JPH09301705A - Production of hydrogen peroxide - Google Patents

Production of hydrogen peroxide

Info

Publication number
JPH09301705A
JPH09301705A JP12351396A JP12351396A JPH09301705A JP H09301705 A JPH09301705 A JP H09301705A JP 12351396 A JP12351396 A JP 12351396A JP 12351396 A JP12351396 A JP 12351396A JP H09301705 A JPH09301705 A JP H09301705A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
catalyst
carrier
titania
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12351396A
Other languages
Japanese (ja)
Inventor
Hiromitsu Nagashima
広光 長島
Tomio Kato
富雄 加藤
Michiya Kawakami
道也 河上
Naofumi Takagi
直文 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP12351396A priority Critical patent/JPH09301705A/en
Publication of JPH09301705A publication Critical patent/JPH09301705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce H2 O2 high in conc. under low pressure with high hydrogen selectivity by using a specified catalyst when H2 O2 is produced by catalytically reacting O2 with H2 in a reaction medium. SOLUTION: The catalyst used is prepared by depositing titania and platinum group metal (e.g. Pd) on a carrier preferably comprising silica or alumina, or by depositing titania on a carrier and further depositing platinum group metal. Titania is preferably obtd. by hydrolyzing titanium alkoxide (e.g. ortho ethylitanate) as the source material to obtain titanium hydroxide, depositing the obtd. titanium hydroxide on the carrier surface, and calcining preferably at 300 to 1,000 deg.C. H2 O2 is produced by catelytically reacting H2 with O2 in a reaction medium which is a soln. containing acid (e.g. phosphoric acid) and halide (NaBr) in the presence of the catalyst at the pressure of 0.1 to 2MPa.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は反応媒体中で酸素と
水素を接触的に反応させ、過酸化水素を製造する改良さ
れた方法に関するものである。さらに詳しくは、本発明
はチタニアを表面に担持した担体からなる白金族触媒上
で酸素と水素を反応させることにより、低圧下で高濃度
の過酸化水素を製造する方法に関するものである。
FIELD OF THE INVENTION The present invention relates to an improved process for catalytically reacting oxygen and hydrogen in a reaction medium to produce hydrogen peroxide. More specifically, the present invention relates to a method for producing a high concentration of hydrogen peroxide under low pressure by reacting oxygen and hydrogen on a platinum group catalyst composed of a carrier having titania supported on its surface.

【0002】[0002]

【従来の技術】現在、工業的に行われている過酸化水素
の主な製造方法は、アルキルアンスラキノンを媒体とす
る自動酸化法である。この方法の問題点としては、アル
キルアンスラキノンの還元、酸化、生成した過酸化水素
の抽出分離及び精製そして濃縮等の多くの工程が必要で
ありプロセスが複雑となるために、装置費、運転費が大
きいという事が挙げられる。更には、アルキルアンスラ
キノンの劣化による損失、還元用触媒の活性の劣化等の
問題もある。
2. Description of the Related Art Currently, the main method of industrially producing hydrogen peroxide is an autoxidation method using alkylanthraquinone as a medium. The problem with this method is that it requires many steps such as reduction of alkylanthraquinone, oxidation, extraction and separation of the produced hydrogen peroxide, purification and concentration, which complicates the process, resulting in equipment costs and operating costs. Is large. Further, there are problems such as loss due to deterioration of alkyl anthraquinone and deterioration of activity of the reduction catalyst.

【0003】これらの問題点を改善するために、上記製
造法以外の製造方法が試みられているが、その一つに、
反応媒体中で触媒を用いて、酸素と水素から直接的に過
酸化水素を製造する方法がある。例えば、白金族金属を
触媒として用い、酸素と水素から過酸化水素を製造する
方法が提案されており、かなりの濃度の過酸化水素が生
成する事が知られている(例えば、特公昭56−471
21号、特公昭55−18646号、特公平1−234
01号、特開昭63−156005号)。これらでは、
いずれも反応圧力を2MPa以上で、反応媒体として酸
や無機塩を溶存させた水溶液を用いている。反応中の選
択率の低下を抑制するため、反応媒体中にハロゲンイオ
ンを添加することにより触媒の活性が抑制されて過酸化
水素生成反応の選択性が大幅に向上し、取得過酸化水素
の濃度が高くなることが示されている。
In order to solve these problems, a manufacturing method other than the above-mentioned manufacturing method has been tried, one of which is as follows.
There is a method of producing hydrogen peroxide directly from oxygen and hydrogen using a catalyst in a reaction medium. For example, a method of producing hydrogen peroxide from oxygen and hydrogen using a platinum group metal as a catalyst has been proposed, and it is known that hydrogen peroxide is produced at a considerable concentration (for example, Japanese Patent Publication No. 56- 471
21, Japanese Patent Publication No. 55-18646, Japanese Patent Publication No. 1-234
01, JP-A-63-156005). In these,
In both cases, the reaction pressure is 2 MPa or more, and an aqueous solution in which an acid or an inorganic salt is dissolved is used as a reaction medium. In order to suppress the decrease in selectivity during the reaction, the activity of the catalyst is suppressed by adding halogen ions to the reaction medium, and the selectivity of the hydrogen peroxide generation reaction is greatly improved. Has been shown to be high.

