JPH09302088A - Production of polysuccinimide - Google Patents
Production of polysuccinimideInfo
- Publication number
- JPH09302088A JPH09302088A JP12477496A JP12477496A JPH09302088A JP H09302088 A JPH09302088 A JP H09302088A JP 12477496 A JP12477496 A JP 12477496A JP 12477496 A JP12477496 A JP 12477496A JP H09302088 A JPH09302088 A JP H09302088A
- Authority
- JP
- Japan
- Prior art keywords
- polysuccinimide
- weight
- catalyst
- parts
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Polyamides (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ポリスクシンイミ
ドを製造する方法に関する。更に詳しくは、高分子量の
ポリスクシンイミドを高効率で製造する方法に関する。TECHNICAL FIELD The present invention relates to a method for producing polysuccinimide. More specifically, it relates to a method for producing a high molecular weight polysuccinimide with high efficiency.
【0002】[0002]
【従来の技術】従来、ポリスクシンイミドの工業的な合
成法として、無触媒下での熱重合が米国特許第5,11
6,513号明細書、同第5,219,986号明細
書、同第5,315,010号明細書または特開平6−
206937号公報等に開示されており、また、触媒を
用いて重合する方法として、欧州特許644,257号
公報で、アスパラギン酸、酸触媒、多官能基モノマー及
び/または反応助剤(processing aid)
を反応させる方法が開示されている。2. Description of the Related Art Conventionally, as an industrial synthetic method for polysuccinimide, thermal polymerization in the absence of a catalyst has been described in US Pat. No. 5,11.
6,513, 5,219,986, 5,315,010 or JP-A-6-
No. 206937 and the like, and as a method of polymerizing by using a catalyst, European Patent No. 644,257 discloses aspartic acid, an acid catalyst, a polyfunctional monomer and / or a processing aid.
A method of reacting is disclosed.
【0003】しかしながら、無触媒下での製造方法で
は、転化率が低いか、もしくは高温での長い加工時間を
必要としており、加えて、得られるポリスクシンイミド
は、比較的低分子量であるため、ポリマーとしての性能
を発揮するには不充分である。また、触媒を用いた方法
でも、多量の触媒を用いる必要があり、そのため、重合
後の混合物からの触媒の除去操作が大変である。However, the non-catalyst production method requires a low conversion rate or requires a long processing time at a high temperature, and in addition, the obtained polysuccinimide has a relatively low molecular weight, so that it is a polymer. Is insufficient to exert the performance as. Further, even in the method using a catalyst, it is necessary to use a large amount of the catalyst, and therefore the operation of removing the catalyst from the mixture after polymerization is difficult.
【0004】[0004]
【発明が解決しようとする課題】ポリスクシンイミド
は、加水分解されて対応するポリアミノ酸を生成し、肥
料、スケール抑制剤、洗浄剤、保湿剤、顔料及び鉱物分
散剤、ならびにボイラー及び冷却塔用の水添加剤等とし
て有用である。加えて、ポリアミノ酸は生分解性材料で
あり、従来ポリアクリル酸等が使用されていた用途での
代替材料として注目されている。そのため、高分子量の
ポリスクシンイミドを簡便にしかも高転化率で得る方法
の出現が望まれている。Polysuccinimide is hydrolyzed to form the corresponding polyamino acids and is used for fertilizers, scale inhibitors, detergents, humectants, pigments and mineral dispersants, and for boilers and cooling towers. It is useful as a water additive. In addition, polyamino acid is a biodegradable material, and has been attracting attention as an alternative material in applications where polyacrylic acid or the like has been conventionally used. Therefore, the appearance of a method for easily obtaining a high molecular weight polysuccinimide at a high conversion rate is desired.
【0005】そのため、本発明の目的は、高分子量のポ
リスクシンイミドを簡便にしかも高転化率で得る製造方
法を提供するものである。Therefore, an object of the present invention is to provide a method for producing a high molecular weight polysuccinimide easily and at a high conversion rate.
