JPH09302470A - Forming method of conductive film, and forming method of metallic oxide film - Google Patents

Forming method of conductive film, and forming method of metallic oxide film

Info

Publication number
JPH09302470A
JPH09302470A JP6912297A JP6912297A JPH09302470A JP H09302470 A JPH09302470 A JP H09302470A JP 6912297 A JP6912297 A JP 6912297A JP 6912297 A JP6912297 A JP 6912297A JP H09302470 A JPH09302470 A JP H09302470A
Authority
JP
Japan
Prior art keywords
film
sample
conductive film
substrate
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6912297A
Other languages
Japanese (ja)
Other versions
JPH09302470A6 (en
JP4299376B2 (en
Inventor
Satoshi Mitamura
聡 三田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP06912297A priority Critical patent/JP4299376B2/en
Publication of JPH09302470A publication Critical patent/JPH09302470A/en
Publication of JPH09302470A6 publication Critical patent/JPH09302470A6/en
Application granted granted Critical
Publication of JP4299376B2 publication Critical patent/JP4299376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive film forming method capable of forming the conductive film of low resistance, and a metallic oxide film forming method capable of forming the metallic oxide film such as a ferroelectric thin film of high residual polarizability and a ferroelectric thin film of low coercive force. SOLUTION: The resistivity of a conductive film is dropped by irradiating the light of <=400nm in wavelength on the conductive film formed on a substrate so as not to generate crystallization of the conductive film. The characteristics of the metallic thin film such as increase of the residual polarizability and reduction of the coercive force are changed by irradiating the light of <=400nm in wavelength so as not to generate crystallization in the metallic oxide film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、抵抗率の低い導電
膜の形成方法、および、高残留分極率の強誘電薄膜や低
保磁力の強磁性薄膜等の金属酸化膜の形成方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a conductive film having a low resistivity and a method of forming a metal oxide film such as a ferroelectric thin film having a high remanent polarizability and a ferromagnetic thin film having a low coercive force.

【0002】[0002]

【従来の技術】従来より、種々の電子部品、画像表示装
置等に導電膜、透明導電膜が使用されており、例えば、
透明導電膜は酸化インジウムスズ(ITO)、酸化亜鉛
(ZnO)、酸化スズ(SnO2 )等、およびその合金
等を用いて、スパッタリング法、真空蒸着法、CVD法
等の成膜方法により形成されていた。
2. Description of the Related Art Conventionally, conductive films and transparent conductive films have been used in various electronic parts, image display devices, etc.
The transparent conductive film is formed by using indium tin oxide (ITO), zinc oxide (ZnO), tin oxide (SnO 2 ), or the like, or an alloy thereof by a film forming method such as a sputtering method, a vacuum evaporation method, or a CVD method. Was there.

【0003】上記の成膜方法のうち、スパッタリング法
では、例えば、ITO酸化物ターゲット材をArイオン
でスパッタして基板上にITO膜を形成するものであ
る。このようなITO膜は、基板温度200〜300℃
で成膜した後、200〜300℃でアニール処理を施す
ことによって低抵抗化がなされていた。
Among the above film forming methods, the sputtering method is a method of forming an ITO film on a substrate by sputtering an ITO oxide target material with Ar ions. Such an ITO film has a substrate temperature of 200 to 300 ° C.
After forming the film in 1., an annealing treatment was performed at 200 to 300 ° C. to reduce the resistance.

【0004】しかし、電子部品、画像表示装置等におけ
る耐熱性の低い基板への導電膜の形成要求が増大するに
したがって、室温乃至200℃の低温での低抵抗導電膜
の形成が重要な課題となっている。通常、スパッタリン
グ法により基板温度200℃以下で低温成膜されたIT
O膜は、抵抗率が高く、そのまま種々の電子部品、画像
表示装置等に使用することは困難であった。このため、
スパッタリング法により低温成膜されたITO膜に対し
てアニール処理を施すことにより低抵抗化を行うことが
必要とされる。
However, as the demand for forming a conductive film on a substrate having low heat resistance in electronic parts, image display devices, etc. increases, formation of a low resistance conductive film at a low temperature of room temperature to 200 ° C. becomes an important issue. Has become. Usually, an IT formed by a sputtering method at a substrate temperature of 200 ° C. or lower at a low temperature.
Since the O film has a high resistivity, it is difficult to use it as it is for various electronic parts, image display devices and the like. For this reason,
It is necessary to reduce the resistance by performing an annealing treatment on the ITO film formed at a low temperature by the sputtering method.

【0005】一方、金属酸化膜からなる強誘電体薄膜
は、焦電センサや不揮発性メモリ等への応用が期待され
ており、このようなデバイスへの実用化に向けて高残留
分極率の強誘電体薄膜の形成が要求されている。
On the other hand, a ferroelectric thin film made of a metal oxide film is expected to be applied to a pyroelectric sensor, a non-volatile memory, etc., and a strong residual polarizability is expected for practical use in such a device. Formation of a dielectric thin film is required.

【0006】また、金属酸化膜からなる強磁性薄膜は、
従来より薄膜磁気ヘッド材料や記録材料への用途展開が
進められている。この強磁性薄膜の形成方法としては、
一般に蒸着法、スパッタリング法、塗布法等が知られて
おり、実用上十分な特性を備えた強磁性薄膜が得られて
いるが、情報記録材料としての強磁性薄膜に対する記録
密度特性の向上要求は、年々厳しくなっている。
The ferromagnetic thin film made of a metal oxide film is
Applications for thin-film magnetic head materials and recording materials have been developed. As a method of forming this ferromagnetic thin film,
Generally, the vapor deposition method, the sputtering method, the coating method and the like are known, and a ferromagnetic thin film having practically sufficient characteristics has been obtained. However, there is a demand for improving the recording density characteristic of the ferromagnetic thin film as an information recording material. , It is getting tougher year by year.

【0007】[0007]

【発明が解決しようとする課題】上述の導電膜形成にお
ける低温での成膜後のアニール処理は、耐熱性の低い基
板を保護するために高温とすることができず、このた
め、十分な低抵抗化が達成できないという問題があっ
た。また、耐熱性の高い基板上に基板温度200〜30
0℃で成膜された導電膜についても、上記のアニール処
理はITO膜全面の低抵抗化処理となってしまい、所望
の領域、パターンのみ結晶化度を変えることなく低抵抗
化が可能な方法が望まれている。
The annealing treatment after the film formation at a low temperature in the above-described conductive film formation cannot be performed at a high temperature in order to protect a substrate having low heat resistance, and therefore a sufficiently low temperature is required. There was a problem that resistance could not be achieved. In addition, the substrate temperature is 200 to 30 on the substrate having high heat resistance.
Even for a conductive film formed at 0 ° C., the above-mentioned annealing treatment reduces the resistance of the entire surface of the ITO film, and the resistance can be reduced without changing the crystallinity of only a desired region or pattern. Is desired.

【0008】また、上述の残留分極率の高い強誘電体薄
膜を形成するためには、成膜条件に厳しい制御が要求さ
れ、かつ、最近、問題となってきた疲労現象(繰返し分
極反転試験における残留分極率の変化)に対応する必要
性もあり、成膜後の強誘電体薄膜に対して残留分極率を
増大するための処理を施すことが必要となっている。し
かし、成膜後の処理としてはアニール処理を除いて有効
な処理方法がないのが実情である。
Further, in order to form the above-mentioned ferroelectric thin film having a high residual polarizability, strict control of film forming conditions is required, and a fatigue phenomenon which has recently become a problem (in a repeated polarization reversal test) It is also necessary to deal with (change in residual polarizability), and it is necessary to perform treatment for increasing the residual polarizability on the ferroelectric thin film after film formation. However, in reality, there is no effective treatment method other than the annealing treatment after the film formation.

【0009】さらに、上述の強磁性薄膜の記録密度特性
の向上は、磁気特性、とりわけ、低保磁力化が重要であ
り、保磁力発生の原因となる磁性材料中の結晶粒界を低
減することにより低磁場で容易に磁壁の移動が可能な強
磁性薄膜を製造する必要がある。しかし、このような強
磁性薄膜の形成は、成膜条件に厳しい制御が要求される
ため、低保磁力の強磁性薄膜を簡便に形成できる方法が
要望されている。
Furthermore, in order to improve the recording density characteristics of the above-mentioned ferromagnetic thin film, it is important to reduce the coercive force, which is a magnetic characteristic, and to reduce the crystal grain boundaries in the magnetic material that cause coercive force. Therefore, it is necessary to manufacture a ferromagnetic thin film whose domain wall can be easily moved in a low magnetic field. However, in order to form such a ferromagnetic thin film, strict control of film forming conditions is required. Therefore, there is a demand for a method capable of easily forming a ferromagnetic thin film having a low coercive force.

【0010】本発明は、上記のような事情に鑑みてなさ
れたものであり、低抵抗の導電膜を形成することができ
る導電膜の形成方法、および、高残留分極率の強誘電薄
膜や低保磁力の強磁性薄膜等の金属酸化膜を形成するこ
とができる金属酸化膜の形成方法を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and it is a method of forming a conductive film having a low resistance, and a ferroelectric thin film having a high residual polarizability and a low dielectric constant. An object of the present invention is to provide a method for forming a metal oxide film, which can form a metal oxide film such as a ferromagnetic thin film having a coercive force.

【0011】[0011]

【課題を解決するための手段】このような目的を達成す
るために、本発明の導電膜の形成方法は、基板上に導電
膜を形成した後、前記導電膜に結晶化を生じさせない範
囲の照射エネルギーで波長400nm以下の光を照射す
るような構成とした。
In order to achieve such an object, the method for forming a conductive film according to the present invention is such that, after the conductive film is formed on a substrate, the conductive film is not crystallized. It was configured to irradiate light having a wavelength of 400 nm or less with irradiation energy.

【0012】また、本発明の導電膜の形成方法は、前記
導電膜の形成時の基板温度を室温乃至200℃の範囲に
設定するような構成とした。
Further, the method of forming a conductive film of the present invention is configured such that the substrate temperature during the formation of the conductive film is set in the range of room temperature to 200 ° C.