【0004】特開昭63−156005号公報には、白
金族触媒を用い、硫酸酸性水溶液中で加圧下酸素及び水
素から過酸化水素を製造する方法に於いて、水溶液中に
臭化物イオン等のハロゲンイオンを共存させる事によっ
て、選択的に高濃度の過酸化水素を製造出来る事を示し
ている。即ち従来の技術では、酸素と水素を反応媒体中
で接触的に反応させて高濃度の過酸化水素を製造する方
法に於いて、高い選択率で過酸化水素を取得するために
は、2MPa以上の高圧下で反応を行う必要があった。
また、チタニアを担体とする白金族金属触媒を用いた製
造方法では、低圧下で、選択率を著しく低下させること
なく高濃度の過酸化水素が得られることが示されている
(例えば、特開平8ー2904号)。しかし、チタニア
は粒子径が小さいものが多く、また粒子形状も破砕し易
いものであるため工業用触媒としての実用化は困難であ
る。
Japanese Patent Laid-Open No. 63-156005 discloses a method for producing hydrogen peroxide from oxygen and hydrogen under pressure in a sulfuric acid acidic aqueous solution using a platinum group catalyst. It is shown that high concentration hydrogen peroxide can be selectively produced by coexisting with ions. That is, in the conventional technique, in order to obtain hydrogen peroxide with a high selectivity in the method of producing high-concentration hydrogen peroxide by catalytically reacting oxygen and hydrogen in a reaction medium, 2 MPa or more is required. It was necessary to carry out the reaction under high pressure.
Further, it has been shown that a high-concentration hydrogen peroxide can be obtained under a low pressure without significantly lowering the selectivity in a production method using a platinum group metal catalyst using titania as a carrier (see, for example, Japanese Patent Application Laid-Open No. H10 (1999) -242242). 8-2904). However, it is difficult to put titania into practical use as an industrial catalyst because many titania particles have a small particle size and the particle shape is easily crushed.

【0005】[0005]

【発明が解決しようとする課題】反応媒体中で酸素と水
素を接触的に反応させ過酸化水素を製造する方法に於い
て、従来の公知技術では、実用的な濃度の過酸化水素を
得るためには高圧下で反応させる必要があった。このよ
うに高圧下で反応を行う場合には、その取り扱いにおい
て使用できる装置として、耐圧性に優れる高価な反応容
器が必要となり、また供給する反応ガスの昇圧が必要と
なる等経済的な問題があった。更に、高濃度の過酸化水
素存在下では生成した過酸化水素の分解が起こり、選択
率が著しく低下するという大きな問題があった。また、
チタニア触媒は低圧下で反応させることができるが破砕
し易いため工業用触媒としての実用化は困難であった。
DISCLOSURE OF THE INVENTION In a method for producing hydrogen peroxide by catalytically reacting oxygen and hydrogen in a reaction medium, the conventional known technique is to obtain a practical concentration of hydrogen peroxide. It was necessary to react under high pressure. When the reaction is carried out under high pressure as described above, an expensive reaction vessel having excellent pressure resistance is required as an apparatus that can be used for handling, and an economical problem such as pressure increase of the reaction gas to be supplied is required. there were. Further, in the presence of a high concentration of hydrogen peroxide, the generated hydrogen peroxide is decomposed, and there is a big problem that the selectivity is significantly lowered. Also,
Although the titania catalyst can be reacted under a low pressure, it is difficult to put it into practical use as an industrial catalyst because it is easily crushed.

