfaces of the b and 39c, the increase in the pressure loss of the cooling medium M passing through the cooling holes 39a, 39b and 39c can be minimized. Further, the cooling hole rows 39A, 39 formed in the blade effective portion 21
The cooling holes 39a, 39b, 39c of B and 39C constitute the cooling flow path 39, but the cooling holes 39a, 39b, 3
By previously adjusting the throttle amount of the flow passage throttle portions 40, 41 formed in 9c, each cooling hole 39a, 39b, 39c.
The flow rate of the cooling medium M flowing inside can be adjusted according to the blade surface heat transfer coefficient of the turbine blade, and the metal temperature of the turbine rotor blade can be made more uniform.

【0066】このタービン動翼はタービン翼の翼植込部
22の翼前側に冷却媒体Mの供給通路26を、翼後側に
回収通路27を形成した例を示したが、冷却媒体Mの供
給通路26と回収通路27は、図4に示すように構成し
てもよい。
In this turbine moving blade, an example is shown in which the supply passage 26 for the cooling medium M is formed on the front side of the blade implanting portion 22 of the turbine blade, and the recovery passage 27 is formed on the rear side of the blade. The passage 26 and the recovery passage 27 may be configured as shown in FIG.

【0067】[第3の実施形態]図8は本発明に係る閉
ループ冷却形タービン動翼の第3実施形態を示す縦断面
図である。
[Third Embodiment] FIG. 8 is a vertical sectional view showing a third embodiment of a closed-loop cooling type turbine rotor blade according to the present invention.

【0068】この実施形態に示されたタービン動翼20
Bは、図1に示したタービン動翼20と全体的な構成は
実質的に異ならないので、対応部分には同一符号を付し
て説明を省略する。
The turbine rotor blade 20 shown in this embodiment
B is substantially the same as the turbine rotor blade 20 shown in FIG. 1 in overall structure, and therefore, corresponding parts will be denoted by the same reference numerals and description thereof will be omitted.

【0069】図8に示されたタービン動翼20Bは、タ
ービン翼内部に冷却媒体Mの翼冷却流路25を形成する
ために中空形状となっており、翼植込部22に2個の通
路26,27がタービン軸方向に沿って形成されてい
る。2個の通路26,27はタービン翼の軸方向(長手
方向)に沿って延びるように並設される一方、通路の一
方は冷却媒体Mの供給通路26でタービン動翼20Bの
前縁側に、他方の通路は冷却媒体Mの回収通路27でタ
ービン動翼20Bの後縁側にそれぞれ形成される。
The turbine rotor blade 20B shown in FIG. 8 has a hollow shape for forming the blade cooling flow passage 25 of the cooling medium M inside the turbine blade, and has two passages in the blade implanting portion 22. 26 and 27 are formed along the axial direction of the turbine. The two passages 26, 27 are arranged in parallel so as to extend along the axial direction (longitudinal direction) of the turbine blade, while one of the passages is a supply passage 26 for the cooling medium M on the leading edge side of the turbine rotor blade 20B. The other passage is a recovery passage 27 for the cooling medium M and is formed on the trailing edge side of the turbine rotor blade 20B.

【0070】冷却媒体Mの供給通路26に連通される翼
冷却部流路25は、翼シャンク部23、すなわちタービ
ン翼の翼有効部21の入口側で翼プラットホーム24か
ら2つの冷却流路45,46に分岐されている。第1の
冷却流路45は翼有効部21のタービン翼前縁・後縁側
を流れる外側冷却流路として、第2の冷却流路46はタ
ービン翼中間部を流れる内側冷却流路として、それぞれ
形成される。
The blade cooling section passage 25 communicating with the supply passage 26 for the cooling medium M has two cooling passages 45 from the blade platform 24 on the inlet side of the blade shank portion 23, that is, the blade effective portion 21 of the turbine blade. It is branched to 46. The first cooling flow passage 45 is formed as an outer cooling flow passage that flows on the turbine blade leading edge / rear edge side of the blade effective portion 21, and the second cooling flow passage 46 is formed as an inner cooling flow passage that flows in the turbine blade intermediate portion. To be done.

【0071】外側冷却流路45は、翼根元側の翼シャン
ク部23あるいは翼プラットホーム24で供給通路26
から分岐され、翼有効部21のタービン翼前縁部を外径
方向に延びて翼先端部(翼チップ部)29に至り、翼先
端部29で翼前縁側から翼後縁側に延び、翼先端部29
の後縁側で向きを変え、翼有効部21のタービン翼後縁
部を内径方向に延びて翼ルート部24に導かれる流路構
造に構成される。冷却媒体Mは、翼前縁部では翼有効部
21を翼ルート部24から翼先端部29に向って流れ、
翼後縁部では翼有効部21を翼チップ部29から翼ルー
ト部(翼プラットホーム)24に流れるように案内され
る。内側冷却流路46は外側冷却流路45の内側領域
に、ジグザグ状の冷却流路を構成しており、タービン翼
の前縁と後縁間の翼中間部分を冷却している。
The outer cooling flow passage 45 is provided at the blade shank portion 23 or the blade platform 24 on the blade root side by the supply passage 26.
And extends in the outer diameter direction of the turbine blade leading edge portion of the blade effective portion 21 to reach the blade tip portion (blade tip portion) 29. At the blade tip portion 29, the blade tip portion 29 extends from the blade leading edge side to the blade trailing edge side. Part 29
The flow channel structure is configured to change its direction on the trailing edge side, extend the turbine blade trailing edge portion of the blade effective portion 21 in the inner diameter direction, and be guided to the blade root portion 24. The cooling medium M flows from the blade root portion 24 toward the blade tip portion 29 in the blade effective portion 21 at the blade leading edge portion,
At the trailing edge of the blade, the effective blade portion 21 is guided so as to flow from the blade tip portion 29 to the blade root portion (blade platform) 24. The inner cooling flow passage 46 constitutes a zigzag cooling flow passage in the inner region of the outer cooling flow passage 45, and cools the blade intermediate portion between the leading edge and the trailing edge of the turbine blade.

【0072】内側冷却流路46は、タービン翼の翼有効
部21を長手方向外方(外径方向)に向って延び、翼チ
ップ部29側で外側冷却流路45の内側で180度反転
して流路の向きを変え、以下、翼有効部21の翼ルート
部24と翼チップ部29側とで方向を180度反転させ
ながらジグザグ状に翼前縁側から翼後縁側に向かう冷却
流路構造に構成される。最終的に内側冷却流路46はタ
ービン翼の後縁側翼ルート部(翼プラットホーム)24
で外側冷却流路45に合流して回収通路27に通じてい
る。
The inner cooling flow path 46 extends outward in the longitudinal direction (outer diameter direction) of the blade effective portion 21 of the turbine blade, and is inverted 180 degrees inside the outer cooling flow path 45 on the blade tip portion 29 side. The flow channel structure is changed from the leading edge side of the blade to the trailing edge side of the blade in a zigzag manner while reversing the direction by 180 degrees between the blade root portion 24 and the blade tip portion 29 side of the blade effective portion 21. Is composed of. Finally, the inner cooling flow passage 46 is formed by the trailing edge side blade root portion (blade platform) 24 of the turbine blade.
And joins the outer cooling flow path 45 and communicates with the recovery passage 27.