【0013】また、本発明の導電膜の形成方法は、スパ
ッタリング法、真空蒸着法、イオンプレーティング法、
CVD法のいずれかの方法により前記導電膜を形成する
ような構成とした。
The conductive film forming method of the present invention includes a sputtering method, a vacuum deposition method, an ion plating method,
The conductive film was formed by any one of the CVD methods.

【0014】本発明の金属酸化膜の形成方法は、基板上
に金属酸化膜を形成した後、前記金属酸化膜に結晶化を
生じさせない範囲の照射エネルギーで波長400nm以
下の光を照射するような構成とした。
In the method for forming a metal oxide film of the present invention, after the metal oxide film is formed on the substrate, the metal oxide film is irradiated with light having a wavelength of 400 nm or less with irradiation energy in a range that does not cause crystallization of the metal oxide film. It was configured.

【0015】また、本発明の金属酸化膜の形成方法は、
スパッタリング法、真空蒸着法、イオンプレーティング
法、CVD法のいずれかの方法により前記金属酸化膜を
形成するような構成とした。
The method of forming a metal oxide film of the present invention is
The metal oxide film is formed by any one of the sputtering method, the vacuum deposition method, the ion plating method, and the CVD method.

【0016】上述のような本発明では、基板上に形成さ
れた導電膜にその結晶化を生じさせないように照射され
た波長400nm以下の光は、導電膜中の伝導電子の密
度を高める作用をなし、導電膜の導電性向上(低抵抗
化)がなされる。
In the present invention as described above, the light having a wavelength of 400 nm or less, which is irradiated so as not to cause crystallization of the conductive film formed on the substrate, has the function of increasing the density of conduction electrons in the conductive film. None, the conductivity of the conductive film is improved (low resistance).

【0017】また、基板上に形成された金属酸化膜にそ
の結晶化を生じさせないように照射された波長400n
m以下の光は、例えば、金属酸化膜が強誘電体薄膜であ
る場合には、残留分極率を高める作用をなし、金属酸化
膜が強磁性薄膜である場合には、金属酸化膜中の結晶粒
界を消滅させる作用をなす。
The metal oxide film formed on the substrate is irradiated with a wavelength of 400 n so as not to cause its crystallization.
The light having a wavelength of m or less has an effect of increasing the remanent polarizability when the metal oxide film is a ferroelectric thin film, and the crystal in the metal oxide film when the metal oxide film is a ferromagnetic thin film. It acts to extinguish grain boundaries.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。導電膜の形成方法 本発明の導電膜の形成方法は、基板上に形成した導電膜
に対して、導電膜の結晶化を生じさせないような照射エ
ネルギー量で波長400nm以下の光を照射することに
より、導電膜中の伝導電子の密度を高めて抵抗率を低下
させるものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. Method for forming conductive film The method for forming a conductive film of the present invention is to irradiate a conductive film formed on a substrate with light having a wavelength of 400 nm or less with an irradiation energy amount that does not cause crystallization of the conductive film. The density of conduction electrons in the conductive film is increased to reduce the resistivity.

【0019】本発明における導電膜の形成は、従来公知
のスパッタリング法、真空蒸着法、イオンプレーティン
グ法、CVD法等のいずれかの方法により行うことがで
きる。
The conductive film in the present invention can be formed by any one of the conventionally known methods such as a sputtering method, a vacuum deposition method, an ion plating method and a CVD method.

【0020】例えば、スパッタリング法により導電膜を
形成する場合、まず、真空チャンバー内のターゲット材
取り付け板に所望のターゲット材を取り付け、また、基
板ホルダー上に基板を装着する。ターゲット材取り付け
板は外部電源による電圧印加が可能であり、また、基板
ホルダーはターゲット材取り付け板と対向する位置に配
設されている。尚、基板ホルダーには、載置された基板
を所定の温度に加熱するための加熱手段を設けることが
できる。次に、排気管により真空チャンバー内を所定の
圧力まで減圧した後、ガス供給管からアルゴン(Ar)
ガス等の雰囲気ガスを所定圧になるまで真空チャンバー
内に供給する。次いで、ターゲット材に対して外部電源
により電圧を印加することにより、ターゲット材がスパ
ッタされ、室温〜350℃の温度範囲から適宜設定した
温度に保たれた基板上に導電膜の形成が開始される。
For example, when the conductive film is formed by the sputtering method, first, a desired target material is attached to the target material attachment plate in the vacuum chamber, and the substrate is attached on the substrate holder. The target material mounting plate can be applied with a voltage from an external power source, and the substrate holder is arranged at a position facing the target material mounting plate. The substrate holder may be provided with heating means for heating the placed substrate to a predetermined temperature. Next, after the pressure inside the vacuum chamber was reduced to a predetermined pressure by the exhaust pipe, argon (Ar) was supplied from the gas supply pipe.
An atmospheric gas such as gas is supplied into the vacuum chamber until the pressure reaches a predetermined level. Then, by applying a voltage to the target material from an external power source, the target material is sputtered, and formation of a conductive film is started on the substrate kept at a temperature appropriately set from a room temperature to 350 ° C. temperature range. .

【0021】上述のようにして所望の厚みで導電膜が基
板上に形成された後、基板上の導電膜に波長400nm
以下、好ましくは150〜400nmの光を照射する。
照射される光の波長が400nmを超えると、導電膜内
の伝導電子密度を高めることができず、本発明の効果を
奏することができない。このような光照射の光源として
は、超高圧、高圧、中圧、低圧の金属蒸気ガス、希ガ
ス、水素、Xe2 、Kr−Cl、Xe−Clを用いた光
源、例えば、高圧水銀ランプ、エキシマランプ等の光
源、あるいは、エキシマレーザー、色素レーザー、Ar
イオンレーザー、F2 レーザー等のレーザーを使用する
ことができる。より具体的には、Hg−Xe紫外線ラン
プ(波長のメインピーク=360nm)、低圧Hgラン
プ(波長のメインピーク=254nm)、Kr−Clエ
キシマランプ(波長のメインピーク=222nm)、あ
るいは、Xe−Cl(308nm)、Xe−F(351
nm)、Xe−Br(282nm)、Kr−F(249
nm)、Kr−Cl(222nm)等のエキシマレーザ
ー、Arイオンレーザー第2高調波(257.2n
m)、色素レーザー第2高調波結晶(β−BaB2 ・B
4 、205nm)、F2 レーザー(157nm)等を
挙げることができる。このような光源を真空チャンバー
内に配設し、基板ホルダーの基板載置面を照射すること
により導電膜への光照射を行うことができる。
After the conductive film having a desired thickness is formed on the substrate as described above, the conductive film on the substrate has a wavelength of 400 nm.
Hereinafter, it is preferably irradiated with light of 150 to 400 nm.
When the wavelength of the irradiated light exceeds 400 nm, the conduction electron density in the conductive film cannot be increased and the effect of the present invention cannot be obtained. Such irradiation of the light source, ultra-high pressure, high pressure, medium pressure, low pressure metal vapor gas, noble gas, hydrogen, Xe 2, Kr-Cl, light source using a Xe-Cl, for example, a high pressure mercury lamp, Light source such as excimer lamp, excimer laser, dye laser, Ar
A laser such as an ion laser or an F 2 laser can be used. More specifically, a Hg-Xe ultraviolet lamp (wavelength main peak = 360 nm), a low pressure Hg lamp (wavelength main peak = 254 nm), a Kr-Cl excimer lamp (wavelength main peak = 222 nm), or Xe- Cl (308 nm), Xe-F (351
nm), Xe-Br (282 nm), Kr-F (249
nm), Kr-Cl (222 nm) excimer laser, Ar ion laser second harmonic (257.2n)
m), second harmonic crystal of dye laser (β-BaB 2 · B
O 4 , 205 nm), F 2 laser (157 nm) and the like. By arranging such a light source in the vacuum chamber and irradiating the substrate mounting surface of the substrate holder, it is possible to irradiate the conductive film with light.

【0022】この光照射における照射エネルギーは、導
電膜の結晶化を生じさせずに導電膜中の伝導電子の密度
を高めて抵抗率を低下させるような条件であり、使用す
る導電膜材料、導電膜の厚み、使用光源等、および導電
膜の使用目的等に応じて適宜設定することができる。こ
こで、導電膜の結晶化を生じさせないとは、非晶性の導
電膜に結晶化を起こさせないこと、あるいは、結晶性の
導電膜において結晶性を維持もしくは低下させることを
意味する。照射エネルギーの一例として、スパッタリン
グ法により室温で成膜された厚み1500Åの酸化イン
ジウムスズ(ITO)膜にXe−Clエキシマレーザー
を使用して照射する場合、照射エネルギーは約100m
J/cm2 程度が好ましく、照射エネルギーが高すぎる
と結晶化が進行して抵抗率が急激に増大してしまう。
The irradiation energy in this light irradiation is a condition that the density of the conduction electrons in the conductive film is increased and the resistivity is lowered without causing crystallization of the conductive film. It can be appropriately set according to the thickness of the film, the light source used, the purpose of use of the conductive film, and the like. Here, not causing crystallization of the conductive film means not causing crystallization of the amorphous conductive film, or maintaining or lowering the crystallinity of the crystalline conductive film. As an example of irradiation energy, when a 1500 Å-thick indium tin oxide (ITO) film formed at room temperature by a sputtering method is irradiated with a Xe-Cl excimer laser, the irradiation energy is about 100 m.
J / cm 2 is preferable, and if the irradiation energy is too high, crystallization will proceed and the resistivity will sharply increase.