【0006】[0006]

【課題を解決するための手段】本発明者らは、白金族触
媒を用いて反応媒体中で酸素と水素を接触的に反応させ
て過酸化水素を製造する方法に於いて、大きさ、強度等
の適当な他の酸化物担体にチタニアと白金族触媒を担持
することにより前述の問題を解決した。即ち、本発明
は、破砕しにくい担体にチタニアと白金族金属を担持し
た触媒上で、水溶液を反応媒体として酸素と水素を接触
的に反応せしめることにより、低圧下で高濃度の過酸化
水素を得ることを可能とした過酸化水素の製造方法を提
供するものである。本発明により、反応装置の問題や過
酸化水素濃度に対する選択率の低下の問題が著しく改善
された。
Means for Solving the Problems The present inventors have proposed a method for producing hydrogen peroxide by catalytically reacting oxygen and hydrogen in a reaction medium using a platinum group catalyst. The above problems have been solved by supporting titania and a platinum group catalyst on a suitable other oxide carrier such as. That is, the present invention is a catalyst that supports titania and a platinum group metal on a carrier that is difficult to crush, and by catalytically reacting oxygen and hydrogen using an aqueous solution as a reaction medium, a high concentration of hydrogen peroxide is obtained under low pressure. It is intended to provide a method for producing hydrogen peroxide, which makes it possible to obtain the hydrogen peroxide. According to the present invention, the problem of the reactor and the problem of the decrease in the selectivity with respect to the hydrogen peroxide concentration have been significantly improved.

【0007】[0007]

【発明の実施の形態】本発明に於いては、白金族元素を
主体とする活性成分を担体に担持した触媒が使用され
る。具体的にはパラジウム、白金などを単独もしくは混
合物または合金として用いることができる。更にそれら
を主体とするルテニウム、オスミウム、ロジウム、イリ
ジウムまたは金との混合物もしくは合金の使用も可能で
ある。特にパラジウムを主体とする触媒が好適に使用さ
れる。上記活性成分の担持量としては担体に対して0.
1〜10重量%が一般的である。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a catalyst in which an active component mainly containing a platinum group element is supported on a carrier is used. Specifically, palladium, platinum, etc. can be used alone or as a mixture or alloy. Furthermore, it is also possible to use a mixture or alloy containing ruthenium, osmium, rhodium, iridium or gold, which is the main component of these. Particularly, a catalyst containing palladium as a main component is preferably used. The amount of the active ingredient supported is 0.
1 to 10% by weight is common.

【0008】本発明に使用される担体としては、ハンド
リング、機械強度的に優れた例えばアルミナ、シリカ等
の酸化物担体表面に、チタンアルコキサイドを加水分解
して水酸化チタンを担持した後、これを焼成することに
より前述の酸化物担体上でチタニアとした担体である。
具体的には、平均粒子径50ミクロンの球状シリカをエ
タノール中に分散させておき、オルトチタン酸エチルを
加えて十分攪拌した後、水を添加してオルトチタン酸エ
チルを加水分解し、シリカ上に水酸化チタンを析出させ
る。オルトチタン酸エチル等のチタンアルコキサイド
は、シリカの細孔内にもよく分散するためか、シリカ担
体上に水酸化チタンを均一に分散できる。
As the carrier used in the present invention, titanium alkoxide is hydrolyzed to support titanium hydroxide on the surface of an oxide carrier such as alumina or silica which is excellent in handling and mechanical strength. This is a carrier which is calcined to give titania on the above-mentioned oxide carrier.
Specifically, spherical silica having an average particle size of 50 microns is dispersed in ethanol, ethyl orthotitanate is added and sufficiently stirred, and then water is added to hydrolyze the ethyl orthotitanate to obtain silica particles. Titanium hydroxide is deposited on. Probably because titanium alkoxide such as ethyl orthotitanate is well dispersed in the pores of silica, titanium hydroxide can be uniformly dispersed on the silica carrier.

【0009】得られたシリカ担持水酸化チタン担体を、
水洗によりエタノールを除去後、乾燥・焼成してシリカ
担持チタニア担体とする。また、球状シリカの代わりに
球状アルミナ等を用いた担体、オルトチタン酸エチルの
代わりにオルトチタン酸テトライソプロピル、オルトチ
タン酸テトラブチルを用いて調製した担体等が挙げられ
る。あるいは、球状シリカを硫酸チタン溶液中に縣濁さ
せておき、アンモニア水等のアルカリを添加することに
より、シリカ上に水酸化チタンを担持する方法を用いる
ことも可能である。担体焼成温度は300〜1000
℃、好ましくは400〜700℃である。焼成温度が低
い場合には、チタニアの結晶化が不十分で反応中にチタ
ンの溶出が起こる。また、焼成温度が高すぎると、担体
の比表面積が著しく減少し触媒活性が低下する問題が生
じる
The silica-supported titanium hydroxide carrier thus obtained is
After removing ethanol by washing with water, the silica-supported titania carrier is dried and calcined. Further, a carrier using spherical alumina or the like instead of spherical silica, a carrier prepared by using tetraisopropyl orthotitanate or tetrabutyl orthotitanate instead of ethyl orthotitanate, and the like can be mentioned. Alternatively, it is also possible to use a method in which spherical silica is suspended in a titanium sulfate solution and titanium hydroxide is supported on the silica by adding an alkali such as aqueous ammonia. Carrier firing temperature is 300 to 1000
C., preferably 400 to 700.degree. When the firing temperature is low, crystallization of titania is insufficient and titanium elutes during the reaction. Further, if the calcination temperature is too high, the specific surface area of the carrier is remarkably reduced, which causes a problem that the catalytic activity is lowered.