【0006】[0006]
【課題を解決するための手段】本発明者らは、アスパラ
ギン酸粉末を触媒の存在下、実質的に固相状態を維持し
ながら重合する方法に着目し、この際の触媒量を低減さ
せても重合が良好に行われる方法につき鋭意検討した結
果、少量の触媒とともに重合促進剤を併用することによ
り、短時間に高収率で高分子量のポリスクシンイミドの
製造し得ることを見出し、本発明を完成するに至った。[Means for Solving the Problems] The present inventors focused on a method of polymerizing aspartic acid powder in the presence of a catalyst while maintaining a substantially solid phase state, and reduced the amount of the catalyst at this time. As a result of diligent studies on a method in which the polymerization is favorably carried out, it was found that a high molecular weight polysuccinimide can be produced in a high yield in a short time by using a polymerization accelerator together with a small amount of the catalyst, and the present invention It came to completion.
【0007】すなわち、本発明の要旨は、ポリマー原料
粉末を実質的に固相状態を保ちながら撹拌下、重合させ
て粉末状ポリスクシンイミドを製造する方法において、
ポリマー原料100重量部に対し、触媒0.1〜30重
量部及び重合促進剤0.1〜100重量部を原料粉末中
に存在させることを特徴とするポリスクシンイミドの製
造方法に存する。以下に本発明の方法を詳述する。That is, the gist of the present invention is to provide a method for producing a powdery polysuccinimide by polymerizing a polymer raw material powder with stirring while maintaining a substantially solid state.
A method for producing a polysuccinimide is characterized in that 0.1 to 30 parts by weight of a catalyst and 0.1 to 100 parts by weight of a polymerization accelerator are present in a raw material powder with respect to 100 parts by weight of a polymer raw material. The method of the present invention is described in detail below.
【0008】[0008]
【発明の実施の態様】本発明でポリスクシンイミドと
は、アスパラギン酸単独重合体だけでなく、共重合体の
ことも含む。 (ポリマー原料)本発明の方法においては、ポリマー原
料として、アスパラギン酸を主体とするモノマ−を用い
ることが望ましい。アスパラギン酸としては、L−、D
−及びDL−アスパラギン酸をいずれも使用することが
できる。また、アスパラギン酸以外に、50mol%を超え
ない範囲で共重合可能な他のモノマーを用いることもで
きる。共重合可能なモノマーとして特に制限はないが、
例えば、アスパラギン酸塩、グルタミン酸及びその塩、
アラニン、ロイシン、リジン等のアミノ酸のほか、グリ
コール酸、乳酸、3−ヒドロキシ酢酸等のヒドロキシカ
ルボン酸、2−ヒドロキシエタノール等のアミノ基およ
びカルボン酸と反応しうる官能基を2個以上有する化合
物等が挙げられる。更に、マレイン酸、アニリン等のア
ミノ基およびカルボン酸と反応しうる官能基を1個有す
る化合物等も分子量調節等の目的で使用することができ
る。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, polysuccinimide includes not only aspartic acid homopolymer but also copolymer. (Polymer raw material) In the method of the present invention, it is desirable to use a monomer mainly containing aspartic acid as a polymer raw material. As aspartic acid, L-, D
Both-and DL-aspartic acid can be used. In addition to aspartic acid, it is also possible to use other copolymerizable monomers within a range not exceeding 50 mol%. There is no particular limitation on the copolymerizable monomer,
For example, aspartate, glutamic acid and salts thereof,
In addition to amino acids such as alanine, leucine and lysine, glycolic acid, lactic acid, hydroxycarboxylic acids such as 3-hydroxyacetic acid, amino groups such as 2-hydroxyethanol and compounds having two or more functional groups capable of reacting with carboxylic acids, etc. Is mentioned. Further, compounds having one functional group capable of reacting with an amino group such as maleic acid and aniline and a carboxylic acid can also be used for the purpose of adjusting the molecular weight.
【0009】(触媒)本発明の方法で使用し得る重縮合
反応用触媒としては、酸触媒が挙げられ、具体的には、
塩酸、硫酸、無水硫酸等の鉱酸類、リン酸、ポリリン
酸、メタリン酸、縮合リン酸および無水リン酸等のリン
酸類、亜リン酸トリメチル、亜リン酸トリエチル、亜リ
ン酸トリフェニル等の亜リン酸トリエステル類、亜リン
酸ジフェニル等の亜リン酸ジエステル類、亜リン酸モノ
エステル、亜リン酸、および亜リン酸塩、等の亜リン酸
化合物、p−トルエンスルホン酸、トリクロロ酢酸、ト
リフルオロ酢酸、メタンスルホン酸およびトリフルオロ
メタンスルホン酸等の有機酸類が好ましい。これらの中
で、高収率でしかも高分子量のポリマーが得られやすい
という点でリン酸類、亜リン酸化合物が特に好ましい。
亜リン酸化合物のなかでは、生成するポリマーの分子
量、反応時間の点からいって亜リン酸トリエステルが好
ましく、この中でさらに好ましくは亜リン酸トリフェニ
ルが挙げられる。触媒の使用量は、ポリマー原料100
重量部に対し、通常は、0.1〜30重量部、好ましく
は0.5〜25重量部の範囲で使用される。上記触媒の
使用量が0.1重量部未満であると重縮合反応の速度向
上としての効果が少ない。また、30重量部を超える
と、重合時に反応物が固化した状態となり、攪拌に大き
な負担がかかるので好ましくない。(Catalyst) Examples of the polycondensation reaction catalyst that can be used in the method of the present invention include acid catalysts.