【0023】本発明により形成できる導電膜は、例え
ば、Au、Ag、Pt、Cu、Rh等の金属からなる導
電膜、スズ・インジウム酸化物(ITO)、酸化亜鉛
(ZnO)、酸化スズ(SnO2 )、チタン酸ランタン
(LaTi03 )、インジウム亜鉛酸化物(In23
−ZnO)、アンチモン・スズ酸化物(SbSnO
2 )、酸化インジウム(In23 )、亜鉛・スズ・イ
ンジウム酸化物((Zn,Sn)In23 )、アルミ
ナ・亜鉛酸化物(ZnO−Al23 )、ガリウム・亜
鉛酸化物(ZnO−Ga23 )、カドミウム・スズ酸
化物(Cd2 SnO4 )、酸化カドミウム(CdO)、
カドミウム・インジウム酸化物(CdIn24)等、
および、その合金等からなる導電膜であり、その厚みは
適宜設定することができる。また、導電膜を形成する基
板としては、例えば、ガラス基板、セラミックス基板、
シリコン基板、ポリカーボネート樹脂、ポリエチレンテ
レフタレート樹脂、ポリエステル樹脂、エポキシ樹脂、
アクリル樹脂、ポリスチレン樹脂等の樹脂基板あるいは
金属基板等を挙げることができ、その厚さは使用目的に
応じて適宜設定することができる。金属酸化膜の形成方法 本発明の金属酸化膜の形成方法は、基板上に形成した金
属酸化膜に対して、この金属酸化膜に結晶化を生じさせ
ないような照射エネルギー量で波長400nm以下の光
を照射することにより、金属酸化膜が備える物性に所望
の変化を生じさせるものである。
The conductive film that can be formed by the present invention is, for example, a conductive film made of a metal such as Au, Ag, Pt, Cu, Rh, tin-indium oxide (ITO), zinc oxide (ZnO), tin oxide (SnO). 2 ), lanthanum titanate (LaTiO 3 ), indium zinc oxide (In 2 O 3
-ZnO), antimony tin oxide (SbSnO)
2 ), indium oxide (In 2 O 3 ), zinc-tin-indium oxide ((Zn, Sn) In 2 O 3 ), alumina-zinc oxide (ZnO-Al 2 O 3 ), gallium-zinc oxide (ZnO-Ga 2 O 3) , cadmium tin oxide (Cd 2 SnO 4), cadmium oxide (CdO),
Cadmium / indium oxide (CdIn 2 O 4 ), etc.
Also, the conductive film is made of an alloy or the like, and its thickness can be set appropriately. The substrate on which the conductive film is formed is, for example, a glass substrate, a ceramic substrate,
Silicon substrate, polycarbonate resin, polyethylene terephthalate resin, polyester resin, epoxy resin,
A resin substrate such as an acrylic resin or a polystyrene resin, a metal substrate, or the like can be given, and the thickness thereof can be set as appropriate depending on the purpose of use. Method for Forming Metal Oxide Film The method for forming a metal oxide film according to the present invention is a method for forming a metal oxide film formed on a substrate with light having a wavelength of 400 nm or less with an irradiation energy amount that does not cause crystallization of the metal oxide film. By irradiating with, the desired changes are made to the physical properties of the metal oxide film.

【0024】本発明で形成できる金属酸化膜としては、
下記に例示した強誘電体材料、導電材料、光学材料、磁
性材料、超伝導材料等の金属酸化膜である。 (強誘電体材料)チタン酸バリウム(BaTiO3 )、
チタン酸ストロンチウム(SrTiO3 )、チタン酸鉛
(PbTiO3 )、チタン酸ジルコニウム(ZrTiO
3 )、チタン酸ストロンチウム・バリウム((Ba,S
r)TiO3 )、ランタンチタン酸化物(La2 Ti2
7 )、チタン・ジルコニウム酸ストロンチウム・バリ
ウム((Ba,Sr)(Ti,Zr)O3 )、チタン・
ジルコニウム酸鉛(Pb(Zr,Ti)O3 )、チタン
酸ストロンチウム・ニオブ((Nb)SrTiO3 )、
スズ・チタン酸バリウム(Ba(Ti,Sn)O3 )、
マンガン酸イットリウム(YMnO3 ) (導電材料)スズ・インジウム酸化物(ITO)、酸化
亜鉛(ZnO)、酸化スズ(SnO2 )、チタン酸ラン
タン(LaTi03 )、インジウム亜鉛酸化物(In2
3 −ZnO)、アンチモン・スズ酸化物(SbSnO
2 )、酸化インジウム(In23 )、亜鉛・スズ・イ
ンジウム酸化物((Zn,Sn)In23 )、アルミ
ナ・亜鉛酸化物(ZnO−Al23 )、ガリウム・亜
鉛酸化物(ZnO−Ga23 ) (光学材料)酸化チタン(TiO2 )、酸化アルミニウ
ム(Al23 )、酸化ジルコニウム(ZrO2 )、ニ
オブ酸リチウム(LiNbO3 )、ヨウ素酸リチウム
(LiIO3 )、ニオブ酸カリウム(KNbO3 )、酸
化ベリリウム(BeO)、モリブデン酸鉛(PbMoO
3 )、タングステン酸亜鉛(PbWO4 )、酸化鉛(P
bO)、酸化タングステン(WO3 )、酸化コバルト
(CoO)、酸化クロム(Cr23 ) (磁性材料)マンガン亜鉛フェライト((Mn,Zn)
O・Fe23 )、マンガン銅フェライト((Mn,C
u)O・Fe23 )、バリウムフェライト(BaO・
6Fe23 )、酸化鉄(Fe34 ) (超伝導材料) YBaCuO系酸化物 本発明における金属酸化膜の形成は、従来公知のスパッ
タリング法、真空蒸着法、イオンプレーティング法、C
VD法等のいずれかの方法により行うことができる。金
属酸化膜の成膜時の基板温度は、室温〜550℃の温度
範囲から適宜設定することができ、金属酸化膜の厚み
は、その使用目的等を考慮して適宜設定することがで
き、例えば、100〜10000Å程度の範囲内で設定
することができる。
The metal oxide film that can be formed by the present invention includes
It is a metal oxide film such as a ferroelectric material, a conductive material, an optical material, a magnetic material, or a superconducting material, which is exemplified below. (Ferroelectric material) Barium titanate (BaTiO 3 ),
Strontium titanate (SrTiO 3 ), lead titanate (PbTiO 3 ), zirconium titanate (ZrTiO 3
3 ), barium strontium titanate ((Ba, S
r) TiO 3 ), lanthanum titanium oxide (La 2 Ti 2
O 7 ), titanium strontium zirconate barium ((Ba, Sr) (Ti, Zr) O 3 ), titanium
Lead zirconate (Pb (Zr, Ti) O 3 ), strontium niobium titanate ((Nb) SrTiO 3 ),
Tin barium titanate (Ba (Ti, Sn) O 3 ),
Yttrium manganate (YMnO 3 ) (conductive material) tin / indium oxide (ITO), zinc oxide (ZnO), tin oxide (SnO 2 ), lanthanum titanate (LaTiO 3 ), indium zinc oxide (In 2
O 3 -ZnO), antimony tin oxide (SbSnO
2 ), indium oxide (In 2 O 3 ), zinc-tin-indium oxide ((Zn, Sn) In 2 O 3 ), alumina-zinc oxide (ZnO-Al 2 O 3 ), gallium-zinc oxide (ZnO-Ga 2 O 3) ( optical material) titanium oxide (TiO 2), aluminum oxide (Al 2 O 3), zirconium oxide (ZrO 2), lithium niobate (LiNbO 3), lithium iodate (LiIO 3) , Potassium niobate (KNbO 3 ), beryllium oxide (BeO), lead molybdate (PbMoO)
3 ), zinc tungstate (PbWO 4 ), lead oxide (P
bO), tungsten oxide (WO 3 ), cobalt oxide (CoO), chromium oxide (Cr 2 O 3 ) (magnetic material) manganese zinc ferrite ((Mn, Zn)
O · Fe 2 O 3), manganese copper ferrite ((Mn, C
u) O · Fe 2 O 3 ), barium ferrite (BaO ·
6Fe 2 O 3 ), iron oxide (Fe 3 O 4 ) (superconducting material) YBaCuO-based oxide The formation of the metal oxide film in the present invention is carried out by the conventionally known sputtering method, vacuum deposition method, ion plating method, C
It can be performed by any method such as the VD method. The substrate temperature at the time of forming the metal oxide film can be appropriately set within a temperature range of room temperature to 550 ° C., and the thickness of the metal oxide film can be appropriately set in consideration of the purpose of use and the like. , 100 to 10000Å can be set.

【0025】基板上に形成された金属酸化膜に対して照
射する光は、波長400nm以下、好ましくは150〜
400nmの光であり、照射される光の波長が400n
mを超えると本発明の効果を奏することができない。こ
のような光照射の光源としては、上述の導電膜の形成方
法で挙げた光源と同様のものを使用することができる。
The light for irradiating the metal oxide film formed on the substrate has a wavelength of 400 nm or less, preferably 150 to
The wavelength of the emitted light is 400n.
If it exceeds m, the effect of the present invention cannot be obtained. As the light source for such light irradiation, the same light source as the light source described in the above method for forming the conductive film can be used.

【0026】この光照射における照射エネルギーは、金
属酸化膜に結晶化を生じさせないような条件であり、使
用する金属酸化膜材料、金属酸化膜の厚み、使用光源
等、および金属酸化膜の使用目的等に応じて適宜設定す
ることができる。ここで、金属酸化膜の結晶化を生じさ
せないとは、非晶性の金属酸化膜に結晶化を起こさせな
いこと、あるいは、結晶性の金属酸化膜において結晶性
を維持もしくは低下させることを意味する。照射エネル
ギーの一例として、DCスパッタリング法により350
℃で成膜された厚み2000Åのスズ・インジウム酸化
物(ITO)膜にXe−Clエキシマレーザーを使用し
て照射する場合、照射エネルギーは約150mJ/cm
2 程度が好ましく、照射エネルギーが高すぎると結晶化
が進行するようになり、その結果、伝導電子密度が低下
し高抵抗の膜となってしまう。
The irradiation energy in the light irradiation is such that the metal oxide film is not crystallized, and the metal oxide film material to be used, the thickness of the metal oxide film, the light source to be used, and the purpose of use of the metal oxide film. It can be appropriately set according to the above. Here, not causing crystallization of the metal oxide film means not causing crystallization of the amorphous metal oxide film, or maintaining or decreasing the crystallinity of the crystalline metal oxide film. . As an example of irradiation energy, 350 is obtained by the DC sputtering method.
When irradiating a 2000 Å-thick tin-indium oxide (ITO) film formed at ℃ using a Xe-Cl excimer laser, the irradiation energy is about 150 mJ / cm 2.
About 2 is preferable, and if the irradiation energy is too high, crystallization will proceed, and as a result, the conduction electron density will decrease and a high resistance film will result.