【0010】過酸化水素の製造における本発明の触媒の
使用量は通常、反応媒体1リットル当たり1グラム以上
が使用され、スラリー状で使用することもできる。本発
明の反応媒体としては、硫酸、硝酸または燐酸等の無機
酸と臭化ナトリウム、臭素酸ナトリウム等のハロゲン化
合物を添加した水溶液が好適に使用される。本発明の白
金族触媒を使用した場合の過酸化水素製造の反応条件と
しては、通常、反応圧力0.1〜2MPa、反応温度0
〜50℃の条件で実施される。
The amount of the catalyst of the present invention used in the production of hydrogen peroxide is usually 1 gram or more per liter of the reaction medium, and it may be used in the form of slurry. As the reaction medium of the present invention, an aqueous solution prepared by adding an inorganic acid such as sulfuric acid, nitric acid or phosphoric acid and a halogen compound such as sodium bromide or sodium bromate is preferably used. The reaction conditions for hydrogen peroxide production using the platinum group catalyst of the present invention are usually a reaction pressure of 0.1 to 2 MPa and a reaction temperature of 0.
It is carried out under the condition of -50 ° C.

【0011】[0011]

【実施例】以下、実施例及び比較例によって本発明を更
に詳細に説明する。溶液中の過酸化水素濃度の測定は、
硫酸酸性−過マンガン酸カリウム溶液による滴定法によ
り行った。また、水素選択率は次式によって計算した。 水素選択率(%)=[(反応により生成した過酸化水素
の量 mol )÷(消費された水素量から算出した過酸化
水素の理論生成量 mol )]×100
The present invention will be described below in more detail with reference to Examples and Comparative Examples. The measurement of hydrogen peroxide concentration in the solution is
It was performed by a titration method using a sulfuric acid-potassium permanganate solution. The hydrogen selectivity was calculated by the following formula. Hydrogen selectivity (%) = [(amount of hydrogen peroxide produced by the reaction mol) / (theoretical amount of hydrogen peroxide calculated from the amount of hydrogen consumed)] × 100

【0012】実施例1 触媒の調製を以下の方法により行った。即ち、市販のシ
リカ(富士シリシア化学(株)製、CARiACT、平
均粒子径50ミクロン)100gを200mlのエタノ
ールに縣濁させた縣濁液中に、市販のオルトチタン酸エ
チル(東京化成工業(株)製)57.1gを加え1時間
攪拌した後、40mlの純水を徐々に滴下し加水分解に
より水酸化チタンを析出させた。さらに攪拌しながら加
熱し蒸発・乾固することにより、水酸化チタンを担持し
たシリカ担持水酸化チタン担体を得た。得られた担体を
空気気流中で700℃にて3時間焼成し、シリカ担持チ
タニア担体を得た。
Example 1 A catalyst was prepared by the following method. That is, 100 g of commercially available silica (manufactured by Fuji Silysia Chemical Ltd., CARiACT, average particle size: 50 microns) was suspended in 200 ml of ethanol, and the solution was suspended in a commercially available ethyl orthotitanate (Tokyo Chemical Industry Co., Ltd. 57.1 g was added and the mixture was stirred for 1 hour, then 40 ml of pure water was gradually added dropwise to precipitate titanium hydroxide by hydrolysis. By further heating with stirring and evaporation / drying, a silica-supported titanium hydroxide carrier supporting titanium hydroxide was obtained. The obtained carrier was calcined in an air stream at 700 ° C. for 3 hours to obtain a silica-supported titania carrier.