【0073】この閉ループ冷却形タービン動翼20Bの
冷却は、次のようにして行なわれる。
Cooling of the closed-loop cooling type turbine rotor blade 20B is performed as follows.

【0074】ガスタービンの通常運転時には、翼根元部
である翼植込部22の底部から導入通路である供給通路
26に冷却媒体Mが流入せしめられる。この冷却媒体M
はタービン翼の翼有効部入口側で分岐され、外側冷却流
路45と内側冷却流路46に案内される。
During normal operation of the gas turbine, the cooling medium M is caused to flow into the supply passage 26, which is an introduction passage, from the bottom of the blade implantation portion 22, which is the blade root portion. This cooling medium M
Is branched at the blade effective portion inlet side of the turbine blade and is guided to the outer cooling passage 45 and the inner cooling passage 46.

【0075】冷却媒体Mの供給通路26から分岐されて
外側冷却流路45に案内された冷却媒体Mは、タービン
翼の翼有効部21前縁側から翼チップ部29、翼有効部
21後縁側を通りながら、タービン翼の翼前縁部、翼先
端部、翼後縁部を内側から有効的に冷却する。
The cooling medium M branched from the supply passage 26 for the cooling medium M and guided to the outer cooling flow passage 45 flows from the leading edge side of the blade effective portion 21 of the turbine blade to the blade tip portion 29 and the trailing edge side of the blade effective portion 21. While passing, the blade leading edge, blade leading edge, and blade trailing edge are effectively cooled from the inside.

【0076】さらに、冷却媒体Mの供給通路26から内
側冷却流路46に案内された冷却媒体Mは、内側冷却流
路46をジグザグ状に流れて翼中間部を対向冷却した
後、外側冷却流路45からの冷却媒体Mと合流して回収
通路27に案内され、この回収通路27から全量の冷却
媒体Mをタービン翼の翼外に回収させている。
Further, the cooling medium M guided from the supply passage 26 of the cooling medium M to the inner cooling flow passage 46 flows in the inner cooling flow passage 46 in a zigzag manner to counter-cool the blade middle portion, and then to the outer cooling flow. It merges with the cooling medium M from the passage 45 and is guided to the recovery passage 27, and the entire amount of the cooling medium M is recovered from the recovery passage 27 to the outside of the blade of the turbine blade.

【0077】このタービン動翼20Bにおいては、ター
ビン翼の翼有効部21から主流ガス(燃焼ガス)の通路
内に冷却媒体Mを吹き出すことがなく、冷却媒体Mを閉
ループ構造に案内してタービン動翼20Bの翼全体を冷
却することができる。その後、タービン動翼20Bに案
内される冷却媒体Mは一部をタービン翼前縁部の外側冷
却流路45に案内して、タービン翼前縁部を翼ルート部
24から翼チップ部29にかけて最初に効果的に冷却す
ることができる。まだ温度上昇していない冷却媒体Mを
用いて、翼有効部21の前縁部側を効率よく冷却でき
る。タービン翼の後縁部に関しても、翼前縁部および翼
先端部を通る外側冷却流路45はジグザグ状流路を形成
しておらず、流路長が短く、熱交換面積が小さいので、
冷却媒体Mの温度上昇が大きくなく、充分な冷却効果が
期待できる。
In the turbine moving blade 20B, the cooling medium M is not blown out into the passage of the mainstream gas (combustion gas) from the blade effective portion 21 of the turbine blade, and the cooling medium M is guided to the closed loop structure to drive the turbine. The entire blade of blade 20B can be cooled. After that, a part of the cooling medium M guided to the turbine moving blade 20B is guided to the outer cooling flow passage 45 at the leading edge of the turbine blade, and the leading edge of the turbine blade from the blade root portion 24 to the blade tip portion 29 is first Can be cooled effectively. By using the cooling medium M that has not yet risen in temperature, the leading edge side of the blade effective portion 21 can be efficiently cooled. Also for the trailing edge of the turbine blade, the outer cooling flow path 45 passing through the blade leading edge and the blade tip does not form a zigzag-shaped flow path, and the flow path length is short and the heat exchange area is small.
The temperature rise of the cooling medium M is not so large that a sufficient cooling effect can be expected.

【0078】図8に示すタービン動翼20Bにおいて
は、タービン翼の翼植込部22の前縁側に供給通路26
を、後縁側に回収通路27を形成した例を示したが、逆
であってもよい。すなわち、翼植込部22の後縁側を供
給通路とし、この供給通路に案内される冷却媒体Mを図
8に示すタービン動翼20Bとは流れを逆にして、ター
ビン翼の前縁側の回収通路に回収させるようにしてもよ
い。
In the turbine rotor blade 20B shown in FIG. 8, the supply passage 26 is provided on the leading edge side of the blade implanting portion 22 of the turbine blade.
Although the example in which the recovery passage 27 is formed on the trailing edge side is shown, it may be reversed. That is, the trailing edge side of the blade-implanted portion 22 is used as a supply passage, and the cooling medium M guided in this supply passage has a flow opposite to that of the turbine moving blade 20B shown in FIG. You may make it collect | recover.

【0079】この場合にも、冷却媒体Mを主流ガス(燃
焼ガス)の通路内に吹き出すことなく、閉ループ構造を
採用してタービン翼の翼全体を冷却でき、更に翼後縁
部、翼先端部のみならず、翼前縁部を効果的に、翼全面
にわたり均一に冷却することができる。
Also in this case, the entire blade of the turbine blade can be cooled by adopting the closed loop structure without blowing the cooling medium M into the passage of the mainstream gas (combustion gas), and further, the blade trailing edge portion and the blade tip portion. Not only that, the blade leading edge can be effectively and uniformly cooled over the entire blade surface.

【0080】[第4の実施形態]図9は、本発明に係る
閉ループ冷却形タービン動翼の第4実施形態を示す縦断
面図、図10は図9のX−X線に沿う縦断面図、図11
は図9のXI−XI線に沿う横断面図(平断面図)、図12
は図9のXII −XII 線に沿う横断面図である。
[Fourth Embodiment] FIG. 9 is a vertical cross-sectional view showing a fourth embodiment of a closed-loop cooling type turbine rotor blade according to the present invention, and FIG. 10 is a vertical cross-sectional view taken along line XX of FIG. , Fig. 11
12 is a cross-sectional view (plan view) taken along line XI-XI in FIG.
FIG. 10 is a transverse sectional view taken along line XII-XII in FIG. 9.

【0081】この実施形態に示されたタービン動翼20
Cの全体的構成は、図1に示したタービン動翼20と実
質的に異ならないので、対応部分には同一符号を付して
説明を省略する。
The turbine rotor blade 20 shown in this embodiment
Since the overall configuration of C is substantially the same as that of the turbine rotor blade 20 shown in FIG. 1, the corresponding parts are designated by the same reference numerals and the description thereof will be omitted.

