JPH09300052A - Method for cleaning molten steel in tundish - Google Patents

Method for cleaning molten steel in tundish

Info

Publication number
JPH09300052A
JPH09300052A JP12156596A JP12156596A JPH09300052A JP H09300052 A JPH09300052 A JP H09300052A JP 12156596 A JP12156596 A JP 12156596A JP 12156596 A JP12156596 A JP 12156596A JP H09300052 A JPH09300052 A JP H09300052A
Authority
JP
Japan
Prior art keywords
tundish
molten steel
nozzle
gas
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12156596A
Other languages
Japanese (ja)
Inventor
Katsuhiro Sasai
勝浩 笹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12156596A priority Critical patent/JPH09300052A/en
Publication of JPH09300052A publication Critical patent/JPH09300052A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for quickly and efficiently reducing oxygen concn. in a tundish in order to prevent the oxidation of molten steel in the tundish with air being the principal cause of reducing the cleanliness of the molten steel. SOLUTION: In this cleaning method, at the time of reducing the oxygen concn. by blowing inert gas in the tundish before pouring in continuous casting of steel, the inner diameter of a nozzle 8 for blowing the inert gas is defined as <=40mm, and the dipping depth of the nozzle into the tundish 1 is defined as >=1/4 of the tundish depth. Also, a metal to be gasified at the temp. of the tundish is added into the tundish.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋼の連続鋳造にお
いて取鍋からタンディッシュ内に溶鋼を注入する際、急
激な溶鋼の空気酸化を防止し、タンディッシュ内溶鋼の
清浄化を図る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying molten steel in a tundish by preventing rapid oxidation of the molten steel in the air when the molten steel is poured into the tundish from a ladle in continuous casting of steel. Things.

【0002】[0002]

【従来の技術】鋼の連続鋳造において、タンディッシュ
は取鍋と鋳型間に位置し、操業、品質上最も重要な役割
を果たす部分の一つである。その機能は、鋳型内への溶
鋼供給量の調節、溶鋼貯蔵、介在物の分離除去等であ
る。特に、介在物除去の機能は、近年の鋼材品質厳格化
に伴い極めて重要な機能となっている。しかし、取鍋か
らタンディッシュ内に溶鋼を注入する際、空気酸化によ
る溶鋼汚染の問題が生じるため、タンディッシュにおけ
る介在物除去効果が十分に発揮されていないのが現状で
ある。このため、タンディッシュ内における溶鋼汚染防
止を目的として、例えば特開昭61−17345号公報
に記載されているように、注入初期に保温材ボードで蓋
をしたタンディッシュ内に不活性ガスを吹き込むことに
より、注入溶鋼の空気酸化防止が図られている。
2. Description of the Related Art In continuous casting of steel, the tundish is located between the ladle and the mold, and is one of the most important parts in terms of operation and quality. Its functions are to control the amount of molten steel supplied into the mold, store molten steel, and separate and remove inclusions. In particular, the function of removing inclusions has become an extremely important function as the quality of steel materials has become stricter in recent years. However, when pouring molten steel from the ladle into the tundish, there is a problem of molten steel contamination due to air oxidation, and at present, the effect of removing inclusions in the tundish is not sufficiently exhibited. For this reason, for the purpose of preventing molten steel contamination in the tundish, for example, as described in JP-A-61-17345, an inert gas is blown into the tundish covered with a heat insulating material board at the beginning of injection. Thus, air oxidation of the injected molten steel is prevented.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、タンデ
ィッシュ内に溶鋼を注入するためには、タンディッシュ
蓋に溶鋼注入用ノズルを挿入できる空間が必要であり、
さらにタンディッシュ蓋およびタンディッシュ本体の熱
変形まで考慮するとタンディッシュを完全に密閉するこ
とは難しい。特に、タンディッシュが大型化している現
在では、熱変形の影響が大きく、密閉化はより困難なも
のとなっている。さらに、タンディッシュ内への不活性
ガスの吹き込みは、溶鋼注入用ノズルの周囲にある空間
やタンディッシュ蓋に設けたガス吹き込み用ノズルから
行われているが、この方法ではかえって注入点やタンデ
ィッシュ蓋の隙間から空気を巻き込み、溶鋼の酸化を激
しくするといった問題が生じる。このため、従来のシー
ル方法では空気酸化を防止できる程度までタンディッシ
ュ内の酸素濃度を低減できていないのが現状である。
However, in order to inject molten steel into the tundish, a space for inserting a molten steel injection nozzle into the tundish lid is required.
Furthermore, considering the thermal deformation of the tundish lid and the tundish body, it is difficult to completely seal the tundish. In particular, in the present day when the size of the tundish is increasing, the influence of thermal deformation is great, and it is more difficult to seal it. Furthermore, the inert gas is blown into the tundish from the space around the molten steel injection nozzle or from the gas injection nozzle provided in the tundish lid, but this method is rather the injection point or tundish. There is a problem that air is entrapped through the gap between the lids and the oxidation of the molten steel is increased. For this reason, at present, the oxygen concentration in the tundish cannot be reduced to the extent that air oxidation can be prevented by the conventional sealing method.