【0027】上記のような光照射により、例えば、強誘
電体材料からなる金属酸化膜における残留分極率の増
大、導電材料からなる金属酸化膜における抵抗率の低
減、光学材料からなる金属酸化膜における屈折率の増
大、磁性材料からなる金属酸化膜における保磁力の低
減、超伝導材料からなる金属酸化膜における結晶欠陥ま
たは不整の部分が少ない膜質が可能となる。
By the light irradiation as described above, for example, the residual polarizability of a metal oxide film made of a ferroelectric material is increased, the resistivity of a metal oxide film made of a conductive material is reduced, and the metal oxide film made of an optical material is reduced. It is possible to increase the refractive index, reduce the coercive force of the metal oxide film made of a magnetic material, and reduce the number of crystal defects or irregularities in the metal oxide film made of a superconducting material.

【0028】尚、金属酸化膜を形成する基板としては、
例えば、ガラス基板、セラミックス基板、シリコン基
板、ポリカーボネート樹脂、ポリエチレンテレフタレー
ト樹脂、ポリエステル樹脂、エポキシ樹脂、アクリル樹
脂、ポリスチレン樹脂等の樹脂基板あるいは金属基板等
を挙げることができ、その厚さは使用目的に応じて適宜
設定することができる。
As the substrate on which the metal oxide film is formed,
For example, a glass substrate, a ceramic substrate, a silicon substrate, a polycarbonate resin, a polyethylene terephthalate resin, a polyester resin, an epoxy resin, an acrylic resin, a polystyrene resin, or another resin substrate or a metal substrate can be used. It can be set as appropriate.

【0029】[0029]

【実施例】次に、実施例を挙げて本発明を更に詳細に説
明する。 (実施例1)厚み1.1mmのガラス基板をスパッタリ
ング装置の基板ホルダー上に載置し、また、ターゲット
材取り付け板にターゲット材(In23 −SnO2
結体(SnO2 10重量%)を取り付けた。
Next, the present invention will be described in more detail with reference to examples. (Example 1) by placing the glass substrate having a thickness of 1.1mm on the substrate holder of the sputtering device, also target material in the target material mounting plate (In 2 O 3 -SnO 2 sintered body (SnO 2 10% by weight) Attached.

【0030】次に、真空チャンバー内にアルゴン(A
r)ガスを導入して雰囲気圧力を5mTorr とし、基板温
度を25℃として下記の成膜条件で基板上に厚さ約0.
3μmの導電膜(ITO膜)を形成して試料Aを作製し
た。
Next, argon (A
r) Gas is introduced to set the atmospheric pressure to 5 mTorr, the substrate temperature to 25 ° C., and the thickness on the substrate to about 0.
A conductive film (ITO film) having a thickness of 3 μm was formed to prepare Sample A.

【0031】(ITO成膜条件) ・雰囲気ガス : Ar=100sccm,O2 =2s
ccm ・雰囲気圧力 : 5 mTorr ・水素分圧 : 10×10-9Torr以下 ・DCパワー : 2.5kW ・成膜レート : 2Å/秒 上記のように導電膜(ITO膜)を形成した基板(試料
A)に対して、Hg−Xe紫外線ランプ(波長のメイン
ピーク=360nm)を用いて下記表1に示される照射
エネルギーとなるように紫外線照射を行って試料A1を
作製した。
(ITO film forming conditions) Atmosphere gas: Ar = 100 sccm, O 2 = 2 s
ccm ・ Atmospheric pressure: 5 mTorr ・ Hydrogen partial pressure: 10 × 10 -9 Torr or less ・ DC power: 2.5 kW ・ Film formation rate: 2 Å / sec The substrate (sample) on which the conductive film (ITO film) was formed as described above Sample A1 was prepared by irradiating A) with UV using a Hg-Xe UV lamp (wavelength main peak = 360 nm) so that the irradiation energy was as shown in Table 1 below.

【0032】また、基板温度を300℃とし、下記の成
膜条件で基板上に厚さ約0.3μmの導電膜(ITO
膜)を形成し試料Bを作製し、この基板(試料B)に対
して、Hg−Xe紫外線ランプ(波長のメインピーク=
360nm)を用いて下記表1に示される照射エネルギ
ーとなるように紫外線照射を行って試料B1を作製し
た。
Further, the substrate temperature was set to 300 ° C., and a conductive film (ITO) having a thickness of about 0.3 μm was formed on the substrate under the following film forming conditions.
A film is formed to prepare a sample B, and an Hg-Xe ultraviolet lamp (main peak of wavelength =
The sample B1 was prepared by irradiating ultraviolet rays with the irradiation energy shown in Table 1 below.

【0033】(ITO成膜条件) ・雰囲気ガス : Ar=10sccm,O2 =3.5
sccm ・雰囲気圧力 : 5 mTorr ・水素分圧 : 10×10-9Torr以下 ・DCパワー : 150W ・成膜レート : 9Å/秒 一方、上記のように導電膜(ITO膜)を形成した基板
(試料A)に対して、He−Neレーザー(波長633
nm)を用いて下記表1に示される照射エネルギーとな
るように紫外線照射を行って比較試料1を作製した。
(ITO film forming conditions) Atmosphere gas: Ar = 10 sccm, O 2 = 3.5
sccm ・ Atmospheric pressure: 5 mTorr ・ Hydrogen partial pressure: 10 × 10 -9 Torr or less ・ DC power: 150 W ・ Film formation rate: 9 Å / sec On the other hand, a substrate (sample) on which a conductive film (ITO film) is formed as described above A) to a He-Ne laser (wavelength 633).
nm) was used to irradiate ultraviolet rays so that the irradiation energies shown in Table 1 below were obtained to prepare comparative sample 1.

【0034】また、上記のように導電膜(ITO膜)を
形成した基板(試料A)に対して、100℃、2時間の
加熱処理を施して比較試料2を作製した。
Further, the substrate (Sample A) on which the conductive film (ITO film) was formed as described above was heat-treated at 100 ° C. for 2 hours to prepare Comparative Sample 2.

【0035】上記のように作製した試料A、試料A1、
試料B、試料B1、比較試料1、2について、下記の方
法によりITO膜の結晶性、伝導電子の密度、抵抗率を
測定評価して、結果を下記の表1に示した。
Sample A, Sample A1, and
With respect to Sample B, Sample B1, and Comparative Samples 1 and 2, the crystallinity of the ITO film, the density of conduction electrons, and the resistivity were measured and evaluated by the following methods, and the results are shown in Table 1 below.

【0036】(結晶性の評価方法)X線回折法により下
記の回折ピークの半値幅を測定し、試料Aに対する変化
から結晶性の変化を評価した。
(Crystallinity Evaluation Method) The half-width of the following diffraction peak was measured by the X-ray diffraction method, and the change in crystallinity was evaluated from the change with respect to Sample A.

【0037】2θ=30.08°(222) 2θ=35.12°(400) 2θ=60.08°(622) ・結晶性向上の判定:(222)面と(400)面の半
値幅が減少もしくは変化せず、(622)面の半値幅が
減少 ・結晶性低下の判定:(222)面と(400)面の半
値幅が増大し、(622)面の半値幅は減少もしくは変
化なし (伝導電子の密度の測定方法)VAN DER PAU
W法によるホール測定を行った。
2θ = 30.08 ° (222) 2θ = 35.12 ° (400) 2θ = 60.08 ° (622) ・ Judgment of improvement of crystallinity: the half widths of the (222) plane and the (400) plane are No decrease or change, full width at half maximum of (622) plane Decrease in crystallinity: Full width at half maximum of (222) face and (400) face is increased, and full width at half maximum of (622) face is not decreased or changed (Measurement Method of Conduction Electron Density) VAN DER PAU
Hall measurement was performed by the W method.

【0038】(抵抗率の測定方法)四端子法又はVAN
DER PAUW法により測定を行った。
(Measurement Method of Resistivity) Four Terminal Method or VAN
The measurement was performed by the DER PAUW method.

【0039】[0039]

【表1】 表1に示されるように、紫外線照射や加熱処理が施され
ていない未処理の試料Aに比べ、波長400nm以下の
紫外線照射を施した試料A1は抵抗率が低下した。ま
た、この試料A1は未処理の試料Aに比べ結晶性が低下
し結晶化は生じておらず、一方、伝導電子の密度が高く
なっており、この伝導電子密度の向上によって低抵抗化
が達成されたと考えられる。
[Table 1] As shown in Table 1, the resistivity of the sample A1 which was irradiated with ultraviolet rays having a wavelength of 400 nm or less was lower than that of the untreated sample A which was not subjected to ultraviolet irradiation or heat treatment. Further, this sample A1 has a lower crystallinity and no crystallization than the untreated sample A, while the density of conduction electrons is high, and the reduction of resistance is achieved by the improvement of the conduction electron density. It is thought that it was done.

【0040】また、紫外線照射や加熱処理が施されてい
ない未処理の試料B、および、波長400nm以下の紫
外線照射を施した試料B1においても、上記の試料Aお
よび試料A1と同様のことが確認された。
It is also confirmed that the untreated sample B which has not been subjected to ultraviolet irradiation or heat treatment and the sample B1 which has been irradiated with ultraviolet rays having a wavelength of 400 nm or less are similar to the above-mentioned samples A and A1. Was done.

【0041】これに対して、波長400nmを超える光
を用いて光照射処理を行った比較試料1は、伝導電子密
度の向上がみられず抵抗率は低下しなかった。
On the other hand, in the comparative sample 1 which was subjected to the light irradiation treatment using the light having the wavelength exceeding 400 nm, the conduction electron density was not improved and the resistivity was not lowered.