【0082】図9に示されたタービン動翼20Cは、タ
ービン翼の内部に冷却媒体Mの翼冷却流路25を形成す
るために、タービン翼の翼植込部22に2つの通路2
6,27が長手方向に延びるように並設されている。通
路の一方は冷却媒体Mの供給通路26で、他方の通路は
冷却媒体Mの回収通路27である。冷却媒体Mの供給通
路26と回収通路27はタービン翼の翼プラットホーム
(翼ルート部)24あるいは翼シャンク部23内に形成
される2つのキャビティ48,49にそれぞれ連通され
る。
The turbine rotor blade 20C shown in FIG. 9 has two passages 2 in the blade-implanted portion 22 of the turbine blade in order to form the blade cooling flow passage 25 of the cooling medium M inside the turbine blade.
6, 27 are juxtaposed so as to extend in the longitudinal direction. One of the passages is a supply passage 26 for the cooling medium M, and the other passage is a recovery passage 27 for the cooling medium M. The supply passage 26 and the recovery passage 27 for the cooling medium M communicate with two cavities 48, 49 formed in the blade platform (blade root portion) 24 of the turbine blade or the blade shank portion 23, respectively.

【0083】キャビティ48,49の1つは、図11に
示すようにタービン翼の前縁部を含む翼背側キャビティ
48であり、他のキャビティはタービン翼後縁部を含む
翼腹側キャビティ49である。2つのキャビティ48,
49は図11に示すように、タービン翼の翼腹側と翼背
側とに区分けされる。
As shown in FIG. 11, one of the cavities 48 and 49 is a blade back side cavity 48 including the leading edge portion of the turbine blade, and the other cavity is a blade vent side cavity 49 including the turbine blade trailing edge portion. Is. Two cavities 48,
As shown in FIG. 11, 49 is divided into a blade side and a blade back side of the turbine blade.

【0084】翼背側キャビティ48からタービン翼の翼
有効部21を長手方向(外径方向)に延びる複数個、例
えば7つの冷却孔50が列状に配列されて冷却孔列から
なる翼背側冷却流路51を構成し、この翼背側冷却通路
51に冷却媒体Mを流すことにより、タービン動翼20
Cは翼有効部21の前縁部から後縁側に向う翼背側を冷
却している。翼背側冷却流路51はタービン翼長手方向
に延び、翼チップ部29で1つの先端キャビティ38に
連通される。
A plurality of cooling holes 50, for example, seven cooling holes 50 extending in the longitudinal direction (outer diameter direction) of the blade effective portion 21 of the turbine blade from the blade back side cavity 48 are arranged in a row, and the blade back side is formed of a cooling hole row. By forming the cooling flow passage 51 and flowing the cooling medium M through the blade back side cooling passage 51, the turbine rotor blade 20
C cools the blade back side from the front edge of the blade effective portion 21 toward the trailing edge. The blade back side cooling flow path 51 extends in the turbine blade longitudinal direction and communicates with one tip cavity 38 at the blade tip portion 29.

【0085】先端キャビティ38はタービン翼の翼チッ
プ部29内に形成され、この先端キャビティ38で翼背
側冷却流路51を流れてきた冷却媒体Mは流れの向きを
180度変え、反転して翼腹側冷却流路52に案内され
る。翼腹側冷却流路52はタービン翼の翼表面腹側を、
翼有効部21の長手方向に延びる例えば7つの冷却孔5
3が列状に形成され、翼ルート部24で翼腹側キャビテ
ィ49に連通される。翼腹側キャビティ49は、冷却媒
体Mの回収通路27に通じている。
The tip cavity 38 is formed in the blade tip portion 29 of the turbine blade, and the cooling medium M flowing through the blade back side cooling flow path 51 in the tip cavity 38 changes its flow direction by 180 degrees and is inverted. It is guided to the wing ventral side cooling channel 52. The blade ventral side cooling flow channel 52 is located on the blade surface ventral side of the turbine blade,
For example, seven cooling holes 5 extending in the longitudinal direction of the blade effective portion 21.
3 are formed in rows and communicate with the blade ventral cavity 49 at the blade root portion 24. The blade ventral cavity 49 communicates with the recovery passage 27 for the cooling medium M.

【0086】このタービン動翼20Cの翼有効部21に
形成される翼背側冷却流路51と翼腹側冷却流路52は
図12に示すように複数個づつの冷却孔50,53によ
り、翼表面に沿う冷却孔列を構成している。各冷却孔列
には少なくとも翼外面側に対向する内壁に乱流促進リブ
35が形成され、この乱流促進リブ35で冷却媒体Mの
流れを乱して冷却効果を高めている。
As shown in FIG. 12, the blade back side cooling passages 51 and the blade vent side cooling passages 52 formed in the blade effective portion 21 of the turbine rotor blade 20C are formed by a plurality of cooling holes 50 and 53, respectively. An array of cooling holes is formed along the blade surface. A turbulent flow promoting rib 35 is formed on at least the inner wall of each cooling hole row facing the outer surface of the blade, and the turbulent flow promoting rib 35 disturbs the flow of the cooling medium M to enhance the cooling effect.

【0087】また、翼背側冷却通路51や翼腹側冷却通
路52は各冷却孔50,53の出口側に流路絞り部5
4,55が形成され、この流路絞り部54,55で冷却
孔列の流路面積を絞って小さくし、流速を速める一方、
各冷却孔50,53毎に冷却媒体Mの流量調整が行ない
得るようになっている。翼背側冷却流路51の翼前縁部
側冷却孔50には、冷却媒体Mの流量を充分に確保する
ため、乱流促進リブを必ずしも設けなくてもよい。乱流
促進リブを設けないときには翼前縁部は冷却媒体Mの流
量を大きくすることにより、冷却効率の向上を図ってい
る。
Further, the blade back side cooling passage 51 and the blade side cooling passage 52 are located at the outlet side of the cooling holes 50 and 53, respectively.
4, 55 are formed, and the flow passage narrowing portions 54, 55 reduce the flow passage area of the cooling hole row to reduce the flow passage area while increasing the flow velocity.
The flow rate of the cooling medium M can be adjusted for each cooling hole 50, 53. In order to secure a sufficient flow rate of the cooling medium M, the turbulent flow promoting rib does not necessarily have to be provided in the blade leading edge side cooling hole 50 of the blade back side cooling flow path 51. When the turbulent flow promoting ribs are not provided, the cooling efficiency is improved by increasing the flow rate of the cooling medium M at the blade leading edge portion.

【0088】図9に示された閉ループ冷却形タービン動
翼20Cの冷却は、次のように行なわれる。
Cooling of the closed loop cooling type turbine rotor blade 20C shown in FIG. 9 is performed as follows.

【0089】ガスタービンの通常運転時には、翼植込部
22の底部から供給通路26に冷却媒体Mが流入せしめ
られる。この冷却媒体Mは供給通路26から翼ルート部
24に形成された翼背側キャビティ48に案内され、翼
背側キャビティ48から翼背側冷却流路51を構成する
各冷却孔50に案内される。
During normal operation of the gas turbine, the cooling medium M is caused to flow into the supply passage 26 from the bottom of the blade implanting portion 22. The cooling medium M is guided from the supply passage 26 to the blade back side cavity 48 formed in the blade root portion 24, and from the blade back side cavity 48 to each cooling hole 50 forming the blade back side cooling flow path 51. .