Mineral acids such as hydrochloric acid, sulfuric acid, anhydrous sulfuric acid, phosphoric acids such as phosphoric acid, polyphosphoric acid, metaphosphoric acid, condensed phosphoric acid and anhydrous phosphoric acid, trimethyl phosphite, triethyl phosphite, triphenyl phosphite, etc. Phosphite triesters, phosphite diesters such as diphenyl phosphite, phosphite monoesters, phosphites, and phosphites such as phosphites, p-toluenesulfonic acid, trichloroacetic acid, Organic acids such as trifluoroacetic acid, methanesulfonic acid and trifluoromethanesulfonic acid are preferred. Among these, phosphoric acid compounds and phosphorous acid compounds are particularly preferable in that a high-yield polymer having a high molecular weight can be easily obtained.
Among the phosphite compounds, phosphite triesters are preferable from the viewpoints of the molecular weight of the produced polymer and the reaction time, and of these, triphenyl phosphite is more preferable. The amount of catalyst used is 100
It is usually used in an amount of 0.1 to 30 parts by weight, preferably 0.5 to 25 parts by weight, based on parts by weight. When the amount of the catalyst used is less than 0.1 part by weight, the effect of improving the speed of the polycondensation reaction is small. On the other hand, if it exceeds 30 parts by weight, the reaction product is solidified during the polymerization, and a large load is applied to stirring, which is not preferable.
【0010】(重合促進剤)本発明の方法で使用し得る
重合促進剤としては、ポリスクシンイミドを溶解し、重
合反応を促進するものである。具体的には室温におい
て、ポリスクシンイミドを好ましくは5wt/wt%以
上、さらに好ましくは10wt/wt%以上溶解する溶
媒等が挙げられる。好適な具体例としては、N,N−ジ
メチルホルムアミド、N−メチル−2−ピロリドン、ス
ルホラン等の非プロトン性極性溶媒類が挙げられる。こ
れらの中で、高分子量のポリスクシンイミドが得られる
点でスルホランが特に好ましい。重合促進剤の使用量
は、ポリマー原料100重量部に対し、通常は、0.1
〜100重量部、好ましくは0.5〜50重量部の範囲
で使用される。重合促進剤の使用量が0.1重量部未満
であると重縮合反応の速度向上としての効果が少ない。
また、100重量部を超えると、重合促進剤を除去する
ための工程が煩雑となり工業的な観点から好ましくな
い。(Polymerization accelerator) The polymerization accelerator that can be used in the method of the present invention is one that dissolves polysuccinimide and accelerates the polymerization reaction. Specifically, a solvent and the like capable of dissolving polysuccinimide at room temperature, preferably 5 wt / wt% or more, more preferably 10 wt / wt% or more, can be mentioned. Suitable specific examples include aprotic polar solvents such as N, N-dimethylformamide, N-methyl-2-pyrrolidone and sulfolane. Among these, sulfolane is particularly preferable in that a high molecular weight polysuccinimide can be obtained. The amount of the polymerization accelerator used is usually 0.1 with respect to 100 parts by weight of the polymer raw material.
To 100 parts by weight, preferably 0.5 to 50 parts by weight. When the amount of the polymerization accelerator used is less than 0.1 part by weight, the effect of improving the speed of the polycondensation reaction is small.
Further, if it exceeds 100 parts by weight, the process for removing the polymerization accelerator becomes complicated, which is not preferable from an industrial viewpoint.