【0013】次に、得られたシリカ担持チタニア担体9
5gを200mlの水に縣濁させた縣濁液中に、市販の
塩化パラジウム(石福金属興業(株)製)8.39gを
溶解した塩酸50mlを滴下した。塩化パラジウム溶液
を滴下終了後、30%アンモニア水20mlを徐々に滴
下し、縣濁液を中和すると共にパラジウムを担体上に吸
着させた。得られた触媒を濾別、洗浄し、乾燥器中で1
10℃にて一昼夜乾燥した。その後、空気気流中で40
0℃にて2時間焼成し、次いで水素気流中で200℃に
て1時間還元して触媒を得た。酸素と水素より直接的に
過酸化水素を製造する反応方法として以下の操作を行っ
た。
Next, the obtained silica-supported titania carrier 9
To a suspension obtained by suspending 5 g in 200 ml of water, 50 ml of hydrochloric acid in which 8.39 g of commercially available palladium chloride (manufactured by Ishifuku Metal Industry Co., Ltd.) was dissolved was added dropwise. After the addition of the palladium chloride solution was completed, 20 ml of 30% aqueous ammonia was gradually added dropwise to neutralize the suspension and adsorb palladium on the carrier. The catalyst obtained is filtered off, washed and dried in a drier 1
It was dried overnight at 10 ° C. After that, 40 in the air flow
It was calcined at 0 ° C. for 2 hours and then reduced in a hydrogen stream at 200 ° C. for 1 hour to obtain a catalyst. The following operation was performed as a reaction method for directly producing hydrogen peroxide from oxygen and hydrogen.

【0014】内容積6リットルのSUS316製冷却ジ
ャケット付オートクレーブに、臭化ナトリウムを0.5
ミリモル/リットル、りん酸を0.1モル/リットル含
有する水溶液3リットルと前述の方法により調製した担
持パラジウム触媒120gを加えて縣濁させた。オート
クレーブを閉め、空気を480Nl/hrにてオートク
レーブに導入し、圧力調製弁によりオートクレーブの圧
力が0.9MPaになるまで昇圧した。空気の通気を続
けながら、反応圧力を0.9MPa、反応温度を10℃
に保ち、1500rpmの速度で攪拌を開始した。条件
が安定した後、水素ガス40Nl/hrを通気し反応を
開始した。反応溶液は、10ミクロンの焼結金属フィル
ターを通して30分毎にサンプリングした。サンプリン
グ毎の抜液はスムーズに行われ、破損した触媒の抜け出
しはなかった。6時間の反応終了後における過酸化水素
濃度は5.0重量%、水素選択率は59.2%であっ
た。
0.5 ml of sodium bromide was added to an autoclave with a cooling jacket made of SUS316 having an internal volume of 6 liters.
The suspension was suspended by adding 3 liters of an aqueous solution containing mmol / liter and 0.1 mol / liter of phosphoric acid and 120 g of the supported palladium catalyst prepared by the above-mentioned method. The autoclave was closed, air was introduced into the autoclave at 480 Nl / hr, and the pressure in the autoclave was increased by a pressure adjusting valve until it reached 0.9 MPa. While continuing the aeration of air, the reaction pressure was 0.9 MPa and the reaction temperature was 10 ° C.
The stirring was started at a speed of 1500 rpm. After the conditions were stabilized, 40 Nl / hr of hydrogen gas was aerated to start the reaction. The reaction solution was sampled every 30 minutes through a 10 micron sintered metal filter. The liquid was drained smoothly for each sampling, and the broken catalyst did not come out. After completion of the reaction for 6 hours, the hydrogen peroxide concentration was 5.0% by weight and the hydrogen selectivity was 59.2%.

【0015】実施例2 触媒調製時に市販のシリカの代わりに市販の酸化アルミ
ニウム(水沢化学(株)製、ネオビード)を用いた以外
は実施例1と同様の操作を行い触媒を調製し、同一条件
で反応を行った。6時間の反応終了後における過酸化水
素濃度は4.8重量%、水素選択率は57.9%であっ
た。サンプリング毎の抜液はスムーズに行われ、破損し
た触媒の抜け出しはなかった。
Example 2 A catalyst was prepared in the same manner as in Example 1 except that a commercially available aluminum oxide (Neobead, manufactured by Mizusawa Chemical Co., Ltd.) was used in place of the commercially available silica at the time of preparing the catalyst, and the catalyst was prepared under the same conditions. The reaction was carried out. After completion of the reaction for 6 hours, the hydrogen peroxide concentration was 4.8% by weight and the hydrogen selectivity was 57.9%. The liquid was drained smoothly for each sampling, and the broken catalyst did not come out.