【0090】タービン翼の翼有効部21に形成される翼
背側冷却流路51は、翼前縁部および翼背側に、まだ温
度上昇していない冷却媒体Mを最初に案内して流すこと
により、翼前縁部と翼背側を内部から対流冷却してい
る。このとき、乱流促進リブ35のリブ効果により冷却
媒体Mの流れを乱して温度の均一化を図り、冷却効果を
増加させて対流冷却効果を増大させている。
In the blade back side cooling flow passage 51 formed in the blade effective portion 21 of the turbine blade, the cooling medium M, which has not yet risen in temperature, is first guided and flowed to the blade leading edge and the blade back side. Thus, the leading edge of the blade and the back side of the blade are convectively cooled from the inside. At this time, the flow of the cooling medium M is disturbed by the rib effect of the turbulent flow promoting ribs 35 to make the temperature uniform, the cooling effect is increased, and the convection cooling effect is increased.

【0091】タービン翼の翼先端部で先端キャビティ3
8に流入し、合流せしめられた冷却媒体Mは向きを18
0度変えて翼腹側冷却流路52に案内され、この翼腹側
冷却流路52の冷却孔列を内径方向に流れながら、乱流
促進リブ35で冷却効果を増大させて対流冷却し、翼ル
ート部24に形成される翼腹側キャビティ49に案内さ
れる。冷却媒体Mは翼腹側キャビティ49から回収通路
27に導かれ、最終的にこの回収通路27を通って全量
がタービン翼の翼外に取り出される。
The tip cavity 3 at the blade tip of the turbine blade
The cooling medium M, which has flowed into 8 and has been merged, has a direction of 18
The turbulent flow promoting rib 35 increases convection cooling while increasing the cooling effect while being guided to the blade belly side cooling flow channel 52 by 0 degree and flowing in the cooling hole row of the blade belly side cooling flow channel 52 in the inner diameter direction. The blade is guided to the blade cavity 49 formed in the blade root portion 24. The cooling medium M is guided from the ventral cavity 49 to the recovery passage 27, and finally the entire amount is taken out of the blade of the turbine blade through the recovery passage 27.

【0092】このタービン動翼20Cにおいては、ター
ビン翼の翼有効部21を冷却する冷却媒体Mが、翼有効
部21や翼チップ部29から主流ガス(燃焼ガス)の通
路内に吹き出すことはなく、閉ループ構造の翼冷却流路
25でタービン翼の翼全体を冷却できる。
In this turbine rotor blade 20C, the cooling medium M for cooling the blade effective portion 21 of the turbine blade does not blow out from the blade effective portion 21 or the blade tip portion 29 into the passage of the mainstream gas (combustion gas). The entire blade of the turbine blade can be cooled by the blade cooling flow path 25 having the closed loop structure.

【0093】しかも、このタービン動翼20Cでは、タ
ービン翼の翼背側と翼腹側を独立した冷却流路51,5
2で冷却でき、翼面の熱伝達率が高いタービン翼の翼背
側および翼前縁側に、温度上昇していない冷却媒体Mを
最初に供給でき、翼背側を翼腹側に対して冷却を相対的
に強化できる。さらに、翼背側および翼腹側冷却流路5
1,52の各冷却孔50,53に乱流促進リブ35を複
数個づつ設けることで、タービン翼の翼外表面に対向す
る翼面の熱伝達率を大きくすることが可能となる。逆に
言えば冷却媒体Mの流量を減少させることが可能とな
る。しかも各冷却流路51,52の内側面には乱流促進
リブ35を設けない場合には、冷却媒体Mの圧力損失の
増加を最小限に抑えることができる。また、各冷却流路
51,52ごとに流路絞り部54,55を設けて対向す
る翼面熱伝達率に応じて冷却媒体Mの流量を調整するこ
とができ、よりメタル温度の均一化を図ることができ
る。
Moreover, in this turbine rotor blade 20C, the cooling passages 51 and 5 are provided independently on the blade back side and blade back side of the turbine blade.
The cooling medium M that has not risen in temperature can be first supplied to the blade back side and the blade leading edge side of the turbine blade that can be cooled by 2 and has a high heat transfer coefficient on the blade surface, and the blade back side is cooled to the blade ventral side. Can be relatively strengthened. Furthermore, the blade back side and the blade ventral side cooling flow path 5
By providing a plurality of turbulent flow promoting ribs 35 in each of the cooling holes 50 and 53 of 1, 52, it is possible to increase the heat transfer coefficient of the blade surface facing the blade outer surface of the turbine blade. Conversely speaking, it becomes possible to reduce the flow rate of the cooling medium M. Moreover, when the turbulent flow promoting ribs 35 are not provided on the inner side surfaces of the cooling channels 51, 52, the increase in the pressure loss of the cooling medium M can be suppressed to the minimum. Further, the flow passage restricting portions 54 and 55 are provided for the respective cooling flow passages 51 and 52 so that the flow rate of the cooling medium M can be adjusted in accordance with the heat transfer coefficient of the opposing blade surfaces, so that the metal temperature can be made more uniform. Can be planned.

【0094】このタービン動翼20Cでは、背側キャビ
ティ48にタービン翼の前縁部を含み、また、翼腹側キ
ャビティ49にタービン翼の後縁部を含んでいるが、逆
に翼背側キャビティにタービン翼の後縁部を含み、翼腹
側キャビティにタービン翼の前縁部を含む構成とする事
もでき、この場合には、翼背側と後縁側の冷却が相対的
に強化される。
In this turbine moving blade 20C, the back cavity 48 includes the leading edge of the turbine blade, and the ventral cavity 49 includes the trailing edge of the turbine blade. It is also possible to include the trailing edge of the turbine blade and to include the leading edge of the turbine blade in the cavity on the ventral side of the blade. In this case, the cooling of the blade back side and the trailing edge side is relatively strengthened. .

【0095】また、翼腹側キャビティ49に供給通路2
6を接続し、翼背側キャビティ48に回収通路27を接
続する構成とすることもできる。
Further, the supply passage 2 is provided in the cavity 49 on the ventral side of the blade.
6 may be connected and the recovery passage 27 may be connected to the blade back cavity 48.

【0096】[0096]

【発明の効果】以上に述べたように、本発明に係る閉ル
ープ冷却形タービン動翼においては、構造的に冷却の難
しいタービン翼の前縁部と後縁部に対して冷却媒体を効
果的に供給可能となり冷却効果が向上し、タービン翼の
メタル温度をより均一化でき信頼性が向上できる一方、
冷却媒体の消費量の低減が可能となる。また、この閉ル
ープ冷却形タービン動翼は閉ループ冷却構造で有効的に
冷却できるので、このタービン動翼を適用したガスター
ビンの熱効率は大幅に向上し、今後のガスタービンの高
温化にも対応可能となる。
As described above, in the closed-loop cooling type turbine rotor blade according to the present invention, the cooling medium is effectively applied to the leading edge portion and the trailing edge portion of the turbine blade which is structurally difficult to cool. It can be supplied, the cooling effect is improved, the metal temperature of the turbine blade can be made more uniform, and the reliability is improved.
The consumption of the cooling medium can be reduced. In addition, since this closed-loop cooling turbine blade can be effectively cooled by the closed-loop cooling structure, the thermal efficiency of the gas turbine using this turbine blade will be greatly improved and it will be possible to cope with future high temperature of the gas turbine. Become.