【0042】一方、試料Aに加熱処理を施した比較試料
2は、抵抗率の低下がわずかであった。また、この比較
試料2は未処理の試料Aに比べて結晶性が向上している
ものの、伝導電子の密度の増大はみられなかった。 (実施例2)厚み1.1mmのガラス基板をスパッタリ
ング装置の基板ホルダー上に載置し、また、ターゲット
材取り付け板にターゲット材(In23 −SnO2
結体(SnO2 10重量%)を取り付けた。
On the other hand, the comparative sample 2 obtained by subjecting the sample A to the heat treatment showed a slight decrease in resistivity. Further, although this comparative sample 2 has improved crystallinity as compared to the untreated sample A, no increase in the density of conduction electrons was observed. (Example 2) placing a glass substrate having a thickness of 1.1mm on the substrate holder of the sputtering device, also target material in the target material mounting plate (In 2 O 3 -SnO 2 sintered body (SnO 2 10% by weight) Attached.

【0043】次に、真空チャンバー内にアルゴン(A
r)ガスを導入して雰囲気圧力を5mTorr とし基板温度
を25℃として、下記の成膜条件で基板上に厚さ約0.
3μmの導電膜(ITO膜)を形成した。
Next, argon (A
r) A gas is introduced to set the atmospheric pressure to 5 mTorr, the substrate temperature to 25 ° C., and the thickness on the substrate to about 0.
A conductive film (ITO film) of 3 μm was formed.

【0044】(ITO成膜条件) ・雰囲気ガス : Ar=100sccm,O2 =2s
ccm ・雰囲気圧力 : 5 mTorr ・水素分圧 : 10×10-9Torr以下 ・DCパワー : 2.5kW ・成膜レート : 2Å/秒 次に、この導電膜(ITO膜)を形成した基板に対し
て、Hg−Xe紫外線ランプ(波長のメインピーク=3
60nm)を用いて10,15,20,40,60,1
00,200,500分間の8種の照射時間による処理
を行った。
(ITO film forming conditions) Atmosphere gas: Ar = 100 sccm, O 2 = 2 s
ccm ・ Atmospheric pressure: 5 mTorr ・ Hydrogen partial pressure: 10 × 10 -9 Torr or less ・ DC power: 2.5 kW ・ Film formation rate: 2 Å / sec Next, for the substrate on which this conductive film (ITO film) was formed Hg-Xe UV lamp (wavelength main peak = 3
60 nm), 10, 15, 20, 40, 60, 1
The treatment was carried out with eight kinds of irradiation times of 00, 200 and 500 minutes.

【0045】上記のように紫外線照射処理を行った各導
電膜および未処理の導電膜について、伝導電子の密度と
抵抗率を実施例1と同様に測定して結果を図1に示し
た。
The conductive electron density and resistivity of each conductive film that had been subjected to the ultraviolet irradiation treatment and the untreated conductive film were measured in the same manner as in Example 1, and the results are shown in FIG.

【0046】図1に示されるように、10分間の紫外線
照射処理により伝導電子の密度が向上し、同時に抵抗率
の低下がみられ、照射時間が長くなるにしたがって更に
伝導電子密度の向上と抵抗率の低下がみられた。 (実施例3)厚み1.1mmのガラス基板をスパッタリ
ング装置の基板ホルダー上に載置し、また、ターゲット
材取り付け板にターゲット材(In23 −SnO2
結体(SnO2 10重量%)を取り付けた。
As shown in FIG. 1, the density of conduction electrons was improved by the ultraviolet irradiation treatment for 10 minutes, and at the same time, the resistivity was decreased. As the irradiation time was increased, the conduction electron density was further improved and the resistance was decreased. The rate decreased. Example 3 A glass substrate having a thickness of 1.1 mm was placed on a substrate holder of a sputtering apparatus, and a target material (In 2 O 3 —SnO 2 sintered body (SnO 2 10% by weight)) was mounted on a target material mounting plate. Attached.

【0047】次に、真空チャンバー内にアルゴン(A
r)ガスを導入して雰囲気圧力を5mTorr とし、基板温
度を25℃として下記の成膜条件で基板上に厚さ約15
00Åの導電膜(ITO膜)を形成して試料Cを作製し
た。
Next, argon (A
r) A gas is introduced so that the atmospheric pressure is 5 mTorr, the substrate temperature is 25 ° C., and the thickness is about 15 on the substrate under the following film forming conditions.
A conductive film (ITO film) of 00Å was formed to prepare Sample C.

【0048】(ITO成膜条件) ・雰囲気ガス : Ar=100sccm,O2 =3s
ccm ・雰囲気圧力 : 5 mTorr ・水素分圧 : 10×10-9Torr以下 ・RFパワー : 250W ・成膜レート : 2.6Å/秒 上記のように導電膜(ITO膜)を形成した基板(試料
C)に対して、Xe−Cl(波長308nm)エキシマ
レーザーを用いて下記の条件で照射を行って試料C1〜
C3を作製した。
(ITO film forming conditions) Atmosphere gas: Ar = 100 sccm, O 2 = 3 s
ccm ・ Atmospheric pressure: 5 mTorr ・ Hydrogen partial pressure: 10 × 10 -9 Torr or less ・ RF power: 250 W ・ Film formation rate: 2.6 Å / sec A substrate (sample) on which a conductive film (ITO film) was formed as described above C) is irradiated with Xe-Cl (wavelength 308 nm) excimer laser under the following conditions to obtain sample C1.
C3 was produced.

【0049】(レーザー照射条件) ・照射エネルギー : 最大300mJ/cm2 ・レーザー照射重ね率: 50% ・照射雰囲気 : 大気中 上記のように作製した試料C、試料C1〜C3につい
て、実施例1と同様にしてITO膜の結晶性、伝導電子
の密度、抵抗率を測定評価して、結果を下記の表2およ
び図2に示した。
(Laser irradiation conditions) -Irradiation energy: Maximum 300 mJ / cm 2 -Laser irradiation overlap ratio: 50% -Irradiation atmosphere: In air Sample C and samples C1 to C3 prepared as described above were compared with Example 1. Similarly, the crystallinity, conduction electron density, and resistivity of the ITO film were measured and evaluated, and the results are shown in Table 2 and FIG. 2 below.

【0050】[0050]

【表2】 表2および図2に示されるように、レーザー照射処理が
施されていない未処理の試料Cに比べ、Xe−Clエキ
シマレーザーを照射した試料C1と試料C2は抵抗率の
低下がみられ、試料C2で抵抗率は最小(5.87×1
-4Ω・cm)となり、このとき、結晶化は生じておら
ず、伝導電子の密度が高くなっている。そして、照射エ
ネルギーがさらに高い試料C3では、結晶化が急激に進
み、抵抗率の増大がみられる。このことから、試料Cに
おけるXe−Clエキシマレーザー照射では、照射エネ
ルギーの最適値は約100mJ/cm2 であるといえ
る。 (実施例4)イオンプレーティング装置を用い、基板温
度を25℃として下記の成膜条件で厚み1.1mmのガ
ラス基板上に厚さ約0.3μmの導電膜(ITO膜)を
形成して試料Dを作製した。
[Table 2] As shown in Table 2 and FIG. 2, as compared with the untreated sample C which was not subjected to the laser irradiation treatment, the samples C1 and C2 irradiated with the Xe-Cl excimer laser showed a decrease in resistivity. C2 has the lowest resistivity (5.87 × 1)
0-4 Ω · cm), at which time crystallization did not occur and the density of conduction electrons was high. Then, in the sample C3 having a higher irradiation energy, the crystallization rapidly progresses and the resistivity is increased. From this, it can be said that the optimum value of the irradiation energy is approximately 100 mJ / cm 2 in the Xe-Cl excimer laser irradiation of the sample C. Example 4 Using an ion plating apparatus, a conductive film (ITO film) having a thickness of about 0.3 μm was formed on a glass substrate having a thickness of 1.1 mm under the following film forming conditions at a substrate temperature of 25 ° C. Sample D was prepared.

【0051】(ITO成膜条件) ・雰囲気ガス : Ar=100sccm,O2 =3s
ccm ・雰囲気圧力 : 5 mTorr ・水素分圧 : 10×10-9Torr以下 ・蒸発源 : In23 −SnO2 燒結体(Sn
2 10重量%) ・RFパワー : 250W ・成膜レート : 2.6Å/秒 上記のように導電膜(ITO膜)を形成した基板(試料
D)に対して、Hg−Xe紫外線ランプ(波長のメイン
ピーク=360nm)を用いて下記表3に示される照射
エネルギーとなるように紫外線照射を行って試料D1を
作製した。
(ITO film forming conditions) Atmosphere gas: Ar = 100 sccm, O 2 = 3 s
ccm ・ Atmospheric pressure: 5 mTorr ・ Hydrogen partial pressure: 10 × 10 -9 Torr or less ・ Evaporation source: In 2 O 3 -SnO 2 sintered body (Sn)
O 2 10% by weight) ・ RF power: 250 W ・ Film formation rate: 2.6 Å / sec For the substrate (Sample D) on which the conductive film (ITO film) is formed as described above, a Hg-Xe ultraviolet lamp (wavelength) (Main peak = 360 nm) was irradiated with ultraviolet rays so that the irradiation energy shown in Table 3 below was obtained, and thus a sample D1 was prepared.

【0052】また、基板温度を300℃とした他は、上
記の試料Dと同様にして基板上に厚さ約0.3μmの導
電膜(ITO膜)を形成し試料Eを作製し、この基板
(試料B)に対して、Hg−Xe紫外線ランプ(波長の
メインピーク=360nm)を用いて下記表3に示され
る照射エネルギーとなるように紫外線照射を行って試料
E1を作製した。
Also, except that the substrate temperature was set to 300 ° C., a conductive film (ITO film) having a thickness of about 0.3 μm was formed on the substrate in the same manner as the sample D, and a sample E was prepared. (Sample B) was irradiated with ultraviolet rays using a Hg-Xe ultraviolet lamp (wavelength main peak = 360 nm) so that the irradiation energy was as shown in Table 3 below to prepare Sample E1.