【0004】これらの問題に鑑み、本発明は、溶鋼の清
浄性を低下させる主原因となっているタンディッシュ内
溶鋼の空気酸化を防止するために、タンディッシュ内の
酸素濃度を迅速で、且つ効率的に低減できる方法を提供
することを目的とするものである。
In view of these problems, in order to prevent air oxidation of molten steel in the tundish, which is the main cause of deteriorating the cleanliness of molten steel, the present invention rapidly and oxygen concentration in the tundish. It is an object of the present invention to provide a method that can be efficiently reduced.

【0005】[0005]

【課題を解決するための手段】本発明の要旨は、鋼の連
続鋳造において、注入前のタンディッシュ内に不活性ガ
スを吹き込み酸素濃度を低減する際、不活性ガス吹き込
み用ノズルの内径を40mm以上とし、且つ該ノズルのタ
ンディッシュ内への進入深さをタンディッシュ深さの1
/4以上確保すると共に、酸素との結合性が高く、タン
ディッシュ温度でガス化する金属をタンディッシュ内に
添加することを特徴とするタンディッシュ内溶鋼の清浄
化方法である。
SUMMARY OF THE INVENTION The gist of the present invention is, in continuous casting of steel, when an inert gas is blown into a tundish before injection to reduce the oxygen concentration, the inner diameter of the inert gas blow nozzle is 40 mm. The depth of penetration of the nozzle into the tundish is 1 of the tundish depth.
/ 4 or more is secured, and a method of cleaning molten steel in a tundish is characterized by adding to the tundish a metal that has a high bondability with oxygen and is gasified at a tundish temperature.

【0006】[0006]

【発明の実施の形態】一般に、取鍋からタンディッシュ
内に溶鋼を注入する際、取鍋ロングノズルが湯面下に浸
漬されるまでは注入流の撹拌エネルギーが非常に大きい
ため、注入初期は溶鋼表面積が増大し、下記(1)式の
反応で示される空気酸化に起因して多数の介在物が生成
する。 4Al(溶鋼中)+3O2 (空気中)=2Al2 3 (介在物) (1) このように、注入初期の空気酸化速度は定常状態のそれ
に比べて極めて速く、タンディッシュにおける溶鋼汚染
の最大の原因となっている。
BEST MODE FOR CARRYING OUT THE INVENTION Generally, when pouring molten steel from a ladle into a tundish, the stirring energy of the pouring flow is very large until the long nozzle of the ladle is immersed below the surface of the molten metal. The molten steel surface area increases, and a large number of inclusions are generated due to the air oxidation shown in the reaction of the following formula (1). 4 Al (in molten steel) + 3O 2 (in air) = 2Al 2 O 3 (inclusions) (1) Thus, the air oxidation rate at the initial injection is much faster than that in the steady state, and the contamination of molten steel in the tundish is It is the biggest cause.

【0007】本発明者らは、この注入初期の空気酸化を
防止するために、タンディッシュに蓋をし、タンディッ
シュ内をArガスで置換した上で、溶鋼の注入を開始す
る方法について検討してきたが、従来のタンディッシュ
内へのArガス吹き込み方法では、工業的に溶鋼の酸化
が問題にならない程度(酸素濃度1.0%以下)まで酸
素濃度を低減できないことが分かった。
In order to prevent air oxidation at the initial stage of pouring, the present inventors have examined a method of capping the tundish, replacing the inside of the tundish with Ar gas, and then starting pouring molten steel. However, it was found that the conventional method of blowing Ar gas into the tundish cannot reduce the oxygen concentration to such an extent that the oxidation of molten steel does not pose a problem industrially (oxygen concentration of 1.0% or less).