【0016】実施例3 触媒調製時にオルトチタン酸エチルの代わりにオルトチ
タン酸テトライソプロピル(東京化成工業(株)製)を
用いた以外は実施例1と同様の操作を行い触媒を調製
し、同一条件で反応を行った。6時間の反応終了後にお
ける過酸化水素濃度は5.0重量%、水素選択率は5
8.9%であった。サンプリング毎の抜液はスムーズに
行われ、破損した触媒の抜け出しはなかった。
Example 3 A catalyst was prepared in the same manner as in Example 1 except that tetraisopropyl orthotitanate (manufactured by Tokyo Chemical Industry Co., Ltd.) was used in place of ethyl orthotitanate when preparing the catalyst. The reaction was carried out under the conditions. After the reaction for 6 hours, the hydrogen peroxide concentration was 5.0% by weight and the hydrogen selectivity was 5
It was 8.9%. The liquid was drained smoothly for each sampling, and the broken catalyst did not come out.

【0017】実施例4 触媒の調製を以下の方法により行った。即ち、市販の2
4%硫酸チタン溶液(関東化学(株)製)250mlに
純水100mlを加えた溶液に、市販のシリカ(富士シ
リシア化学(株)製、CARiACT、平均粒子径50
ミクロン)100gを縣濁させた。この縣濁液中に、市
販の30%アンモニア水(関東化学(株)製)を徐々に
滴下し、シリカ上に水酸化チタンを析出させた。得られ
た担体を濾別、純水洗浄後、空気気流中で700℃にて
3時間焼成し、シリカ担持チタニア担体を得た。以降、
実施例1と同様の操作を行いパラジウムを担持した触媒
を調製し、同一条件で反応を行った。6時間の反応終了
後における過酸化水素濃度は4.6重量%、水素選択率
は55.9%であった。サンプリングした抜液に触媒の
微粉の混入が認められたが、抜液速度には影響なかっ
た。XRFによる分析から、微粉はチタニアであること
が分かった。
Example 4 A catalyst was prepared by the following method. That is, commercially available 2
To a solution prepared by adding 100 ml of pure water to 250 ml of 4% titanium sulfate solution (manufactured by Kanto Chemical Co., Inc.), commercially available silica (manufactured by Fuji Silysia Chemical Co., Ltd., CARiACT, average particle size 50)
Micron) 100 g was suspended. Commercially available 30% ammonia water (manufactured by Kanto Chemical Co., Inc.) was gradually added dropwise to this suspension to deposit titanium hydroxide on silica. The obtained carrier was separated by filtration, washed with pure water, and then calcined in an air stream at 700 ° C. for 3 hours to obtain a silica-supported titania carrier. Or later,
The same operation as in Example 1 was carried out to prepare a catalyst supporting palladium, and the reaction was carried out under the same conditions. After completion of the reaction for 6 hours, the hydrogen peroxide concentration was 4.6% by weight and the hydrogen selectivity was 55.9%. Although the fine powder of the catalyst was found to be mixed in the sampled drainage liquid, the drainage rate was not affected. Analysis by XRF revealed that the fines were titania.

【0018】比較例1 触媒として、5%Pd/チタニア粉末(N.E.ケムキ
ャット(株)製、平均粒子径11ミクロン)40gを用
いた以外は実施例1と同様の操作により反応を行った。
6時間の反応終了後における過酸化水素濃度は5.4重
量%、水素選択率は67.9%であった。また、サンプ
リングした抜液に触媒の微粉の混入が認められた。フィ
ルターの目詰まりが生じ、抜液速度が減少した。
Comparative Example 1 The reaction was performed in the same manner as in Example 1 except that 40 g of 5% Pd / titania powder (produced by NE Chemcat Co., Ltd., average particle size: 11 μm) was used as a catalyst. .
After completion of the reaction for 6 hours, the hydrogen peroxide concentration was 5.4% by weight and the hydrogen selectivity was 67.9%. Further, it was confirmed that the catalyst fine powder was mixed in the sampled drainage liquid. The filter was clogged and the drainage rate decreased.

【0019】比較例2 触媒として、5%Pd/チタニア粉末(N.E.ケムキ
ャット(株)製、平均粒子径20ミクロン)80gを用
いた以外は実施例1と同様の操作により反応を行った。
6時間の反応終了後における過酸化水素濃度は5.3重
量%、水素選択率は63.3%であった。また、反応開
始直後にはサンプリングした抜液に触媒の微粉の混入が
認められ、反応終了間際ではフィルターの目詰まりがひ
どく抜液が困難であった。
Comparative Example 2 The reaction was carried out in the same manner as in Example 1 except that 80 g of 5% Pd / titania powder (produced by NE Chemcat Co., Ltd., average particle size 20 μm) was used as the catalyst. .
After completion of the reaction for 6 hours, the hydrogen peroxide concentration was 5.3% by weight and the hydrogen selectivity was 63.3%. Immediately after the start of the reaction, fine catalyst powder was found to be mixed in the sampled drainage liquid, and the filter was severely clogged just before the completion of the reaction and draining was difficult.

【0020】比較例3 触媒として、5%Pd/アルミナ粉末(N.E.ケムキ
ャット(株)製、平均粒子径20ミクロン)120gを
用いた以外は実施例1と同様の操作により反応を行っ
た。6時間の反応終了後における過酸化水素濃度は3.
8重量%、水素選択率は45.9%であった。サンプリ
ング毎の抜液はスムーズに行われ、破損した触媒の抜け
出しはなかった。
Comparative Example 3 The reaction was performed in the same manner as in Example 1 except that 120 g of 5% Pd / alumina powder (produced by NE Chemcat Co., Ltd., average particle size: 20 microns) was used as a catalyst. . After the reaction for 6 hours, the hydrogen peroxide concentration was 3.
It was 8% by weight and the hydrogen selectivity was 45.9%. The liquid was drained smoothly for each sampling, and the broken catalyst did not come out.

【0021】[0021]

【発明の効果】比較例に対して、酸化物担体にチタニア
と白金族金属を担持した本発明の触媒を用いることによ
り、実用的なサイズの触媒を調製できると共に、低圧下
で反応媒体である水溶液中に選択的に高濃度の過酸化水
素が製造できることが明かとなった。よって、本発明に
より従来法のような問題点を解決でき、工業的規模での
過酸化水素の製造が可能となった。
By using the catalyst of the present invention in which titania and a platinum group metal are supported on an oxide carrier, a catalyst of a practical size can be prepared and a reaction medium under a low pressure is obtained. It was revealed that a high concentration of hydrogen peroxide can be selectively produced in an aqueous solution. Therefore, the present invention solves the problems of the conventional method and enables the production of hydrogen peroxide on an industrial scale.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高木 直文 東京都葛飾区新宿6丁目1番1号 三菱瓦 斯化学株式会社東京研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naofumi Takagi 6-1, 1-1 Shinjuku, Katsushika-ku, Tokyo Mitsubishi Gas Chemical Co., Ltd. Tokyo Research Laboratory

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 酸素と水素を反応媒体中で接触的に反応
させて過酸化水素を製造する方法において、担体にチタ
ニアと白金族金属を担持した触媒を用いることを特徴と
する過酸化水素の製造方法。
1. A method for producing hydrogen peroxide by catalytically reacting oxygen and hydrogen in a reaction medium, wherein a catalyst having titania and a platinum group metal supported on a carrier is used. Production method.
【請求項2】 酸素と水素を反応媒体中で接触的に反応
させて過酸化水素を製造する方法において、担体にチタ
ニアを担持し、さらに白金族金属を担持した触媒を用い
ることを特徴とする過酸化水素の製造方法。
2. A method for producing hydrogen peroxide by catalytically reacting oxygen and hydrogen in a reaction medium, characterized in that a catalyst in which titania is supported on a carrier and a platinum group metal is further supported is used. Method for producing hydrogen peroxide.
【請求項3】 チタンアルコキサイドを原料として加水
分解した水酸化チタンを担体表面に担持した後、これを
焼成することによりチタニアとした請求項1または2記
載の過酸化水素の製造方法。
3. The method for producing hydrogen peroxide according to claim 1 or 2, wherein titanium hydroxide obtained by hydrolyzing titanium alkoxide as a raw material is supported on the surface of the carrier, and then this is fired to form titania.
【請求項4】 焼成温度が300〜1000℃である請
求項3記載の過酸化水素の製造方法。
4. The method for producing hydrogen peroxide according to claim 3, wherein the firing temperature is 300 to 1000 ° C.
【請求項5】 水素と酸素を反応媒体中で触媒と反応圧
力0.1〜2MPaで接触的に反応せしめる請求項1ま
たは2記載の過酸化水素の製造方法。
5. The method for producing hydrogen peroxide according to claim 1, wherein hydrogen and oxygen are catalytically reacted with a catalyst in a reaction medium at a reaction pressure of 0.1 to 2 MPa.
【請求項6】 白金族金属がパラジウムである請求項1
または2記載の過酸化水素の製造方法。
6. The platinum group metal is palladium.
Or the method for producing hydrogen peroxide described in 2.
【請求項7】 担体がシリカまたはアルミナである請求
項1または2記載の過酸化水素の製造方法。
7. The method for producing hydrogen peroxide according to claim 1, wherein the carrier is silica or alumina.
【請求項8】 反応媒体が酸とハロゲン化合物を含む水
溶液である請求項1または2記載の過酸化水素の製造方
法。
8. The method for producing hydrogen peroxide according to claim 1, wherein the reaction medium is an aqueous solution containing an acid and a halogen compound.
【請求項9】 酸素と水素を反応媒体中で接触的に反応
させて過酸化水素を製造するための触媒において、担体
にチタニアと白金族金属を担持した触媒。
9. A catalyst for producing hydrogen peroxide by catalytically reacting oxygen and hydrogen in a reaction medium, wherein the carrier carries titania and a platinum group metal.
JP12351396A 1996-05-17 1996-05-17 Production of hydrogen peroxide Pending JPH09301705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12351396A JPH09301705A (en) 1996-05-17 1996-05-17 Production of hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12351396A JPH09301705A (en) 1996-05-17 1996-05-17 Production of hydrogen peroxide

Publications (1)

Publication Number Publication Date
JPH09301705A true JPH09301705A (en) 1997-11-25

Family

ID=14862477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12351396A Pending JPH09301705A (en) 1996-05-17 1996-05-17 Production of hydrogen peroxide

Country Status (1)

Country Link
JP (1) JPH09301705A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620295B1 (en) * 1998-02-10 2006-09-13 아르끄마 프랑스 Method for preparing an aqueous hydrogen peroxide solution directly from hydrogen and oxygen and implementing device
US7326399B2 (en) 2005-04-15 2008-02-05 Headwaters Technology Innovation, Llc Titanium dioxide nanoparticles and nanoparticle suspensions and methods of making the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620295B1 (en) * 1998-02-10 2006-09-13 아르끄마 프랑스 Method for preparing an aqueous hydrogen peroxide solution directly from hydrogen and oxygen and implementing device
US7326399B2 (en) 2005-04-15 2008-02-05 Headwaters Technology Innovation, Llc Titanium dioxide nanoparticles and nanoparticle suspensions and methods of making the same
US7344591B2 (en) 2005-04-15 2008-03-18 Headwaters Technology Innovation, Llc Stabilized suspension of titanium dioxide nanoparticles and methods of manufacture

Similar Documents

Publication Publication Date Title
EP2075228B1 (en) Process for producing chlorine
JP3394043B2 (en) Method for producing hydrogen peroxide
EP0949000B1 (en) Process for the preparation of fluid bed vinyl acetate catalyst support
RU2486006C2 (en) Temperature-resistant catalyst for gas-phase oxidation of hydrogen chloride
JP5073133B2 (en) Catalyst and method for direct synthesis of hydrogen peroxide
KR20140093701A (en) A catalyst for direct synthesis of hydrogen peroxide comprising zirconium oxide
JP3590854B2 (en) Method for producing supported catalyst
AU764178B2 (en) Supported metal catalyst, preparation and applications for directly making hydrogen peroxide
SK11712000A3 (en) Direct oxidation of cycloalkanes
CN114011405A (en) Preparation method of composite oxide supported catalyst and application of composite oxide supported catalyst in preparation of methyl glycolate from ethylene glycol
JP3765499B2 (en) Anthraquinone method
JP2015533344A (en) Direct synthesis of hydrogen peroxide
JPH05124803A (en) Production of hydrogen peroxide
JPH09301705A (en) Production of hydrogen peroxide
JPH04227058A (en) Platinum/graphite catalyst and its application method
CN114534719B (en) Preparation method of palladium-based catalyst for directly synthesizing hydrogen peroxide
JPH05213607A (en) Direct synthesization of hydrogen perox- ide by heterogeneous catalytic action and catalyst for synthesization and manufacture of catalyst
CN112076744B (en) Preparation and application of methyl glycolate catalyst
JPH1147597A (en) Catalyst for hydrogenation reaction and hydrogenation method
US7166557B2 (en) Process for the preparation of a microspheroidal catalyst
EP3181543B1 (en) Process of preparing 4-methyl-3-decen-5-one
WO2012133149A1 (en) Method for direct production of hydrogen peroxide using brookite type titanium oxide
CN114247441B (en) Catalyst for preparing 1,2,4, 5-cyclohexane tetracarboxylic dianhydride by hydrogenation of pyromellitic anhydride and preparation method thereof
JP2003192632A (en) Method for producing mixture of unsaturated carboxylic acid ester with unsaturated carboxylic acid
JPH11180701A (en) Production of chlorine