【0097】本発明に係る閉ループ冷却形タービン動翼
は、請求項1に記載の構成とすることにより、タービン
翼冷却後の冷却媒体の全量を翼植込部の回収通路から翼
外に回収することができ、冷却媒体を主流ガス(燃焼ガ
ス)中に吹き出すことがないので、燃焼ガスの温度低下
を避けることができる一方、閉ループ冷却流路構造でタ
ービン翼の冷却を行なうことができるので、コンバイン
ドサイクルプラントの場合、冷却媒体として排熱回収ボ
イラで発生した蒸気等の一部を利用することができ、タ
ービン動翼冷却後の蒸気を蒸気タービンで熱回収し、プ
ラント熱効率の向上を図ることができる。
By configuring the closed-loop cooling type turbine rotor blade according to the present invention as set forth in claim 1, the entire amount of the cooling medium after cooling the turbine blade is recovered from the recovery passage of the blade implanting portion to the outside of the blade. Since the cooling medium is not blown into the mainstream gas (combustion gas), the temperature decrease of the combustion gas can be avoided, while the turbine blade can be cooled with the closed loop cooling flow path structure. In the case of a combined cycle plant, part of the steam generated in the exhaust heat recovery boiler can be used as a cooling medium, and the steam after cooling the turbine rotor blades can be recovered by the steam turbine to improve the thermal efficiency of the plant. You can

【0098】本発明に係る閉ループ冷却形タービン動翼
は、請求項2に記載の構成とすることにより、ガスター
ビンの設計条件に対応させて冷却媒体の供給通路と回収
通路を選択でき、タービン動翼に形成される通路構成の
自由度を選択可能とする。
With the closed-loop cooling type turbine rotor blade according to the present invention, by adopting the structure described in claim 2, the supply passage and the recovery passage for the cooling medium can be selected according to the design conditions of the gas turbine, and the turbine rotor The degree of freedom of the passage configuration formed in the blade can be selected.

【0099】さらに、本発明に係る閉ループ冷却形ター
ビン動翼は、請求項3に記載の構成とすることにより、
タービン翼の翼内部に供給される冷却媒体を、翼有効部
の前縁部および後縁部に供給されるので、翼有効部の前
縁部および後縁部を温度上昇していない冷却媒体で積極
的にかつ有効的に冷却することができる。
Further, the closed-loop cooling turbine blade according to the present invention has the structure described in claim 3,
Since the cooling medium supplied to the inside of the blade of the turbine blade is supplied to the leading edge and the trailing edge of the blade effective part, the cooling medium that does not raise the temperature at the leading edge and the trailing edge of the blade effective part is used. It can be cooled positively and effectively.

【0100】また、本発明に係る閉ループ冷却形タービ
ン動翼は、請求項4に記載の構成とすることにより、タ
ービン翼の前縁部および後縁部に温度上昇していない冷
却媒体を並列に供給でき、主流ガス側の熱伝達率が大き
なタービン翼の前縁側と後縁側を有効的に効率よく冷却
できる。
Further, the closed-loop cooling type turbine rotor blade according to the present invention has the structure described in claim 4, whereby the cooling medium which has not risen in temperature is connected in parallel to the leading edge portion and the trailing edge portion of the turbine blade. The leading edge side and the trailing edge side of the turbine blade having a large heat transfer coefficient on the mainstream gas side can be effectively and efficiently cooled.

【0101】さらに、本発明に係る閉ループ冷却形ター
ビン動翼は、請求項5に記載の構成とすることにより、
冷却が困難なタービン翼の前縁部および後縁部を効果的
に冷却することができ翼有効部全体を均一に冷却するこ
とが可能となり、かつ分岐した冷却媒体を一カ所から回
収することが可能となる。
Further, the closed-loop cooling turbine blade according to the present invention has the structure described in claim 5,
It is possible to effectively cool the leading and trailing edges of turbine blades that are difficult to cool, and to uniformly cool the entire effective blade section, and to collect the branched cooling medium from one location. It will be possible.

【0102】また一方、本発明に係る閉ループ冷却形タ
ービン動翼は、請求項6に記載の構成とすることによ
り、タービン翼の前側冷却流路と後側冷却流路とが合流
する合流部に設けられた案内壁により、冷却媒体の流れ
が対向する合流を避けることができ、合流損失を低減で
きる。
On the other hand, the closed-loop cooling type turbine rotor blade according to the present invention has the structure according to the sixth aspect, whereby the front-side cooling passage and the rear-side cooling passage of the turbine blade are joined to each other. With the guide wall provided, it is possible to avoid the merging in which the flows of the cooling medium oppose each other, and it is possible to reduce the merging loss.

【0103】他方、本発明に係る閉ループ冷却形タービ
ン動翼は、請求項7に記載の構成とすることにより、冷
却の困難なタービン翼の前縁部および後縁部を効果的に
冷却することができ翼有効部全体を均一に冷却すること
が可能となり、かつ分岐した冷却媒体を一カ所から回収
することが可能となる。
On the other hand, the closed-loop cooling type turbine rotor blade according to the present invention has the structure described in claim 7 to effectively cool the front and rear edges of the turbine blade, which is difficult to cool. As a result, the entire blade effective portion can be uniformly cooled, and the branched cooling medium can be collected from one place.

【0104】また、本発明に係る閉ループ冷却形タービ
ン動翼は、請求項8に記載の構成とすることにより、外
側冷却流路でタービン翼の前縁側および後縁側を、ジグ
ザグ状の内側冷却流路でタービン翼前縁と後縁間の翼中
央部領域を効率よく冷却することができ、かつ冷却媒体
は翼植込部の底部から供給し、冷却後の冷却媒体全量を
回収することが可能となり、また、タービン翼の前縁部
あるいは後縁部には温度上昇していない冷却媒体を供給
して翼前縁部、翼先端部および翼後縁部を効果的に冷却
できる。
Further, the closed-loop cooling type turbine rotor blade according to the present invention has the structure described in claim 8, whereby the front cooling side and the rear cooling side of the turbine cooling blade are zigzag-shaped inside cooling flow in the outside cooling flow passage. It is possible to efficiently cool the central area of the blade between the leading edge and the trailing edge of the turbine blade in the passage, and the cooling medium can be supplied from the bottom of the blade implantation part, and the entire cooling medium after cooling can be recovered. Further, the cooling medium whose temperature has not risen can be supplied to the leading edge portion or the trailing edge portion of the turbine blade to effectively cool the blade leading edge portion, the blade tip portion and the blade trailing edge portion.

【0105】また、本発明に係る閉ループ冷却形タービ
ン動翼は、請求項9に記載の構成とすることにより、タ
ービン翼の翼背側と翼腹側を独立した冷却流路で冷却で
き、翼背側および翼腹側のうち冷却を強化したい方に温
度上昇していない冷却媒体を供給できる。
With the closed-loop cooling type turbine rotor blade according to the present invention, by constructing according to claim 9, the blade back side and blade vent side of the turbine blade can be cooled by independent cooling flow paths, It is possible to supply the cooling medium whose temperature has not risen to one of the dorsal side and the ventral side that is desired to enhance cooling.

【0106】さらに、本発明に係る閉ループ冷却形ター
ビン動翼は、請求項10に記載の構成とすることによ
り、タービン翼の翼有効部の翼面に対向する冷却側面の
熱伝達率を増大させることが可能となり、冷却媒体の流
量を減少させることが可能となる。しかも他の面には乱
流促進リブを設けない場合、冷却媒体の圧力損失の増加
を最小限に抑えることができる。
Further, the closed-loop cooling type turbine rotor blade according to the present invention has the structure described in claim 10, thereby increasing the heat transfer coefficient of the cooling side surface facing the blade surface of the blade effective portion of the turbine blade. Therefore, the flow rate of the cooling medium can be reduced. Moreover, when the turbulent flow promoting ribs are not provided on the other surface, the increase in pressure loss of the cooling medium can be suppressed to the minimum.