【0008】図1は従来のタンディッシュシール方法を
説明するための図である。溶鋼注入に先だって、タンデ
ィッシュ1内の空気2をArガス3で置換するために、
取鍋5内の溶鋼を溶鋼注入用ノズル6を介して注入する
ための注入孔7やタンディッシュ蓋4にガス吹き込み用
ノズル8を設置し、ここからArガス3をタンディッシ
ュ1内に吹き込んでいる。しかし、溶鋼注入用ノズル6
と注入孔7の隙間を閉じることは操業上困難であり、且
つタンディッシュ蓋4は熱応力により変形するため、タ
ンディッシュ1を完全に密閉化することはできない。こ
のため、タンディッシュ蓋4に設置したガス吹き込み用
ノズル8からタンディッシュ1内にArガス3を吹き込
むと、Arガス3噴流が外部から空気2を巻き込み、タ
ンディッシュ1内の酸素濃度を十分に低減できない。
FIG. 1 is a diagram for explaining a conventional tundish sealing method. In order to replace the air 2 in the tundish 1 with Ar gas 3 prior to the molten steel injection,
Gas injection nozzle 8 is installed in injection hole 7 for injecting molten steel in ladle 5 through molten steel injection nozzle 6 and tundish lid 4, and Ar gas 3 is injected into tundish 1 from here. There is. However, the molten steel injection nozzle 6
Since it is difficult to close the gap between the injection hole 7 and the injection hole 7, and the tundish lid 4 is deformed by thermal stress, the tundish 1 cannot be completely sealed. Therefore, when the Ar gas 3 is blown into the tundish 1 from the gas blowing nozzle 8 installed on the tundish lid 4, the jet of Ar gas 3 entrains the air 2 from the outside, so that the oxygen concentration in the tundish 1 is sufficiently increased. It cannot be reduced.

【0009】本発明者らは、タンディッシュ内に空気を
巻き込み難いArガス吹き込み方法を開発すべく、ガス
吹き込み用ノズルの内径と進入深さ(タンディッシュ上
端からノズル先端までの距離)に着目し、これらの条件
がタンディッシュ内の到達酸素濃度に及ぼす影響を調査
した。その結果を図2に示す。一般に、ガス吹き込み用
ノズルはタンディッシュ蓋に取り付けられており、ノズ
ル進入深さは0に近い状態にあり、さらにノズル内径は
20〜30mm程度である。このため、従来のArガス吹
き込み方法ではタンディッシュ内の酸素濃度を十分に低
減できない。これに対し、本発明者らは、ガス吹き込み
用ノズルの進入深さをタンディッシュ深さの1/4以上
として、且つノズル内径を40mm以上にすることにより
タンディッシュ内の酸素濃度を1.0%以下に低減でき
ることを見いだした。
The inventors of the present invention focused on the inner diameter and the penetration depth (distance from the upper end of the tundish to the nozzle tip) of the gas blowing nozzle in order to develop an Ar gas blowing method in which it is difficult to entrain air in the tundish. The influence of these conditions on the oxygen concentration reached in the tundish was investigated. The result is shown in FIG. Generally, the gas blowing nozzle is attached to the tundish lid, the nozzle penetration depth is close to 0, and the nozzle inner diameter is about 20 to 30 mm. Therefore, the conventional Ar gas blowing method cannot sufficiently reduce the oxygen concentration in the tundish. On the other hand, the present inventors set the oxygen concentration in the tundish to 1.0 by setting the penetration depth of the gas blowing nozzle to 1/4 or more of the tundish depth and setting the nozzle inner diameter to 40 mm or more. We have found that it can be reduced to less than%.