【0053】一方、上記のように導電膜(ITO膜)を
形成した基板(試料D)に対して、He−Neレーザー
(波長633nm)を用いて下記表3に示される照射エ
ネルギーとなるように紫外線照射を行って比較試料1を
作製した。
On the other hand, with respect to the substrate (Sample D) on which the conductive film (ITO film) was formed as described above, the irradiation energy shown in Table 3 below was obtained by using a He-Ne laser (wavelength 633 nm). Comparative sample 1 was prepared by performing ultraviolet irradiation.

【0054】また、上記のように導電膜(ITO膜)を
形成した基板(試料D)に対して、100℃、2時間の
加熱処理を施して比較試料2を作製した。
Further, the substrate (Sample D) on which the conductive film (ITO film) was formed as described above was heat-treated at 100 ° C. for 2 hours to prepare Comparative Sample 2.

【0055】上記のように作製した試料D、試料D1、
試料E、試料E1、比較試料1、2について、実施例1
と同様にしてITO膜の結晶性、伝導電子の密度、抵抗
率を測定評価して、結果を下記の表3に示した。
Sample D, Sample D1, prepared as described above,
Example 1 for sample E, sample E1, and comparative samples 1 and 2
The crystallinity, the density of conduction electrons, and the resistivity of the ITO film were measured and evaluated in the same manner as in, and the results are shown in Table 3 below.

【0056】[0056]

【表3】 表3に示されるように、紫外線照射や加熱処理が施され
ていない未処理の試料Dに比べ、波長400nm以下の
紫外線照射を施した試料D1は抵抗率が低下した。ま
た、この試料D1は未処理の試料Dに比べ結晶性が低下
し結晶化は生じておらず、一方、伝導電子の密度が高く
なっており、この伝導電子密度の向上によって低抵抗化
が達成されたと考えられる。
[Table 3] As shown in Table 3, as compared with the untreated sample D which was not subjected to the ultraviolet irradiation or the heat treatment, the resistivity of the sample D1 which was subjected to the ultraviolet irradiation of the wavelength of 400 nm or less was lowered. Further, the sample D1 has lower crystallinity and no crystallization than the untreated sample D, on the other hand, the density of conduction electrons is high, and the reduction of resistance is achieved by the improvement of the conduction electron density. It is thought that it was done.

【0057】また、紫外線照射や加熱処理が施されてい
ない未処理の試料E、および、波長400nm以下の紫
外線照射を施した試料E1においても、上記の試料Dお
よび試料D1と同様のことが確認された。
It was also confirmed that the untreated sample E which was not subjected to ultraviolet irradiation or heat treatment and the sample E1 which was irradiated with ultraviolet rays having a wavelength of 400 nm or less were similar to the samples D and D1. Was done.

【0058】これに対して、波長400nmを超える光
を用いて光照射処理を行った比較試料1は、伝導電子密
度の向上がみられず抵抗率は低下しなかった。
On the other hand, in the comparative sample 1 which was subjected to the light irradiation treatment using the light having the wavelength exceeding 400 nm, the conduction electron density was not improved and the resistivity was not decreased.

【0059】一方、試料Dに加熱処理を施した比較試料
2は、未処理の試料Dに比べて結晶性が向上しているも
のの、伝導電子の密度の増大はほとんどみられず、抵抗
率の低下がわずかであった。 (実施例5)真空蒸着装置を用い、基板温度を25℃と
して下記の成膜条件で厚み1.1mmのガラス基板上に
厚さ約0.3μmの導電膜(ITO膜)を形成して試料
Fを作製した。
On the other hand, the comparative sample 2 obtained by subjecting the sample D to the heat treatment has improved crystallinity as compared with the untreated sample D, but the density of conduction electrons is hardly increased, and the resistivity of the sample is decreased. The decrease was slight. (Example 5) Using a vacuum vapor deposition apparatus, a conductive film (ITO film) having a thickness of about 0.3 μm was formed on a glass substrate having a thickness of 1.1 mm under the following film forming conditions at a temperature of 25 ° C. F was produced.

【0060】(ITO成膜条件) ・雰囲気圧力 : 5 mTorr ・水素分圧 : 10×10-9Torr以下 ・蒸発源 : In23 −SnO2 燒結体(Sn
2 10重量%) ・RFパワー : 250W ・成膜レート : 2.6Å/秒 上記のように導電膜(ITO膜)を形成した基板(試料
F)に対して、Hg−Xe紫外線ランプ(波長のメイン
ピーク=360nm)を用いて下記表4に示される照射
エネルギーとなるように紫外線照射を行って試料F1を
作製した。
(ITO film forming conditions) -Atmospheric pressure: 5 mTorr-Hydrogen partial pressure: 10 × 10 -9 Torr or less-Evaporation source: In 2 O 3 -SnO 2 sintered body (Sn)
O 2 10 wt%) ・ RF power: 250 W ・ Film formation rate: 2.6 Å / sec For the substrate (Sample F) on which the conductive film (ITO film) is formed as described above, a Hg-Xe ultraviolet lamp (wavelength) (Main peak = 360 nm) was irradiated with ultraviolet rays so that the irradiation energy was as shown in Table 4 below to prepare sample F1.

【0061】また、基板温度を300℃とした他は、上
記の試料Fと同様にして基板上に厚さ約0.3μmの導
電膜(ITO膜)を形成し試料Gを作製し、この基板
(試料B)に対して、Hg−Xe紫外線ランプ(波長の
メインピーク=360nm)を用いて下記表4に示され
る照射エネルギーとなるように紫外線照射を行って試料
G1を作製した。
Further, except that the substrate temperature was set to 300 ° C., a conductive film (ITO film) having a thickness of about 0.3 μm was formed on the substrate in the same manner as the sample F, and a sample G was prepared. (Sample B) was irradiated with ultraviolet rays using an Hg-Xe ultraviolet lamp (wavelength main peak = 360 nm) so that the irradiation energy was as shown in Table 4 below, to prepare Sample G1.

【0062】一方、上記のように導電膜(ITO膜)を
形成した基板(試料F)に対して、He−Neレーザー
(波長633nm)を用いて下記表4に示される照射エ
ネルギーとなるように紫外線照射を行って比較試料1を
作製した。
On the other hand, with respect to the substrate (Sample F) on which the conductive film (ITO film) was formed as described above, the irradiation energy shown in Table 4 below was obtained by using a He-Ne laser (wavelength 633 nm). Comparative sample 1 was prepared by performing ultraviolet irradiation.

【0063】また、上記のように導電膜(ITO膜)を
形成した基板(試料F)に対して、100℃、2時間の
加熱処理を施して比較試料2を作製した。
Further, the substrate (Sample F) on which the conductive film (ITO film) was formed as described above was heat-treated at 100 ° C. for 2 hours to prepare Comparative Sample 2.

【0064】上記のように作製した試料F、試料F1、
試料G、試料G1、比較試料1、2について、実施例1
と同様にしてITO膜の結晶性、伝導電子の密度、抵抗
率を測定評価して、結果を下記の表4に示した。
Sample F, Sample F1, manufactured as described above,
Example 1 for sample G, sample G1, and comparative samples 1 and 2
The crystallinity, the density of conduction electrons, and the resistivity of the ITO film were measured and evaluated in the same manner as in, and the results are shown in Table 4 below.

【0065】[0065]

【表4】 表4に示されるように、紫外線照射や加熱処理が施され
ていない未処理の試料Fに比べ、波長400nm以下の
紫外線照射を施した試料F1は抵抗率が低下した。ま
た、この試料F1は未処理の試料Fに比べ結晶性が低下
しており、結晶化は生じておらず、一方、伝導電子の密
度が高くなっており、この伝導電子密度の向上によって
低抵抗化が達成されたと考えられる。
[Table 4] As shown in Table 4, the resistivity of the sample F1 irradiated with ultraviolet rays having a wavelength of 400 nm or less was lower than that of the untreated sample F which was not subjected to ultraviolet irradiation or heat treatment. Further, this sample F1 has a lower crystallinity than the untreated sample F and no crystallization has occurred. On the other hand, the density of conduction electrons is high. It is considered that this has been achieved.

【0066】また、紫外線照射や加熱処理が施されてい
ない未処理の試料G、および、波長400nm以下の紫
外線照射を施した試料G1においても、上記の試料Fお
よび試料F1と同様のことが確認された。
Also, it is confirmed that the untreated sample G which has not been subjected to the ultraviolet irradiation and the heat treatment and the sample G1 which has been subjected to the ultraviolet irradiation of the wavelength of 400 nm or less are the same as the above-mentioned samples F and F1. Was done.

【0067】これに対して、波長400nmを超える光
を用いて光照射処理を行った比較試料1は、伝導電子密
度の向上がみられず抵抗率は低下しなかった。
On the other hand, in the comparative sample 1 which was subjected to the light irradiation treatment using the light having the wavelength exceeding 400 nm, the conduction electron density was not improved and the resistivity was not lowered.

【0068】一方、試料Fに加熱処理を施した比較試料
2は、抵抗率の低下がわずかであり、また、未処理の試
料Fに比べて結晶性が向上しているものの、伝導電子の
密度の増大はみられなかった。 (実施例6)厚み1.1mmのシリコンウエハー上にP
tNi合金を形成した基板を、スパッタリング装置の基
板ホルダー上に載置し、また、ターゲット材取り付け板
にターゲット材(Zr/Ti合金板、PbOペレット)
を取り付けた。
On the other hand, the comparative sample 2 obtained by subjecting the sample F to the heat treatment showed a slight decrease in resistivity and improved crystallinity as compared with the untreated sample F, but the density of conduction electrons was increased. No increase was observed. (Example 6) P was formed on a silicon wafer having a thickness of 1.1 mm.
A substrate on which a tNi alloy is formed is placed on a substrate holder of a sputtering device, and a target material (Zr / Ti alloy plate, PbO pellet) is used as a target material mounting plate.
Attached.