【0011】(触媒及び重合促進剤の分散法)本発明に
おける重縮合反応を行う場合、ポリマー原料と触媒及び
重合促進剤とが均質な状態になっていることが好まし
い。ここで均質な状態とは、ポリマー原料と触媒及び重
合促進剤の混合物が見かけ上粒度の揃った状態にあり、
触媒及び重合促進剤がポリマー原料に部分的に混合され
た凝集体を含まない状態を意味する。均質な状態に混合
せずに重縮合反応を行うと、一部溶融固化、分子量の低
下及び反応終了後の残存ポリマー原料の増大という問題
を生じるため好ましくない。(Dispersion Method of Catalyst and Polymerization Accelerator) When carrying out the polycondensation reaction in the present invention, it is preferable that the polymer raw material and the catalyst and the polymerization accelerator are in a homogeneous state. Here, the homogeneous state is a state in which the mixture of the polymer raw material, the catalyst and the polymerization accelerator is apparently uniform in particle size,
It means a state in which the catalyst and the polymerization accelerator do not include aggregates partially mixed in the polymer raw material. If the polycondensation reaction is carried out without mixing in a homogeneous state, problems such as partial melting and solidification, decrease in molecular weight, and increase in the amount of residual polymer raw material after the reaction are not preferable.
【0012】また、ポリマー原料と触媒及び重合促進剤
の混合順序には、特に制限はなく、例えば、ポリマー原
料と重合促進剤の混合物に触媒を加えても、ポリマー原
料と触媒と重合促進剤の3種を一度に混合しても良く、
混合方法としては、特に制限はなく、一度に添加して
も、少量ずつ添加しても、噴霧手段などを用いて混合し
てもよい。この際の混合機器としては、撹拌機、混練機
および捏和機が好ましく、一般に用いられるものなら
ば、特に限定されない。具体的には、ミル、ヘンシェル
ミキサー、ブレンダー及びニーダー等が用いられ、大型
機器の具体例として、カワタ(株)社製「スーパーミキ
サー」、神鋼パンテック(株)社製「SV−ミキサ
ー」、「コニカルドライヤー」、大川原製作所(株)社
製「MZ−プロッセッサー」、(株)奈良機械製作所社
製「パドルドライヤー」、(株)栗本鐵工所社製「SC
プロッセッサー」及び「加圧ニーダー」等が挙げられ
る。The order of mixing the polymer raw material, the catalyst and the polymerization accelerator is not particularly limited. For example, even if the catalyst is added to the mixture of the polymer raw material and the polymerization accelerator, the polymer raw material, the catalyst and the polymerization accelerator are mixed. You can mix all three at once,
The mixing method is not particularly limited, and may be added all at once, added in small amounts, or mixed using a spraying means. The mixing equipment at this time is preferably a stirrer, a kneader or a kneader, and is not particularly limited as long as it is generally used. Specifically, a mill, a Henschel mixer, a blender, a kneader, etc. are used, and specific examples of large equipment include "Super Mixer" manufactured by Kawata Co., Ltd., "SV-Mixer" manufactured by Shinko Pantech Co., Ltd., "Conical dryer", Okawara Seisakusho Co., Ltd. "MZ-Processor", Nara Machinery Co., Ltd. "Paddle dryer", Kurimoto Iron Works Co., Ltd. "SC"
A "processor", a "pressure kneader", etc. are mentioned.
【0013】(重縮合反応)本発明における重縮合反応
は、好ましくは、前記混合物を加熱下、通常100〜3
00℃、好ましくは150〜250℃の範囲で、平均滞
留時間が0.5〜600分、好ましくは、0.5〜24
0分、さらに好ましくは、1〜180分の範囲内で攪拌
または混練しながら、好ましくは固相で反応させる。反
応は常圧で行っても良いが、反応時間を短縮させるとい
った観点から、減圧下で行うのが好ましい。(Polycondensation Reaction) In the polycondensation reaction in the present invention, preferably, the mixture is heated to 100 to 3 usually.
In the range of 00 ° C, preferably 150 to 250 ° C, the average residence time is 0.5 to 600 minutes, preferably 0.5 to 24.
The reaction is preferably carried out in the solid phase while stirring or kneading for 0 minute, more preferably 1 to 180 minutes. The reaction may be carried out at normal pressure, but it is preferably carried out under reduced pressure from the viewpoint of shortening the reaction time.
【0014】反応温度が100℃未満および平均滞留時
間が0.5分未満であると、反応が容易に進行せず好ま
しくない。また、350℃を超える反応温度、600分
を超える平均滞留時間で反応を行うと、分解生成物を生
じたり、反応時間が長くなるなど経済的にも好ましくな
い。なお、この重合反応は常圧の場合、不活性雰囲気下
で行うのが望ましく、使用される不活性ガスとしては、
窒素、アルゴン等特に制限はない。本発明の重合はポリ
マー原料が粉末状で供給され、一方、重合後の生成ポリ
マーも粉末状で回収される。重合途中においても、一
部、場合により粘彫ゾーンが発生することもあるが、全
体的にに見れば実質的に固相状態を保った重合が行われ
る。When the reaction temperature is less than 100 ° C. and the average residence time is less than 0.5 minutes, the reaction does not proceed easily, which is not preferable. Further, if the reaction is carried out at a reaction temperature of higher than 350 ° C. and an average residence time of longer than 600 minutes, decomposition products are generated and the reaction time becomes long, which is not economically preferable. In addition, in the case of normal pressure, this polymerization reaction is desirably carried out in an inert atmosphere, and as the inert gas used,
There is no particular limitation such as nitrogen and argon. In the polymerization of the present invention, the polymer raw material is supplied in the form of powder, while the polymer produced after the polymerization is also recovered in the form of powder. During the course of the polymerization, a sticky zone may be generated in some cases depending on the case, but as a whole, the polymerization is carried out while substantially maintaining the solid state.
【0015】本発明で用いる重合装置としては、バッチ
式または連続式の縦型または横型の撹拌装置の付いた反
応器または撹拌槽、混練機等が挙げられる。特に、二軸
撹拌翼を備えた横型撹拌装置が好ましく、混練機として
市販されているものが使用可能である。具体的には、住
友重機械工業(株)社製「バイボラック」、三菱重工業
(株)社製「SCR」、日本製鋼所(株)社製「TE
X」、東芝機械(株)社製「TEM」、神戸製鋼所
(株)社製「FCM」及び(株)栗本鐵工所社製「KR
Cニーダー」等が挙げられる。以下、本発明を実施例に
より説明するが、本発明は、これらの実施例に限定され
るものではない。Examples of the polymerization apparatus used in the present invention include a reactor or a stirring tank equipped with a batch or continuous vertical or horizontal stirring apparatus, a kneader, and the like. In particular, a horizontal stirring device equipped with a biaxial stirring blade is preferable, and a commercially available kneader can be used. Specifically, Sumitomo Heavy Industries Co., Ltd. “Vyvolak”, Mitsubishi Heavy Industries Ltd. “SCR”, Japan Steel Works Ltd. “TE
"X", "TEM" manufactured by Toshiba Machine Co., Ltd., "FCM" manufactured by Kobe Steel, Ltd., and "KR" manufactured by Kurimoto Iron Works Co., Ltd.
"C kneader" and the like. Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
【0016】[0016]
【実施例】本発明により得られたポリスクシンイミドの
分析は下記の測定方法で行った。 1)重量平均分子量 東ソー(株)社製「TSKgel」”GMHHR−M”
+「TSKgel」”G2000HHR”カラム、およ
び溶離液として10mM LiBrを添加したジメチル
ホルムアミドを用いたゲルパーミエーションクロマトグ
ラフ(示差屈折計)により得られたポリスチレン換算値
である。 2)ポリマーへの転化率 反応生成物中のアスパラギン酸残存率を液体クロマトグ
ラフによって測定し、下記式により転化率を計算した。Example The polysuccinimide obtained by the present invention was analyzed by the following measuring method. 1) Weight average molecular weight Tosoh Corporation “TSKgel” “GMHHR-M”
+ Polystyrene conversion value obtained by gel permeation chromatography (differential refractometer) using “TSKgel” “G2000HHR” column and dimethylformamide added with 10 mM LiBr as an eluent. 2) Conversion rate to polymer The residual rate of aspartic acid in the reaction product was measured by liquid chromatography, and the conversion rate was calculated by the following formula.
【0017】[0017]
【数1】 転化率(%)=100−反応生成物中のア
スパラギン酸残存率## EQU00001 ## Conversion (%) = 100-Residual rate of aspartic acid in reaction product
【0018】(実施例1)L−アスパラギン酸粉末40
g、85%リン酸4g及びスルホラン4gをミキサー
(オスターブレンダー)中に仕込み、室温で15分間混
合して混合物を得た。次いで、100mLのナスフラス
コに上記で得られた混合物を仕込み、ロータリーエバポ
レータに装着した後、減圧下、油浴の設定温度180℃
で3時間反応を行った。反応終了後、純水100gで4
回洗浄し、さらにメタノール100gで洗浄した。次い
で生成物を減圧下に100℃で12時間乾燥させ黄白色
の粉末28.9gを得た。このポリスクシンイミドの重
量平均分子量は、42000、ポリマーへの転化率は9
9.9%以上であった。(Example 1) L-aspartic acid powder 40
g, 4% of 85% phosphoric acid and 4 g of sulfolane were charged in a mixer (Oster blender) and mixed at room temperature for 15 minutes to obtain a mixture. Then, the mixture obtained above was charged into a 100 mL eggplant-shaped flask and mounted on a rotary evaporator, and then the temperature of the oil bath was set to 180 ° C. under reduced pressure.
For 3 hours. After completion of the reaction, 4 with 100 g of pure water
It was washed twice and further washed with 100 g of methanol. Then, the product was dried under reduced pressure at 100 ° C. for 12 hours to obtain 28.9 g of a yellowish white powder. The weight average molecular weight of this polysuccinimide is 42,000, and the conversion rate to polymer is 9
It was 9.9% or more.
【0019】(実施例2)スルホランをN−メチル−2
−ピロリドン4gに変更した以外は実施例1と同様の操
作を行い、黄白色の粉末27.6gを得た。得られたポ
リスクシンイミドの重量平均分子量は31000、ポリ
マーへの転化率は99.9%以上であった。(Example 2) N-methyl-2 was used as sulfolane.
-By the same operation as in Example 1 except that 4 g of pyrrolidone was changed, 27.6 g of yellowish white powder was obtained. The obtained polysuccinimide had a weight average molecular weight of 31,000 and a conversion rate to a polymer of 99.9% or more.
【0020】(実施例3)85%リン酸を2gに変更し
た以外は実施例1と同様の操作を行い、黄白色の粉末2
7.9gを得た。得られたポリスクシンイミドの重量平
均分子量は30000、ポリマーへの転化率は99.2
%であった。 (実施例4)85%リン酸を亜リン酸トリフェニル4g
に変更した以外は実施例1と同様の操作を行い、黄白色
の粉末27.6gを得た。得られたポリスクシンイミド
の重量平均分子量は43000、ポリマーへの転化率は
99.9%以上であった。(Example 3) The same operation as in Example 1 was carried out except that the amount of 85% phosphoric acid was changed to 2 g.
7.9 g were obtained. The obtained polysuccinimide has a weight average molecular weight of 30,000 and a conversion rate to a polymer of 99.2.
%Met. (Example 4) 4% of triphenyl phosphite was added to 85% phosphoric acid.
The same operation as in Example 1 was performed except that the procedure was changed to, to obtain 27.6 g of yellowish white powder. The obtained polysuccinimide had a weight average molecular weight of 43,000 and a conversion rate to a polymer of 99.9% or more.
【0021】(実施例5)L−アスパラギン酸100
g、85%リン酸10g及びスルホラン50gをミキサ
ー(オスターブレンダー)中に仕込み、室温で15分間
混合して混合物を得た。次いで、冷却器、温度計、窒素
導入管及び撹拌機を備えた四口分解フラスコ内に上記で
得られた混合物を仕込み、マントルヒーターで加熱しな
がら、窒素気流下で重縮合を開始した。内温が165℃
付近で水が留去し始めたため、この点を反応開始とし、
200℃まで30分間昇温させ、さらに同温度で3時間
撹拌を行った。反応終了後、純水100gで4回洗浄
し、さらにメタノール100gで洗浄した。次いで生成
物を減圧下に100℃で12時間乾燥させ黄白色の粉末
25.4gを得た。このポリスクシンイミドの重量平均
分子量は、34000、ポリマーへの転化率は99.9
%以上であった。(Example 5) L-aspartic acid 100
g, 85% phosphoric acid 10 g and sulfolane 50 g were charged in a mixer (Oster blender) and mixed at room temperature for 15 minutes to obtain a mixture. Next, the mixture obtained above was charged into a four-neck decomposition flask equipped with a cooler, a thermometer, a nitrogen introduction tube and a stirrer, and polycondensation was started under a nitrogen stream while heating with a mantle heater. Internal temperature is 165 ° C
Since water began to evaporate near this point, the reaction started at this point,
The temperature was raised to 200 ° C. for 30 minutes, and the mixture was further stirred at the same temperature for 3 hours. After the reaction was completed, the product was washed with 100 g of pure water four times and further with 100 g of methanol. Then, the product was dried under reduced pressure at 100 ° C. for 12 hours to obtain 25.4 g of a yellowish white powder. The weight average molecular weight of this polysuccinimide was 34,000, and the conversion rate into a polymer was 99.9.
% Or more.
【0022】(比較例1)スルホランを除いた以外は実
施例1と同様の操作を行い、薄褐色の粉末を得た。得ら
れたポリスクシンイミドの重量平均分子量は1500
0、ポリマーへの転化率は85.1%であった。 (比較例2)L−アスパラギン酸100g単独を冷却
器、温度計、窒素導入管及び撹拌機を備えた四口分解フ
ラスコ内に仕込み、マントルヒーターで加熱しながら、
窒素気流下で重縮合を開始した。内温が200℃付近で
水が留去し始めたため、この点を反応開始とし、同温度
で7時間撹拌を行い、薄桃色の粉末85.0gを得た。
このポリスクシンイミドの重量平均分子量は、700
0、ポリマーへの転化率は41.0%であった。Comparative Example 1 A light brown powder was obtained in the same manner as in Example 1 except that sulfolane was removed. The weight average molecular weight of the obtained polysuccinimide is 1500.
0, the conversion rate to polymer was 85.1%. (Comparative Example 2) 100 g of L-aspartic acid alone was charged into a four-neck decomposition flask equipped with a cooler, a thermometer, a nitrogen introducing tube and a stirrer, while heating with a mantle heater.
Polycondensation was started under a nitrogen stream. Since water began to be distilled off at an internal temperature of about 200 ° C., the reaction was started at this point, and the mixture was stirred at the same temperature for 7 hours to obtain 85.0 g of pale pink powder.
The weight average molecular weight of this polysuccinimide is 700
0, the conversion rate to polymer was 41.0%.
【0023】[0023]
【発明の効果】本発明の製造方法によれば、特別な反応
装置、あるいは特別な工程などが必要なく極めて効率的
に高分子量のポリスクシンイミドが、製造できる。According to the production method of the present invention, a high molecular weight polysuccinimide can be produced extremely efficiently without the need for a special reaction apparatus or a special process.
Claims (8)
保ちながら、撹拌下、重合させて粉体状のポリスクシン
イミドを製造する方法において、ポリマー原料100重
量部に対し、触媒0.1〜30重量部及び重合促進剤
0.1〜100重量部を原料粉末中に存在させることを
特徴とするポリスクシンイミドの製造方法。1. A method for producing a polysuccinimide in powder form by polymerizing under stirring a polymer raw material powder while substantially maintaining a solid state, wherein the catalyst is 0.1 to 0.1 parts by weight with respect to 100 parts by weight of the polymer raw material. A method for producing a polysuccinimide, characterized in that 30 parts by weight and 0.1 to 100 parts by weight of a polymerization accelerator are present in a raw material powder.
量部に対し、0.5〜25重量部であることを特徴とす
る請求項1記載のポリスクシンイミドの製造方法。2. The method for producing polysuccinimide according to claim 1, wherein the content of the catalyst is 0.5 to 25 parts by weight with respect to 100 parts by weight of the polymer raw material.
00重量部に対し、0.5〜50重量部であることを特
徴とする請求項1記載のポリスクシンイミドの製造方
法。3. The polymer raw material 1 having a content of the polymerization accelerator is
The method for producing polysuccinimide according to claim 1, wherein the amount is 0.5 to 50 parts by weight with respect to 00 parts by weight.
化合物であることを特徴とする請求項1記載のポリスク
シンイミドの製造方法。4. The method for producing polysuccinimide according to claim 1, wherein the catalyst is a phosphoric acid compound and / or a phosphorous acid compound.
ることを特徴とする請求項4記載の製造方法。5. The method according to claim 4, wherein the phosphite compound is a phosphite ester.
ることを特徴とする請求項1記載のポリスクシンイミド
の製造方法。6. The method for producing polysuccinimide according to claim 1, wherein the polymerization accelerator is an aprotic polar solvent.