【0107】さらにまた、本発明に係る閉ループ冷却形
タービン動翼は、請求項11に記載の構成とすることに
より、翼有効部に形成される複数の冷却流路は、各冷却
流路ごとに対向する翼面熱伝達率に応じて冷却媒体の流
量を調整することができ、よりメタル温度の均一化を図
ることができる。
Furthermore, the closed-loop cooling type turbine rotor blade according to the present invention has the structure described in claim 11, so that the plurality of cooling channels formed in the blade effective portion are provided for each cooling channel. The flow rate of the cooling medium can be adjusted according to the heat transfer coefficient of the opposing blade surfaces, and the metal temperature can be made more uniform.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る閉ループ冷却形タービン動翼の第
1実施形態を示す縦断面図。
FIG. 1 is a vertical cross-sectional view showing a first embodiment of a closed-loop cooling type turbine rotor blade according to the present invention.

【図2】図1のII−II線に沿う横断面図。FIG. 2 is a cross-sectional view taken along the line II-II in FIG.

【図3】図1のIII −III 線に沿う縦断面図。FIG. 3 is a vertical sectional view taken along the line III-III in FIG.

【図4】本発明に係る閉ループ冷却形タービン動翼の第
1実施形態における変形例を示す縦断面図。
FIG. 4 is a vertical cross-sectional view showing a modified example of the first embodiment of the closed-loop cooled turbine blade according to the present invention.

【図5】本発明に係る閉ループ冷却形タービン動翼の第
2実施形態を示す縦断面図。
FIG. 5 is a vertical cross-sectional view showing a second embodiment of a closed-loop cooled turbine blade according to the present invention.

【図6】図5のVI−VI線に沿う横断面図。6 is a cross-sectional view taken along the line VI-VI of FIG.

【図7】図5のVII −VII 線に沿う横断面図。7 is a cross-sectional view taken along the line VII-VII of FIG.

【図8】本発明に係る閉ループ冷却形タービン動翼の第
3実施形態を示す縦断面図。
FIG. 8 is a vertical cross-sectional view showing a third embodiment of a closed-loop cooled turbine blade according to the present invention.

【図9】本発明に係る閉ループ冷却形タービン動翼の第
4実施形態を示す縦断面図。
FIG. 9 is a vertical sectional view showing a fourth embodiment of a closed-loop cooling type turbine rotor blade according to the present invention.

【図10】図9のX−X線に沿う部分的な縦断面図。10 is a partial vertical cross-sectional view taken along the line XX of FIG.

【図11】図9のXI−XI線に沿う横断面図。11 is a cross-sectional view taken along the line XI-XI of FIG.

【図12】図9のXII −XII 線に沿う横断面図。12 is a cross-sectional view taken along line XII-XII in FIG.

【図13】一般的なガスタービンを示す部分的断面図。FIG. 13 is a partial cross-sectional view showing a general gas turbine.

【図14】従来のガスタービンに適用されるタービン動
翼の縦断面図。
FIG. 14 is a vertical cross-sectional view of a turbine rotor blade applied to a conventional gas turbine.

【図15】(A)はタービン翼の後縁部における冷却媒
体の圧力低下を、(B)はタービン翼の後縁部における
冷却媒体の温度上昇を、それぞれ示す図。
FIG. 15A is a diagram showing a pressure drop of a cooling medium at a trailing edge portion of a turbine blade, and FIG. 15B is a diagram showing a temperature rise of the cooling medium at a trailing edge portion of the turbine blade.

【図16】タービン翼の翼外表面における主流ガス熱伝
達率分布を示す図。
FIG. 16 is a diagram showing a mainstream gas heat transfer coefficient distribution on the outer surface of a turbine blade.

【符号の説明】[Explanation of symbols]

20 タービン動翼 21 翼有効部 22 翼植込部 23 シャンク部 24 翼プラットホーム(翼ルート部) 25 翼冷却流路 26 供給通路 26a 前側供給通路 26b 後側供給通路 27 回収通路 28 前縁流路 29 翼チップ部(翼先端部) 30 戻り流路 31 後縁流路 33 前側冷却流路 34 後側冷却流路 35 乱流促進リブ 37a,37b,37c キャビティ 38 先端キャビティ 39 翼冷却流路 39a,39b,39c 冷却孔 39A,39B,39C 冷却孔列(冷却流路) 40,41 流路絞り部 45 外側冷却流路 46 内側冷却流路 48 翼背側キャビティ 49 翼腹側キャビティ 50,53 冷却孔 51 翼背側冷却流路 52 翼腹側冷却流路 20 Turbine Blade 21 Effective Blade Section 22 Blade Implantation Section 23 Shank Section 24 Blade Platform (Blade Root) 25 Blade Cooling Flow Path 26 Supply Passage 26a Front Supply Passage 26b Rear Supply Passage 27 Recovery Passage 28 Leading Edge Passage 29 Blade tip part (blade tip portion) 30 Return channel 31 Trailing edge channel 33 Front side cooling channel 34 Rear side cooling channel 35 Turbulent flow promoting ribs 37a, 37b, 37c Cavity 38 Tip cavity 39 Blade cooling channel 39a, 39b , 39c Cooling holes 39A, 39B, 39C Cooling hole row (cooling flow path) 40, 41 Flow path narrowing part 45 Outer cooling flow path 46 Inner cooling flow path 48 Blade back cavity 49 Blade belly cavity 50, 53 Cooling hole 51 Blade back side cooling channel 52 Blade ventilating side cooling channel