【0010】しかしながら、本方法のようにArガスの
みでタンディッシュ内の酸素濃度を低減するには、比較
的多量のArガスを吹き込んでも、5分程度の時間を要
し、精錬−鋳造間で待ち時間が生じるため、操業上必ず
しも満足できるものではなかった。そこで、少量のAr
ガスでも、短時間で十分にタンディッシュ内の酸素濃度
を低減できる方法についてさらに検討を続けた結果、本
発明のArガス吹き込み方法と併用して、金属Mgをタ
ンディッシュ内に添加することが有効であることを見い
だした。
However, in order to reduce the oxygen concentration in the tundish with only Ar gas as in the present method, it takes about 5 minutes even if a relatively large amount of Ar gas is blown in, so that the time between refining and casting is high. Due to the waiting time, the operation was not always satisfactory. Therefore, a small amount of Ar
As a result of further studies on a method of sufficiently reducing the oxygen concentration in the tundish even in the case of gas, it is effective to add metallic Mg into the tundish in combination with the Ar gas blowing method of the present invention. I found that.

【0011】金属Mgの沸点は1100℃程度であり、
溶鋼注入前のタンディッシュ内(1300℃以上)に添
加するとMg蒸気となり、下記(2)式により空気中の
酸素と反応するため、タンディッシュ内の酸素濃度を低
減することができる。 2Mg(ガス)+O2 (ガス)=2MgO(固体) (2)
The boiling point of metallic Mg is about 1100 ° C.,
When added to the tundish (1300 ° C. or higher) before pouring molten steel, it becomes Mg vapor and reacts with oxygen in the air according to the following equation (2), so that the oxygen concentration in the tundish can be reduced. 2Mg (gas) + O 2 (gas) = 2MgO (solid) (2)

【0012】しかし、金属Mgの添加だけでは、(2)
式の反応によりタンディッシュ内の酸素量に相当する体
積収縮が起こり、タンディッシュ内が負圧となるため、
外部からタンディッシュ内に空気の流れが生じる。この
空気の流れ込みを防止するためには、金属Mgの添加に
より減少した酸素の体積分をArガスで補い、タンディ
ッシュ内を正圧にする必要がある。しかし、従来の方法
でタンディッシュ内にArガスを吹き込むと、空気の巻
き込みを生じるため、金属Mgの添加により低下した酸
素濃度が再び上昇することになる。したがって、金属M
gの添加と前述した空気を巻き込み難いArガス吹き込
み方法を併用することにより、空気の巻き込みを防止し
た状態で、効率的にタンディッシュ内の酸素濃度を低減
することができる。
However, if only the addition of metallic Mg is used, (2)
Due to the reaction of the formula, volume contraction corresponding to the amount of oxygen in the tundish occurs, and the inside of the tundish becomes a negative pressure,
Air flows from the outside into the tundish. In order to prevent the inflow of air, it is necessary to make up the volume of oxygen reduced by the addition of metal Mg with Ar gas to make the inside of the tundish a positive pressure. However, when Ar gas is blown into the tundish by the conventional method, air entrapment occurs, so that the oxygen concentration lowered by the addition of the metal Mg increases again. Therefore, the metal M
The oxygen concentration in the tundish can be efficiently reduced in a state where the entrainment of air is prevented by using the addition of g together with the above-mentioned Ar gas blowing method in which it is difficult to entrain air.

【0013】本発明における空気巻き込み抑制のノズル
内径は出口で規定されるため、途中を従来の細管にし、
ノズル出口付近で口径を拡大させる方法でも十分な効果
が得られる。また、本発明に使用できるガス種はArガ
スだけに限られたものではなく、その他の不活性ガスに
ついても同様の効果を得ることができる。さらに、タン
ディッシュ内に添加する金属もMgだけに限られたもの
ではなく、例えばCa等のようにタンディッシュ内の温
度でガス化し、且つ酸素と結合し易い金属であれば良
い。
The inner diameter of the nozzle for suppressing the entrainment of air in the present invention is defined by the outlet, so that the middle is made a conventional thin tube,
A sufficient effect can be obtained by enlarging the diameter near the nozzle outlet. Further, the gas species that can be used in the present invention is not limited to Ar gas, and similar effects can be obtained with other inert gases. Further, the metal added to the tundish is not limited to Mg, but may be any metal such as Ca that is easily gasified at the temperature in the tundish and easily bonded to oxygen.

【0014】以上に示したように、本発明によりタンデ
ィッシュの気密性が低い状態であっても、タンディッシ
ュ内の酸素濃度を効率的に、且つ迅速に低減でき、注入
初期の激しい空気酸化を防止することができるため、鋳
片の品質は格段に向上できる。
As described above, according to the present invention, even when the airtightness of the tundish is low, the oxygen concentration in the tundish can be efficiently and quickly reduced, and the vigorous air oxidation at the initial stage of injection can be prevented. Since it can be prevented, the quality of the slab can be significantly improved.

【0015】[0015]

【実施例】以下に、実施例及び比較例を挙げて、本発明
について説明する。 実施例1:図3に示すように、容量50tのタンディッ
シュ1(深さ1.2×幅1.5×長さ6.0m)に蓋4
をした上で、内径45mmのガス吹き込み用ノズル8をタ
ンディッシュ上端9から310mmの位置に設置し、注入
前にこのガス吹き込み用ノズル8からArガス3を10
0Nm3 /hの流量で吹き込むと共に、金属Mgを1.0kg
添加した。金属Mgを添加した直後に、タンディッシュ
内の酸素濃度は1%以下となり安定したため、吹き込み
開始から20秒後に成分C:50ppm 、Si:0.01
5%、Mn:0.25%、P:0.02%、S:0.0
1%、Al:0.035%、温度1550℃(タンディ
ッシュ内)の溶鋼250tを取鍋から20t/minで注入
した。この時、タンディッシュ出側の溶鋼中全酸素量は
注入初期から一定値を示し、安定して全酸素量15ppm
を確保できた。これにより、溶鋼汚染は確実に防止で
き、圧延後の成品には表面欠陥は全く発生しなかった。
The present invention will be described below with reference to examples and comparative examples. Example 1 As shown in FIG. 3, a tundish 1 (depth 1.2 × width 1.5 × length 6.0 m) with a capacity of 50 t was placed on a lid 4.
Then, a gas blowing nozzle 8 having an inner diameter of 45 mm is installed at a position 310 mm from the upper end 9 of the tundish.
Blowing at a flow rate of 0 Nm 3 / h and 1.0 kg of metallic Mg
Was added. Immediately after the addition of the metallic Mg, the oxygen concentration in the tundish became stable at 1% or less, and after 20 seconds from the start of blowing, the component C: 50 ppm, Si: 0.01
5%, Mn: 0.25%, P: 0.02%, S: 0.0
250 t of molten steel with 1%, Al: 0.035%, and a temperature of 1550 ° C. (in a tundish) was poured from a ladle at 20 t / min. At this time, the total oxygen content in the molten steel on the tundish exit side showed a constant value from the initial injection, and the total oxygen content was stable at 15 ppm.
Was secured. As a result, molten steel contamination could be reliably prevented, and no surface defects occurred in the product after rolling.

【0016】比較例1:図1に示すように、容量50t
のタンディッシュ(深さ1.2×幅1.5×長さ6.0
m)に蓋をした上で、内径30mmのガス吹き込み用ノズ
ルをタンディッシュ上端から0mmの位置に取り付け、A
rガスを250Nm3 /hの流量で吹き込むと共に、金属M
gを1.0kg添加した。金属Mgを添加した直後に、タ
ンディッシュ内の酸素濃度は3%となったが、その後直
ちに酸素濃度は8.5%まで上昇した。金属Mgを添加
してから10分が経過してもタンディッシュ内の酸素濃
度は8.5%以下にならなかったので、そのままの状態
で成分C:50ppm 、Si:0.015%、Mn:0.
25%、P:0.02%、S:0.01%、Al:0.
035%、温度1550℃(タンディッシュ内)の溶鋼
250tを取鍋から20t/minで注入した。この時、タ
ンディッシュ出側の溶鋼中全酸素量は注入初期に90pp
m に達し、その後除々に低下したが、最終到達値は50
ppm であった。このため、注入初期の溶鋼汚染を防止で
きず、圧延後の成品には表面欠陥が発生した。
Comparative Example 1: As shown in FIG. 1, a capacity of 50 t
Tundish (depth 1.2 x width 1.5 x length 6.0
m) is covered, and a gas injection nozzle with an inner diameter of 30 mm is attached at a position 0 mm from the upper end of the tundish, and A
Injecting r gas at a flow rate of 250 Nm 3 / h and at the same time metal M
1.0 kg was added. Immediately after the addition of metallic Mg, the oxygen concentration in the tundish reached 3%, but immediately thereafter, the oxygen concentration rose to 8.5%. The oxygen concentration in the tundish did not fall below 8.5% even 10 minutes after the addition of the metal Mg, so that the component C: 50 ppm, Si: 0.015%, Mn: 0.
25%, P: 0.02%, S: 0.01%, Al: 0.
250 t of molten steel having a temperature of 035% and a temperature of 1550 ° C. (in a tundish) was poured from a ladle at 20 t / min. At this time, the total amount of oxygen in the molten steel on the outlet side of the tundish was 90 pp at the beginning of injection.
It reached m and then gradually decreased, but the final value reached was 50.
It was ppm. For this reason, molten steel contamination at the initial stage of pouring could not be prevented, and surface defects occurred in the product after rolling.

【0017】比較例2:図1に示すように、容量50t
のタンディッシュ1(深さ1.2×幅1.5×長さ6.
0m)に蓋をした上で、内径45mmのガス吹き込み用ノ
ズルをタンディッシュ上端から310mmの位置に設置
し、注入前にこのガス吹き込み用ノズルからArガスを
250Nm3 /hの流量で吹き込んだ。Arガスの吹き込み
開始から5分後に、タンディッシュ内の酸素濃度が1%
以下になったため、成分C:50ppm 、Si:0.01
5%、Mn:0.25%、P:0.02%、S:0.0
1%、Al:0.035%、温度1550℃(タンディッ
シュ内)の溶鋼250tを取鍋から20t/minで注入し
た。この時、タンディッシュ出側の溶鋼中全酸素量は注
入初期から一定値を示し、安定して全酸素量15ppm を
確保できた。これにより、溶鋼汚染は防止でき、圧延後
の成品には表面欠陥は全く発生しなかった。しかし、タ
ンディッシュ内の酸素濃度を低減するために5分間の待
ち時間が生じたため、次鍋の精錬時間が長くなり、処理
コストは高くなった。
Comparative Example 2: As shown in FIG. 1, the capacity is 50 t.
Tundish 1 (depth 1.2 x width 1.5 x length 6.
(0 m), a gas blowing nozzle having an inner diameter of 45 mm was installed at a position 310 mm from the upper end of the tundish, and Ar gas was blown from the gas blowing nozzle at a flow rate of 250 Nm 3 / h before the injection. 5 minutes after the start of Ar gas injection, the oxygen concentration in the tundish was 1%.
Since it became the following, component C: 50ppm, Si: 0.01
5%, Mn: 0.25%, P: 0.02%, S: 0.0
250 t of molten steel with 1%, Al: 0.035%, and a temperature of 1550 ° C. (in a tundish) was poured from a ladle at 20 t / min. At this time, the total amount of oxygen in the molten steel on the outlet side of the tundish showed a constant value from the beginning of injection, and a stable total amount of 15 ppm could be secured. As a result, the contamination of molten steel could be prevented, and no surface defects occurred in the product after rolling. However, because a waiting time of 5 minutes was required to reduce the oxygen concentration in the tundish, the refining time of the next pot was long and the processing cost was high.

【0018】[0018]

【発明の効果】以上のごとく、本発明のタンディッシュ
内溶鋼の清浄化方法によれば、タンディッシュ内の酸素
濃度を短時間に、且つ効率的に低減できるため、操業を
乱すことなく、最も激しい注入初期の溶鋼汚染を確実に
防止できるため、鋳片の品質は極めて向上する。
As described above, according to the method for cleaning molten steel in the tundish of the present invention, the oxygen concentration in the tundish can be efficiently reduced in a short time, so that the operation can be performed without disturbing the operation. The quality of the slab is greatly improved because it is possible to reliably prevent the molten steel contamination at the initial stage of intense injection.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のタンディッシュシール方法を説明するた
めの図である。
FIG. 1 is a diagram for explaining a conventional tundish sealing method.

【図2】ノズル進入深さ/タンディッシュ深さとタンデ
ィッシュ内到達酸素濃度の関係を示す図である。
FIG. 2 is a diagram showing a relationship between a nozzle entry depth / a tundish depth and an oxygen concentration reaching a tundish.

【図3】本発明の実施状況を説明するための図である。FIG. 3 is a diagram for explaining an implementation status of the present invention.

【符号の説明】[Explanation of symbols]

1:タンディッシュ 2:空気 3:Arガス 4:タンディッシュ蓋 5:取鍋 6:溶鋼注入用ノズル 7:注入孔 8:ガス吹き込み用ノズル 9:タンディッシュ上端 1: Tundish 2: Air 3: Ar gas 4: Tundish lid 5: Ladle 6: Molten steel injection nozzle 7: Injection hole 8: Gas blowing nozzle 9: Tundish top

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋼の連続鋳造において、注入前のタンデ
ィッシュ内に不活性ガスを吹き込み酸素濃度を低減する
際、不活性ガス吹き込み用ノズルの内径を40mm以上と
し、且つ該ノズルのタンディッシュ内への進入深さをタ
ンディッシュ深さの1/4以上確保すると共に、酸素と
の結合性が高く、タンディッシュ温度でガス化する金属
をタンディッシュ内に添加することを特徴とするタンデ
ィッシュ内溶鋼の清浄化方法。
1. In continuous casting of steel, when an inert gas is blown into a tundish before injection to reduce the oxygen concentration, the inner diameter of an inert gas blowing nozzle is set to 40 mm or more, and the tundish of the nozzle is filled. The inside of the tundish is characterized in that the penetration depth to the tundish is secured to be 1/4 or more of the tundish depth and a metal that has a high bondability with oxygen and that is gasified at the tundish temperature is added to the tundish. Method for cleaning molten steel.
JP12156596A 1996-05-16 1996-05-16 Method for cleaning molten steel in tundish Pending JPH09300052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12156596A JPH09300052A (en) 1996-05-16 1996-05-16 Method for cleaning molten steel in tundish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12156596A JPH09300052A (en) 1996-05-16 1996-05-16 Method for cleaning molten steel in tundish

Publications (1)

Publication Number Publication Date
JPH09300052A true JPH09300052A (en) 1997-11-25

Family

ID=14814387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12156596A Pending JPH09300052A (en) 1996-05-16 1996-05-16 Method for cleaning molten steel in tundish

Country Status (1)

Country Link
JP (1) JPH09300052A (en)

Similar Documents

Publication Publication Date Title
KR102222442B1 (en) Continuous casting method
WO2015029107A1 (en) Continuous casting method
JPH09300052A (en) Method for cleaning molten steel in tundish
JPH09300051A (en) Method for cleaning molten steel in tundish
KR20160067100A (en) Continuous casting method
JPH09300050A (en) Method for cleaning molten steel in tundish
JP2002263808A (en) Method for cleaning molten steel in tundish
JP3404237B2 (en) How to prevent oxidation of molten steel
JPH09168846A (en) Method for cleaning molten steel in tundish
KR101742076B1 (en) Manufacturing method for molten metal
JP3054897B2 (en) Cleaning method for molten steel in tundish
JP2744439B2 (en) Nozzle clogging prevention method in continuous casting of molten steel
JPH07314102A (en) Tundish for continuous casting
JP3681292B2 (en) Gas bubbling method for crucible induction furnace
JPH0146563B2 (en)
JPH07100603A (en) Method for cleaning molten steel in tundish
JPH091302A (en) Method for cleaning molten steel in tundish
JP3348988B2 (en) Cleaning method for molten steel in tundish
JP4327491B2 (en) Vacuum casting equipment
JPH06599A (en) Method for continuously casting aluminum-killed steel for cold rolling
EP0922511B1 (en) Process for the continuous casting of molten steel to form high-quality billets or blooms
KR101235730B1 (en) Furnace for melting flux and method for continuous casting using the same
KR100961326B1 (en) Flux cored wire for controlling the composition of inclusion having high melting temperature and method for preventing nozzle clogging using the same
JPH07223056A (en) Method for cleaning molten steel in tundish
JPH0751814A (en) Method for cleaning molten steel in tundish

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030930