するモノマ−であることを特徴とする請求項1記載のポ
リスクシンイミドの製造方法。7. The method for producing polysuccinimide according to claim 1, wherein the polymer raw material is a monomer mainly containing aspartic acid.
を用いて行うことを特徴とする請求項1記載のポリスク
シンイミドの製造方法。8. The method for producing polysuccinimide according to claim 1, wherein the polymerization is carried out using a horizontal stirring device equipped with a biaxial stirring blade.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12477496A JPH09302088A (en) | 1996-05-20 | 1996-05-20 | Production of polysuccinimide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12477496A JPH09302088A (en) | 1996-05-20 | 1996-05-20 | Production of polysuccinimide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09302088A true JPH09302088A (en) | 1997-11-25 |
Family
ID=14893789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12477496A Pending JPH09302088A (en) | 1996-05-20 | 1996-05-20 | Production of polysuccinimide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09302088A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000129119A (en) * | 1998-10-21 | 2000-05-09 | Asahi Chem Ind Co Ltd | Polyamide resin composition |
WO2000075217A1 (en) * | 1999-06-09 | 2000-12-14 | Nippon Shokubai Co., Ltd. | Polysuccinimide (co)polymer derivative and process for producing the same |
WO2002083298A1 (en) * | 2001-04-12 | 2002-10-24 | Daicel Chemical Industries, Ltd. | Optical isomer separating filler, production method therefor and application method therefor |
US6544464B1 (en) | 1998-11-24 | 2003-04-08 | Nippon Shokubai Co., Ltd. | Method for molding of polymer |
-
1996
- 1996-05-20 JP JP12477496A patent/JPH09302088A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000129119A (en) * | 1998-10-21 | 2000-05-09 | Asahi Chem Ind Co Ltd | Polyamide resin composition |
US6544464B1 (en) | 1998-11-24 | 2003-04-08 | Nippon Shokubai Co., Ltd. | Method for molding of polymer |
WO2000075217A1 (en) * | 1999-06-09 | 2000-12-14 | Nippon Shokubai Co., Ltd. | Polysuccinimide (co)polymer derivative and process for producing the same |
US6784280B1 (en) | 1999-06-09 | 2004-08-31 | Nippon Shokubai Co., Ltd. | Polysuccinimide(CO) polymer derivate and process for production thereof |
WO2002083298A1 (en) * | 2001-04-12 | 2002-10-24 | Daicel Chemical Industries, Ltd. | Optical isomer separating filler, production method therefor and application method therefor |
US6991729B2 (en) | 2001-04-12 | 2006-01-31 | Daicel Chemical Industries, Ltd. | Optical isomer separating filler, production method therefor and application method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0599842B1 (en) | Process for the manufacture of polyamino acids | |
AU671670B2 (en) | Production of polysuccinimide by thermal polymerization of maleamic acid | |
GB2246786A (en) | Preparation of polysuccinimide | |
JPH11501079A (en) | Production of polysuccinimide in organic media | |
JPH09302088A (en) | Production of polysuccinimide | |
JP2001510506A (en) | Production of polysuccinimide | |
US5939522A (en) | Production of polysuccinimide and polyaspartate in thioether solvents | |
JPS598728A (en) | Preparation of aromatic polyamide | |
JPH0959375A (en) | Production of polysuccinimide compounds | |
US5449748A (en) | Preparation of anhydropolyamino acids at temperatures of 350° C. or above | |
JPH08239468A (en) | Production of anhydrous polyaspartic acid | |
JP5372503B2 (en) | Two-stage melt polymerization process for the production of polybenzimidazole | |
EP0809668B1 (en) | Preparation of anhydropolyamino acids | |
JPH10147644A (en) | Production of polysuccinimide | |
JP3456061B2 (en) | Method for producing polysuccinimide | |
JPH09165447A (en) | Copolyaspartic acid and its production | |
JP2000154249A (en) | Production of biodegradable polymer having repeating succinyl unit | |
JP2009500509A5 (en) | ||
JPH0931196A (en) | Preparation of polysuccinimide | |
JPH11147954A (en) | Production of polyaspartic acid excellent in color tone | |
JPH09202826A (en) | Production of polysuccinimide | |
EP0791616A1 (en) | Process for producing polysuccinimide and use of said compound | |
JPH09278883A (en) | Production of polysuccinimide | |
JPH09176314A (en) | Production of polysuccinimide | |
JPH10120780A (en) | Amine-modified polyaspartic acid or its salt, and production thereof |