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 タービン翼の翼内部を中空にして翼冷却
流路を形成し、翼植込部の底部から供給通路を経て翼冷
却流路に冷却媒体を供給し、翼内部を冷却するタービン
動翼において、前記翼植込部に翼冷却流路から冷却媒体
をタービン翼外に回収可能な回収通路を供給通路から独
立して設け、上記回収通路でタービン翼冷却後の冷却媒
体全量を回収するように構成したことを特徴とする閉ル
ープ冷却形タービン動翼。
1. A turbine for cooling the inside of a turbine blade by hollowing the inside of the blade to form a blade cooling flow path, and supplying a cooling medium from the bottom of the blade implantation portion to a blade cooling flow path through a supply passage. In the moving blade, a recovery passage that can collect the cooling medium from the blade cooling passage to the outside of the turbine blade is provided in the blade implantation portion independently of the supply passage, and the entire cooling medium after cooling the turbine blade is collected in the collection passage. A closed-loop cooled turbine blade characterized by being configured as described above.
【請求項2】 タービン翼の翼植込部に形成される冷却
媒体の供給通路をタービン翼の前縁側および後縁側のい
ずれか一方に、その他方に冷却媒体の回収通路をそれぞ
れ独立させて設けた請求項1に記載の閉ループ冷却形タ
ービン動翼。
2. A cooling medium supply passage formed in a blade-implanted portion of a turbine blade is provided on either one of a leading edge side and a trailing edge side of the turbine blade, and a cooling medium recovery passage is independently provided on the other side. The closed-loop cooled turbine blade according to claim 1.
【請求項3】 タービン翼の翼内部に形成される翼冷却
流路は、供給通路からの冷却媒体が最初に翼有効部の前
縁部および後縁部に供給可能な流路構造に形成された請
求項1に記載の閉ループ冷却形タービン動翼。
3. The blade cooling flow passage formed inside the blade of a turbine blade is formed in a flow passage structure capable of supplying the cooling medium from the supply passage to the leading edge portion and the trailing edge portion of the blade effective portion first. The closed-loop cooled turbine blade according to claim 1.
【請求項4】 タービン翼の翼植込部に形成される供給
通路は、翼シャンク部で前側供給通路と後側供給通路に
分岐され、分岐された供給通路の一方は、翼シャンク部
で回収通路と交差させた請求項1ないし3のいずれかに
記載の閉ループ冷却形タービン動翼。
4. A supply passage formed in a blade implantation portion of a turbine blade is branched into a front supply passage and a rear supply passage at a blade shank portion, and one of the branched supply passages is recovered at a blade shank portion. The closed-loop cooled turbine blade according to any one of claims 1 to 3, which intersects with a passage.
【請求項5】 タービン翼の翼有効部に形成される翼冷
却流路は、前側冷却流路と後側冷却流路とを備え、前側
冷却流路は、翼シャンク部の前側供給通路に連通してタ
ービン翼前縁側の翼有効部を外径方向に流れ、翼チップ
部で流れの向きを反転させて内径方向に向う流路構造と
する一方、後側冷却流路は、翼シャンク部の後側供給通
路に連通してタービン翼後縁側の翼有効部を外径方向に
流れ、翼チップ部で流れの向きを反転させて内径方向に
向う流路構造に構成し、タービン翼の前縁と後縁間の翼
中央付近に形成される戻り流路に前側冷却流路と後側冷
却流路とが合流せしめられて回収通路に連通された請求
項4に記載の閉ループ冷却形タービン動翼。
5. A blade cooling flow passage formed in a blade effective portion of a turbine blade includes a front cooling flow passage and a rear cooling flow passage, the front cooling flow passage communicating with a front supply passage of a blade shank portion. Then, the blade effective portion on the leading edge side of the turbine blade flows in the outer diameter direction, and the flow direction is reversed at the blade tip portion to form a flow passage structure that faces the inner diameter direction, while the rear side cooling passage forms the blade shank portion. A flow passage structure is formed that communicates with the rear supply passage and flows in the outer diameter direction in the blade effective portion on the trailing edge side of the turbine blade, and reverses the flow direction at the blade tip portion to face the inner diameter direction. 5. The closed-loop cooling turbine blade according to claim 4, wherein the front cooling passage and the rear cooling passage are joined to a return passage formed near the blade center between the blade and the trailing edge and communicated with the recovery passage. .
【請求項6】 タービン翼の前縁と後縁間の翼中央部付
近に形成される戻り流路は翼チップ部に形成される入口
側に合流部を形成し、この合流部に冷却媒体の流れを内
径方向に案内する案内壁を備えた請求項5に記載の閉ル
ープ冷却形タービン動翼。
6. A return passage formed near a blade central portion between a leading edge and a trailing edge of a turbine blade forms a merging portion on an inlet side formed in a blade tip portion, and a cooling medium of a cooling medium is formed at this merging portion. The closed-loop cooled turbine blade according to claim 5, further comprising a guide wall that guides the flow in the inner diameter direction.
【請求項7】 タービン翼は翼プラットホーム内に翼前
縁側キャビティ,中央キャビティ,および翼後縁側キャ
ビティを形成し、翼チップ部内に先端キャビティを形成
する一方、冷却媒体の供給通路は、分岐されて翼前縁側
キャビティおよび翼後縁側キャビティに連通し、中央キ
ャビティは冷却媒体の回収通路に連通しており、前記翼
前縁側、中央および翼後縁側キャビティから翼有効部の
翼面に沿って複数の冷却流路が延びて翼チップ部の先端
キャビティに連通された請求項4に記載の閉ループ冷却
形タービン動翼。
7. The turbine blade forms a blade leading edge cavity, a central cavity, and a blade trailing edge side cavity in a blade platform and a tip cavity in a blade tip portion, while a cooling medium supply passage is branched. The central cavity communicates with the cooling medium recovery passage, and communicates with the blade leading edge side cavity and the blade trailing edge side cavity. The closed-loop cooled turbine blade according to claim 4, wherein the cooling passage extends and communicates with the tip cavity of the blade tip portion.
【請求項8】 タービン翼の翼冷却流路は翼シャンク部
で外側冷却流路と内側冷却流路に分岐される一方、外側
冷却流路は、翼有効部の前縁部を翼チップ部に向って延
び、翼チップ部で向きを変えて翼前縁側から翼後縁側に
延びた後、翼チップ部の後縁側で向きを変えて翼有効部
の後縁部を翼シャンク部に向って延びるように形成さ
れ、また内側冷却流路は、外側冷却流路の内側をジグザ
グ状に流れる流路構造に構成され、翼シャンク部で外側
冷却流路と内側冷却流路とが合流して回収通路に連通さ
れた請求項1または2に記載の閉ループ冷却形タービン
動翼。
8. A blade cooling passage of a turbine blade is branched into an outer cooling passage and an inner cooling passage at a blade shank portion, while the outer cooling passage has a leading edge portion of the blade effective portion as a blade tip portion. After extending toward the wing shank, the wing tip changes its direction and extends from the wing leading edge to the wing trailing edge, and then changes at the wing tip trailing edge to change the wing effective portion trailing edge toward the wing shank. In addition, the inner cooling flow path is configured to have a zigzag shape that flows inside the outer cooling flow path, and the outer cooling flow path and the inner cooling flow path merge at the blade shank portion to collect the recovery path. The closed-loop cooled turbine blade according to claim 1, which is communicated with the turbine blade.
【請求項9】 タービン翼の翼プラットホーム内に翼背
側キャビティと翼腹側キャビティを有し、翼背側および
翼腹側キャビティの一方に冷却媒体の供給通路を連通さ
せ、他方のキャビティに冷却媒体の回収通路を連通させ
る一方、翼背側および翼腹側キャビティから翼有効部の
翼面に沿って翼背側冷却流路と翼腹側冷却流路がそれぞ
れ延びて翼チップ部に形成される先端キャビティに連通
させた請求項1に記載の閉ループ冷却形タービン動翼。
9. A turbine blade has a blade backside cavity and a blade ventral side cavity in a blade platform, one of the blade backside and the blade ventral side cavity is connected to a cooling medium supply passage, and the other cavity is cooled. While communicating the medium recovery passage, the blade back side cooling passage and the blade back side cooling passage are formed along the blade surface of the blade effective portion from the blade back side and the blade side cavity to form in the blade tip portion. The closed-loop cooled turbine blade according to claim 1, wherein the closed-loop cooled turbine blade is communicated with a tip cavity.
【請求項10】 タービン翼の翼有効部の翼面に沿って
配置された複数の冷却流路は、翼有効部の翼面側の内壁
に冷却媒体の乱流促進用リブを設けた請求項7または9
に記載の閉ループ冷却形タービン動翼。
10. A plurality of cooling channels arranged along the blade surface of a blade effective portion of a turbine blade, wherein a turbulent flow promoting rib for a cooling medium is provided on an inner wall of the blade effective portion on the blade surface side. 7 or 9
The closed-loop cooled turbine blade described in.
【請求項11】 タービン翼の翼プラットホーム内に形
成されるキャビティと翼チップ部に形成される先端キャ
ビティとを連通する翼有効部の複数の冷却流路は、流路
入口部および流路出口部の少なくとも一方に流路絞り部
を設けた請求項7または9に記載の閉ループ冷却形ター
ビン動翼。
11. A plurality of cooling flow passages of a blade effective portion that communicates a cavity formed in a blade platform of a turbine blade and a tip cavity formed in a blade tip portion are provided with a flow passage inlet portion and a flow passage outlet portion. The closed-loop cooling type turbine rotor blade according to claim 7 or 9, wherein a flow passage throttle portion is provided on at least one of the above.
JP12188696A 1996-05-16 1996-05-16 Closed loop cooling type turbine rotor blade Withdrawn JPH09303103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12188696A JPH09303103A (en) 1996-05-16 1996-05-16 Closed loop cooling type turbine rotor blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12188696A JPH09303103A (en) 1996-05-16 1996-05-16 Closed loop cooling type turbine rotor blade

Publications (1)

Publication Number Publication Date
JPH09303103A true JPH09303103A (en) 1997-11-25

Family

ID=14822353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12188696A Withdrawn JPH09303103A (en) 1996-05-16 1996-05-16 Closed loop cooling type turbine rotor blade

Country Status (1)

Country Link
JP (1) JPH09303103A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017015A1 (en) * 2007-07-31 2009-02-05 Mitsubishi Heavy Industries, Ltd. Turbine blade
JP2014114814A (en) * 2012-12-10 2014-06-26 General Electric Co <Ge> System and method for removing heat from turbine
JP2015507129A (en) * 2012-02-14 2015-03-05 シーメンス アクティエンゲゼルシャフト Turbine guide vane with throttle element
JP6025941B1 (en) * 2015-08-25 2016-11-16 三菱日立パワーシステムズ株式会社 Turbine blade and gas turbine
JP6025940B1 (en) * 2015-08-25 2016-11-16 三菱日立パワーシステムズ株式会社 Turbine blade and gas turbine
EP3184738A1 (en) * 2015-12-21 2017-06-28 General Electric Company Cooling circuit for a multi-wall blade
EP3184745A1 (en) * 2015-12-21 2017-06-28 General Electric Company Cooling circuit for multi-wall blade
CN108104886A (en) * 2017-11-28 2018-06-01 中国航发沈阳发动机研究所 A kind of anti-icing rectification support plate and with its engine pack
KR20190043870A (en) * 2017-10-19 2019-04-29 두산중공업 주식회사 Gas turbine disk
EP3597859B1 (en) * 2018-07-13 2023-08-30 Honeywell International Inc. Turbine blade with dust tolerant cooling system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016744A1 (en) * 2007-07-31 2009-02-05 Mitsubishi Heavy Industries, Ltd. Wing for turbine
US8079815B2 (en) 2007-07-31 2011-12-20 Mitsubishi Heavy Industries, Ltd. Turbine blade
WO2009017015A1 (en) * 2007-07-31 2009-02-05 Mitsubishi Heavy Industries, Ltd. Turbine blade
US9856738B2 (en) 2012-02-14 2018-01-02 Siemens Aktiengesellschaft Turbine guide vane with a throttle element
JP2015507129A (en) * 2012-02-14 2015-03-05 シーメンス アクティエンゲゼルシャフト Turbine guide vane with throttle element
JP2014114814A (en) * 2012-12-10 2014-06-26 General Electric Co <Ge> System and method for removing heat from turbine
JP6025941B1 (en) * 2015-08-25 2016-11-16 三菱日立パワーシステムズ株式会社 Turbine blade and gas turbine
JP6025940B1 (en) * 2015-08-25 2016-11-16 三菱日立パワーシステムズ株式会社 Turbine blade and gas turbine
JP2017044092A (en) * 2015-08-25 2017-03-02 三菱日立パワーシステムズ株式会社 Turbine rotor blade and gas turbine
US10890073B2 (en) 2015-08-25 2021-01-12 Mitsubishi Power, Ltd. Turbine blade and gas turbine
EP3184738A1 (en) * 2015-12-21 2017-06-28 General Electric Company Cooling circuit for a multi-wall blade
JP2017115885A (en) * 2015-12-21 2017-06-29 ゼネラル・エレクトリック・カンパニイ Cooling circuit for multi-wall blade
US9976425B2 (en) 2015-12-21 2018-05-22 General Electric Company Cooling circuit for a multi-wall blade
EP3184745A1 (en) * 2015-12-21 2017-06-28 General Electric Company Cooling circuit for multi-wall blade
KR20190043870A (en) * 2017-10-19 2019-04-29 두산중공업 주식회사 Gas turbine disk
US11242754B2 (en) 2017-10-19 2022-02-08 Doosan Heavy Industries & Construction Co., Ltd. Gas turbine disk
CN108104886A (en) * 2017-11-28 2018-06-01 中国航发沈阳发动机研究所 A kind of anti-icing rectification support plate and with its engine pack
EP3597859B1 (en) * 2018-07-13 2023-08-30 Honeywell International Inc. Turbine blade with dust tolerant cooling system

Similar Documents

Publication Publication Date Title
US6506013B1 (en) Film cooling for a closed loop cooled airfoil
JP3758792B2 (en) Gas turbine rotor platform cooling mechanism
US5591002A (en) Closed or open air cooling circuits for nozzle segments with wheelspace purge
US6468031B1 (en) Nozzle cavity impingement/area reduction insert
US5915923A (en) Gas turbine moving blade
US6435814B1 (en) Film cooling air pocket in a closed loop cooled airfoil
JP2668207B2 (en) Aerof oil section of gas turbine engine turbine
US6481966B2 (en) Blade for gas turbines with choke cross section at the trailing edge
EP0945595A2 (en) Gas turbine cooled blade
EP0543627A1 (en) Integrated steam/air cooling system for gas turbines
JP4251772B2 (en) Steam-cooled stationary blade of gas turbine
JP4627840B2 (en) Pressure compensated turbine nozzle
JP2001020702A (en) Cooling of separated leading edge of airfoil portion
JP2001073704A (en) Cooling tip of rotor blade
EP3341567B1 (en) Internally cooled turbine airfoil with flow displacement feature
JPS6119804B2 (en)
JP4175669B2 (en) Cooling channel structure for cooling the trailing edge of gas turbine blades
JP2004003459A (en) Method for cooling nozzle assembly of gas turbine engine and device thereof
US20090245999A1 (en) Hybrid impingement cooled airfoil
US5545002A (en) Stator vane mounting platform
CA2513045A1 (en) Internally cooled gas turbine airfoil and method
JPH09303103A (en) Closed loop cooling type turbine rotor blade
JP2000337102A (en) Cooling circuit for steam air cooling turbine nozzle stage
EP1094200A1 (en) Gas turbine cooled moving blade
JPH0941903A (en) Gas turbine cooling bucket

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050315

A131 Notification of reasons for refusal

Effective date: 20050510

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050711

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A761 Written withdrawal of application

Effective date: 20051202

Free format text: JAPANESE INTERMEDIATE CODE: A761