【0069】次に、真空チャンバー内にアルゴン(A
r)ガスを導入して雰囲気圧力を10mTorr 、基板温度
を400℃として下記の成膜条件で基板上に厚さ約0.
2μmの強誘電体薄膜(PbZrTiO3 、以下PZT
膜とする)を形成して試料Hを作製した。
Next, argon (A
r) Introducing a gas, the atmospheric pressure is 10 mTorr, the substrate temperature is 400 ° C., and the thickness of the substrate is about 0.
2 μm ferroelectric thin film (PbZrTiO 3 , hereinafter PZT
Sample H was prepared by forming a film).

【0070】(PZT成膜条件) ・雰囲気ガス : Ar=100sccm,O2 =2s
ccm ・雰囲気圧力 : 10 mTorr ・水素分圧 : 10-8Torr以下 ・DCパワー : 2000W ・成膜レート : 0.2nm/秒 上記のように強誘電体薄膜(PZT膜)を形成した基板
(試料H)に対して、Hg−Xe紫外線ランプ(波長の
メインピーク=360nm)を用いて下記表5に示され
る照射エネルギーとなるように、室温、大気圧下で紫外
線照射を行って試料H1を作製した。
(PZT film forming conditions) Atmosphere gas: Ar = 100 sccm, O 2 = 2 s
ccm-Atmospheric pressure: 10 mTorr-Hydrogen partial pressure: 10 -8 Torr or less-DC power: 2000 W-Film forming rate: 0.2 nm / sec A substrate (sample) on which a ferroelectric thin film (PZT film) is formed as described above H) was irradiated with ultraviolet rays at room temperature and atmospheric pressure using a Hg-Xe ultraviolet lamp (wavelength main peak = 360 nm) so that the irradiation energy was as shown in Table 5 below to prepare Sample H1. did.

【0071】一方、上記のように強誘電体薄膜(PZT
膜)を形成した基板(試料H)に対して、He−Neレ
ーザー(波長633nm)を用いて下記表5に示される
照射エネルギーとなるように紫外線照射を行って比較試
料1を作製した。
On the other hand, as described above, the ferroelectric thin film (PZT
Comparative substrate 1 was prepared by irradiating the substrate (sample H) on which the film was formed with a He—Ne laser (wavelength 633 nm) so that the irradiation energy was as shown in Table 5 below.

【0072】また、上記のように強誘電体薄膜(PZT
膜)を形成した基板(試料H)に対して、500℃、1
時間の加熱処理を施して比較試料2を作製した。
Further, as described above, the ferroelectric thin film (PZT
For a substrate (sample H) on which a film) is formed, 500 ° C., 1
Comparative sample 2 was prepared by performing heat treatment for a period of time.

【0073】上記のように作製した試料H、試料H1、
比較試料1、2について、下記の方法によりPZT膜の
結晶性、D−Eヒステリシス特性(残留分極Pr値の評
価)を測定評価して、結果を下記の表5に示した。
Sample H, Sample H1 manufactured as described above,
The comparative samples 1 and 2 were measured and evaluated for crystallinity and DE hysteresis characteristics (evaluation of residual polarization Pr value) of the PZT film by the following methods, and the results are shown in Table 5 below.

【0074】(結晶性の評価方法)X線回折法によりペ
ロブスカイト型(Pb,Zr)TiO3 の(112)面
および(301)面の回折ピークの半値幅を測定し、試
料Hに対する変化から結晶性の変化を評価した。
(Crystallinity evaluation method) The half widths of the diffraction peaks of the (112) plane and the (301) plane of perovskite type (Pb, Zr) TiO 3 were measured by the X-ray diffraction method, and the half value width of the diffraction peak for the sample H was measured. Changes in sex were evaluated.

【0075】・結晶性向上の判定:(112)面と(3
01)面の半値幅が減少 ・結晶性低下の判定:(112)面と(301)面の半
値幅が増大 (残留分極Prの測定方法)PtNi電極によるD−E
ヒステリシス曲線を描き、そのループより残留分極Pr
を求めた。
Determination of improvement of crystallinity: (112) plane and (3)
Decrease in half-value width of the (01) plane ・ Judgment of decrease in crystallinity: Increase in half-value width of the (112) plane and the (301) plane (Method of measuring remanent polarization Pr) DE by PtNi electrode
Draw a hysteresis curve and draw the remanent polarization Pr from that loop.
I asked.

【0076】[0076]

【表5】 表5に示されるように、紫外線照射や加熱処理が施され
ていない未処理の試料Hに比べ、波長400nm以下の
紫外線照射を施した試料H1は残留分極値が増大した。
また、この試料H1は未処理の試料Hに比べ結晶性は変
化しておらず、膜形態の変化によって高残留分極化が達
成されたと考えられる。
[Table 5] As shown in Table 5, the residual polarization value was increased in the sample H1 which was irradiated with ultraviolet rays having a wavelength of 400 nm or less, as compared with the untreated sample H which was not subjected to ultraviolet irradiation or heat treatment.
In addition, the crystallinity of this sample H1 did not change as compared with the untreated sample H, and it is considered that the high remanent polarization was achieved by the change of the film morphology.

【0077】これに対して、波長400nmを超える光
を用いて光照射処理を行った比較試料1は、残留分極値
の増加がみられなかった。
On the other hand, in the comparative sample 1 which was subjected to the light irradiation treatment using the light having the wavelength exceeding 400 nm, the remanent polarization value did not increase.

【0078】一方、試料Hに加熱処理を施した比較試料
2は、未処理の試料Hに比べて結晶性が向上している
が、残留分極値の増大はわずかであった。 (実施例7)厚み1.1mmのガラス基板をスパッタリ
ング装置の基板ホルダー上に載置し、また、ターゲット
材取り付け板にターゲット材(Mn/Zn合金板、Fe
34 ペレット)を取り付けた。
On the other hand, the comparative sample 2 obtained by subjecting the sample H to the heat treatment had improved crystallinity as compared with the untreated sample H, but the remanent polarization value slightly increased. (Example 7) A 1.1 mm thick glass substrate was placed on a substrate holder of a sputtering apparatus, and a target material (Mn / Zn alloy plate, Fe) was used as a target material mounting plate.
3 O 4 pellets) was attached.

【0079】次に、真空チャンバー内にアルゴン(A
r)ガスを導入して雰囲気圧力を5mTorr 、基板温度を
450℃として下記の成膜条件で基板上に厚さ約0.2
μmの強誘電体薄膜((Mn,Zn)O・Fe23
以下MnZnフェライト膜とする)を形成して試料Iを
作製した。
Next, argon (A
r) Introducing gas, setting the atmospheric pressure to 5 mTorr, the substrate temperature to 450 ° C., and the thickness of about 0.2 on the substrate under the following film forming conditions.
μm ferroelectric thin film ((Mn, Zn) O.Fe 2 O 3 ,
(Hereinafter referred to as MnZn ferrite film) was formed to prepare Sample I.

【0080】(MnZnフェライト成膜条件) ・雰囲気ガス : Ar=100sccm,O2 =2s
ccm ・雰囲気圧力 : 5 mTorr ・水素分圧 : 10-8Torr以下 ・DCパワー : 2000W ・成膜レート : 0.5nm/秒 上記のように強磁性薄膜(MnZnフェライト膜)を形
成した基板(試料I)に対して、Hg−Xe紫外線ラン
プ(波長のメインピーク=360nm)を用いて下記表
6に示される照射エネルギーとなるように、室温、大気
圧下で紫外線照射を行って試料I1を作製した。
(MnZn ferrite film forming condition) Atmosphere gas: Ar = 100 sccm, O 2 = 2 s
ccm-Atmospheric pressure: 5 mTorr-Hydrogen partial pressure: 10 -8 Torr or less-DC power: 2000 W-Film formation rate: 0.5 nm / sec A substrate (sample) on which a ferromagnetic thin film (MnZn ferrite film) was formed as described above Sample I1 was prepared by irradiating I) with ultraviolet light at room temperature under atmospheric pressure so that the irradiation energy shown in Table 6 below was obtained using a Hg-Xe ultraviolet lamp (wavelength main peak = 360 nm). did.

【0081】一方、上記のように強磁性薄膜(MnZn
フェライト膜)を形成した基板(試料I)に対して、H
e−Neレーザー(波長633nm)を用いて下記表6
に示される照射エネルギーとなるように紫外線照射を行
って比較試料1を作製した。
On the other hand, as described above, the ferromagnetic thin film (MnZn
For the substrate (Sample I) on which the ferrite film was formed,
Table 6 below using an e-Ne laser (wavelength 633 nm)
Comparative sample 1 was prepared by irradiating with ultraviolet light so that the irradiation energy shown in FIG.

【0082】また、上記のように強磁性薄膜(MnZn
フェライト膜)を形成した基板(試料I)に対して、5
00℃、1時間の加熱処理を施して比較試料2を作製し
た。
As described above, the ferromagnetic thin film (MnZn
5 for the substrate (Sample I) on which the ferrite film was formed
Comparative sample 2 was produced by performing heat treatment at 00 ° C. for 1 hour.

【0083】上記のように作製した試料I、試料I1、
比較試料1、2について、下記の方法によりMnZnフ
ェライト膜の結晶性、磁気ヒステリシス特性(保磁力H
c値の評価)を測定評価して、結果を下記の表6に示し
た。
Sample I, Sample I1, prepared as described above,
For Comparative Samples 1 and 2, the crystallinity and magnetic hysteresis characteristics (coercive force H
(evaluation of c value) was measured and evaluated, and the results are shown in Table 6 below.

【0084】(結晶性の評価方法)X線回折法によりス
ピネル型フェライトの(111)面および(110)面
の回折ピークの半値幅を測定し、試料Iに対する変化か
ら結晶性の変化を評価した。
(Crystallinity Evaluation Method) The full width at half maximum of the diffraction peaks of the (111) plane and (110) plane of the spinel type ferrite was measured by the X-ray diffraction method, and the change in crystallinity was evaluated from the change with respect to Sample I. .

【0085】・結晶性向上の判定:(111)面と(1
10)面の半値幅が減少 ・結晶性低下の判定:(111)面と(110)面の半
値幅が増大 (保磁力Hcの測定方法)振動試料型磁力計(VSM)
により、試料の磁気ヒステリシス曲線を描き、そのルー
プより保磁力Hcを求めた。
Determination of crystallinity improvement: (111) plane and (1)
10) Full width at half maximum is reduced. • Decrease in crystallinity: Full width at half maximum of (111) plane and (110) plane is increased.
Then, the magnetic hysteresis curve of the sample was drawn, and the coercive force Hc was determined from the loop.

【0086】[0086]

【表6】 表6に示されるように、紫外線照射や加熱処理が施され
ていない未処理の試料Iに比べ、波長400nm以下の
紫外線照射を施した試料I1は保磁力が減少した。ま
た、この試料I1は未処理の試料Iに比べ結晶性は変化
しておらず、膜形態の変化によって結晶粒界が低減し、
その結果として低保磁力化が達成されたと考えられる。
[Table 6] As shown in Table 6, the coercive force of Sample I1 irradiated with ultraviolet light having a wavelength of 400 nm or less was decreased as compared to untreated Sample I which was not subjected to ultraviolet irradiation or heat treatment. Further, the crystallinity of this sample I1 is not changed as compared with the untreated sample I, and the crystal grain boundary is reduced due to the change of the film morphology.
As a result, it is considered that the low coercive force was achieved.

【0087】これに対して、波長400nmを超える光
を用いて光照射処理を行った比較試料1は、保磁力の低
下がみられなかった。
On the other hand, in the comparative sample 1 which was subjected to the light irradiation treatment using the light having the wavelength exceeding 400 nm, the coercive force did not decrease.

【0088】一方、試料Iに加熱処理を施した比較試料
2は、未処理の試料Iに比べて結晶性が向上している
が、保磁力の低減はわずかであった。
On the other hand, the comparative sample 2 obtained by subjecting the sample I to the heat treatment had improved crystallinity as compared to the untreated sample I, but the coercive force was slightly reduced.

【0089】[0089]

【発明の効果】以上詳述したように、本発明によれば基
板上に導電膜を形成した後、この導電膜に結晶化を生じ
させないように波長400nm以下の光を照射すること
により、導電膜中の伝導電子の密度が高められて導電性
向上がなされ、導電膜の抵抗率を低下させることがで
き、この低抵抗化はアニール処理を行わないため基板に
対して熱の悪影響が及ばず、耐熱性の低い基板において
も低抵抗の導電膜を形成することができる。また、基板
上の金属酸化膜を形成した後、この金属酸化膜に結晶化
を生じさせないように波長400nm以下の光を照射す
ることにより、金属酸化膜の有する特性を変えること、
たとえば、強誘電体薄膜としての金属酸化膜の膜形態を
変化させるによって残留分極率を増大することや、強磁
性薄膜としての金属酸化膜の膜形態の変化によって結晶
粒界を低減させ保磁力を低下させること等ができ、成膜
後にアニール処理を施すことなく所望の金属酸化膜を形
成することができる。
As described in detail above, according to the present invention, after the conductive film is formed on the substrate, the conductive film is irradiated with light having a wavelength of 400 nm or less so as not to cause crystallization. The density of conduction electrons in the film is increased to improve the conductivity, and the resistivity of the conductive film can be lowered. This lowering of resistance does not have an annealing treatment, so that the substrate is not adversely affected by heat. A low resistance conductive film can be formed even on a substrate having low heat resistance. Further, after forming the metal oxide film on the substrate, the characteristics of the metal oxide film are changed by irradiating the metal oxide film with light having a wavelength of 400 nm or less so as not to cause crystallization.
For example, the residual polarizability is increased by changing the film morphology of the metal oxide film as the ferroelectric thin film, and the coercive force is reduced by decreasing the crystal grain boundaries by changing the film morphology of the metal oxide film as the ferromagnetic thin film. It can be lowered, and a desired metal oxide film can be formed without performing annealing treatment after film formation.

【図面の簡単な説明】[Brief description of drawings]

【図1】導電膜に対する紫外線照射時間と、導電膜の伝
導電子密度および抵抗率との関係を示すための図であ
る。
FIG. 1 is a diagram showing the relationship between the irradiation time of ultraviolet rays on a conductive film and the conduction electron density and resistivity of the conductive film.

【図2】導電膜に対するレーザー照射エネルギーと抵抗
率との関係を示すための図である。
FIG. 2 is a diagram showing a relationship between laser irradiation energy and resistivity of a conductive film.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板上に導電膜を形成した後、前記導電
膜に結晶化を生じさせない範囲の照射エネルギーで波長
400nm以下の光を照射することを特徴とした導電膜
の形成方法。
1. A method for forming a conductive film, which comprises forming a conductive film on a substrate and then irradiating light having a wavelength of 400 nm or less with irradiation energy in a range that does not cause crystallization of the conductive film.
【請求項2】 前記導電膜の形成時の基板温度を室温乃
至200℃の範囲に設定することを特徴とした請求項1
に記載の導電膜の形成方法。
2. The substrate temperature at the time of forming the conductive film is set in the range of room temperature to 200 ° C.
The method for forming a conductive film according to [4].
【請求項3】 スパッタリング法、真空蒸着法、イオン
プレーティング法、CVD法のいずれかの方法により前
記導電膜を形成することを特徴とした請求項1または請
求項2に記載の導電膜の形成方法。
3. The conductive film according to claim 1, wherein the conductive film is formed by any one of a sputtering method, a vacuum deposition method, an ion plating method, and a CVD method. Method.
【請求項4】 基板上に金属酸化膜を形成した後、前記
金属酸化膜に結晶化を生じさせない範囲の照射エネルギ
ーで波長400nm以下の光を照射することを特徴とし
た金属酸化膜の形成方法。
4. A method for forming a metal oxide film, comprising forming a metal oxide film on a substrate and then irradiating the metal oxide film with light having a wavelength of 400 nm or less with an irradiation energy in a range that does not cause crystallization. .
【請求項5】 スパッタリング法、真空蒸着法、イオン
プレーティング法、CVD法のいずれかの方法により前
記金属酸化膜を形成することを特徴とした請求項4に記
載の金属酸化膜の形成方法。
5. The method for forming a metal oxide film according to claim 4, wherein the metal oxide film is formed by any one of a sputtering method, a vacuum deposition method, an ion plating method and a CVD method.
JP06912297A 1996-03-12 1997-03-06 Method for forming conductive film and method for forming metal oxide film Expired - Fee Related JP4299376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06912297A JP4299376B2 (en) 1996-03-12 1997-03-06 Method for forming conductive film and method for forming metal oxide film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8334596 1996-03-12
JP1996083345 1996-03-12
JP8-83345 1996-03-12
JP06912297A JP4299376B2 (en) 1996-03-12 1997-03-06 Method for forming conductive film and method for forming metal oxide film

Publications (3)

Publication Number Publication Date
JPH09302470A true JPH09302470A (en) 1997-11-25
JPH09302470A6 JPH09302470A6 (en) 2007-11-15
JP4299376B2 JP4299376B2 (en) 2009-07-22

Family

ID=26410308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06912297A Expired - Fee Related JP4299376B2 (en) 1996-03-12 1997-03-06 Method for forming conductive film and method for forming metal oxide film

Country Status (1)

Country Link
JP (1) JP4299376B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002177765A (en) * 2000-12-15 2002-06-25 Stanley Electric Co Ltd Ion plating equipment and method of making thin film
CN115520896A (en) * 2022-10-09 2022-12-27 南通大学 Preparation method of composite conductive powder based on photoelectric effect

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002177765A (en) * 2000-12-15 2002-06-25 Stanley Electric Co Ltd Ion plating equipment and method of making thin film
CN115520896A (en) * 2022-10-09 2022-12-27 南通大学 Preparation method of composite conductive powder based on photoelectric effect
CN115520896B (en) * 2022-10-09 2023-08-15 南通大学 Preparation method of composite conductive powder based on photoelectric effect

Also Published As

Publication number Publication date
JP4299376B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
Kamalasanan et al. Structural and optical properties of sol‐gel‐processed BaTiO3 ferroelectric thin films
Shintani et al. Preparation of thin BaTiO3 films by dc diode sputtering
JP2974006B2 (en) Method of forming preferentially oriented platinum thin film using oxygen and device manufactured by the method
US6387012B1 (en) Metal complex solution, photosensitive metal complex solution, and method for forming metallic oxide films
JP2877618B2 (en) Method of forming ferroelectric film
JP5336684B2 (en) Platinum bottom electrode and ferroelectric capacitor manufacturing method
US6897174B2 (en) Dielectric material compositions
US4631633A (en) Thin film capacitors and method of making the same
JP4299376B2 (en) Method for forming conductive film and method for forming metal oxide film
JPH08264525A (en) Deposition of laminar compound thin film of bismuth
JPH09302470A6 (en) Method for forming conductive film and method for forming metal oxide film
Kim et al. Structural and electrical properties of excess PbO doped Pb (Zr0. 52Ti0. 48) O3 thin films using rf magnetron sputtering method
JPH0585704A (en) Production of ferroelectric thin film
Lee et al. Preparation and electrical properties of high quality PZT thin films on RuOx electrode
JPH07172984A (en) Production of dielectric thin film and apparatus therefor
Kim et al. Effect of La doping on structural and electrical properties of ferroelectric Bi4− xLaxTi3O12 thin films prepared by chemical solution deposition
Cho et al. The study on the ferroelectric ATiO3 (A= Ba, Pb) thin fllms fabricated by sol-gel processing
KR100219834B1 (en) Manufacturing method of ferroelectric thin film having a preferred orientation
EP1662298A1 (en) Structure having light modulating film and optical controlling device using same
Ling et al. Characterization of SrBi2Ta2O9 films prepared by metalorganic decomposition using rapid thermal annealing
JPH10324598A (en) Production of dielectric thin film
JP3681196B2 (en) Method for manufacturing ferroelectric thin film
JPH0670920B2 (en) Method for forming ferroelectric thin film
KR0138322B1 (en) Dielectric deposition method
Mendes et al. Structural and electrical properties of strontium barium niobate thin films crystallized by conventional furnace and rapid-thermal annealing process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees