JPH09299337A - Forecasting method for bone disease morbific risk - Google Patents

Forecasting method for bone disease morbific risk

Info

Publication number
JPH09299337A
JPH09299337A JP11607196A JP11607196A JPH09299337A JP H09299337 A JPH09299337 A JP H09299337A JP 11607196 A JP11607196 A JP 11607196A JP 11607196 A JP11607196 A JP 11607196A JP H09299337 A JPH09299337 A JP H09299337A
Authority
JP
Japan
Prior art keywords
bone
apo
bone disease
density
risk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP11607196A
Other languages
Japanese (ja)
Inventor
Masataka Shiraki
正孝 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11607196A priority Critical patent/JPH09299337A/en
Publication of JPH09299337A publication Critical patent/JPH09299337A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To forecast the bone disease morbific risk according to the bone density concerning the gene factors related to the bone by measuring about the polytypic apolipoprotein E in a Homo sapiens tested body, and associating the measurement result with the bone disease based on the bone density. SOLUTION: The polytypic apolipoprotein E(Apo E) in a Homo sapience tested body is measured, and the measurement result is associated with the bone disease based on the bone density. The polytypics of phenotypic gene of apolipoprotein E(Apo E) in the Homo sapience tested body are measured, and the measurement result and the bone density are associated with the bone disease. In this case, the polytypic gene is six kinds of types: Apo E2/2, Apo E2/3, Apo E2/4, Apo E3/3, Apo E3/4 and Apo E4/4. Further, Apo E4 of gene type is classified as bone disease morbidity high risk type based on the low bone density type, and Apo E2 and Apo E3 are classified as bone disease morbidity low risk type based on the very low density type.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は骨に関する疾患罹患
のリスク、特に骨密度に基づく骨疾患罹患リスクの予測
方法に関する。さらに詳しくは、アポリポプロテインE
の表現型の類型に基づいて、骨密度に関係する疾患のリ
スクを予測する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting the risk of morbidity of bone diseases, particularly the risk of morbidity of bone diseases based on bone density. More details, apolipoprotein E
The present invention relates to a method of predicting the risk of a disease related to bone density based on the phenotypic typology of the.

【0002】[0002]

【従来の技術】近年高齢者、特に女性の高齢者におい
て、骨粗鬆症の発生が問題とされており、高齢者の骨密
度について大きな関心が寄せられている。かかる骨密度
低下については、その治療方法、治療薬の研究も盛んで
あるが、その原因の研究および遺伝的要因の検討も進め
られている。骨に関係する要因としては、ビタミンD、
エストロゲンおよびそれらに関連する物質が取り上げら
れて研究されており、具体的には、例えばビタミンD受
容体(Vitamin-D Receptor;VDR)、オステオカルシ
ン(Osteocalcin)、ビタミンD結合蛋白(Vitamin-D B
inding Protein;DBP)、エストロゲン(Estrogen)
およびエストロゲン受容体(Estrogen Receptor)が挙
げられる。
2. Description of the Related Art In recent years, the occurrence of osteoporosis has become a problem in elderly people, particularly female elderly people, and there is great interest in the bone density of the elderly people. With respect to such a decrease in bone density, researches on therapeutic methods and therapeutic agents have been actively conducted, but researches on the causes and studies on genetic factors are also underway. Factors related to bone include vitamin D,
Estrogen and related substances have been taken up and studied, and specifically, for example, vitamin D receptor (Vitamin-D Receptor; VDR), osteocalcin, and vitamin D binding protein (Vitamin-D B).
inding Protein (DBP), estrogen
And the estrogen receptor (Estrogen Receptor).

【0003】骨形成過程に組み込まれる群特異的成分
(Group Specific Component;GC)に関して、例えば
A.Braunらは、“Hum. Genet. 89、4
01−406(1992)”において、ビタミンD結合
蛋白(DBP)の遺伝子多型について掲載し、そこでは
ゲノムDNAを制限酵素HaeIIIまたはStyIで切
断した制限断片長多型(Restriction Fragment Length
Polymorphism;RFLP)が開示されており、GCフェ
ノタイプについて6種の分類を行っている。しかしなが
ら、これらの遺伝子型と骨密度、骨代謝回転または骨代
謝疾患との関係については何も述べられていない。
Regarding the group-specific component (GC) incorporated into the bone formation process, for example, A. Braun et al., “Hum. Genet. 89, 4”.
01-406 (1992) ”, a gene polymorphism of vitamin D binding protein (DBP) is described, in which restriction fragment length polymorphism (Restriction Fragment Length Polymorphism) obtained by cutting genomic DNA with restriction enzymes HaeIII or StyI.
Polymorphism (RFLP) is disclosed, and 6 types of GC phenotypes are classified. However, nothing is said about the relationship between these genotypes and bone density, bone turnover or bone metabolic disorders.

【0004】さらに、J.E.Eichnerらは、“G
enetic Epidemiology 9、177−
189(1992)”において、閉経女性についてDB
Pと骨密度(BMD)または骨格寸法との関係に関する
研究が記載されているが、「GCまたはα2HSグリコ
プロテイン(AHSG)フェノタイプのいずれも、どの
部分においてもBMDとの統計的に意味のある相関は示
さなかった。」と結論している。
Furthermore, JE Eichner et al.
enetic epidemiology 9, 177-
189 (1992) ”DB on Menopausal Women
A study on the relationship between P and bone density (BMD) or skeletal size is described, but "either the GC or the α 2 HS glycoprotein (AHSG) phenotype has a statistical significance with BMD in any part. It did not show any correlation. ”

【0005】[0005]

【発明が解決しようとする課題】このように、骨に関す
る遺伝子的要因に関して、遺伝子型と骨密度、骨代謝回
転または骨代謝疾患罹患リスクとの関係を示すものは、
従来ほどんど知られていないのが現状である。このよう
な状況のなかで、本発明者は、骨折等に関係があると言
われているビタミンKをコントロールする因子の1つと
して知られたアポリポプロテインに注目した。すなわ
ち、アポリポプロテインが骨密度、骨代謝回転または骨
代謝疾患罹患リスクに何等かの関係が存在するかも知れ
ないという予測のもとに、骨密度の測定手段に関しても
種々研究を進めた。
As described above, regarding the genetic factors relating to bone, those showing the relationship between genotype and bone density, bone turnover or the risk of developing a bone metabolic disease are as follows:
The fact is that it has not been known so far. Under such circumstances, the present inventor has focused on apolipoprotein, which is known as one of the factors that control vitamin K, which is said to be involved in fractures and the like. That is, based on the prediction that apolipoprotein may have some relationship with bone density, bone turnover, or risk of developing a disease of bone metabolism, various studies have been advanced regarding the means for measuring bone density.

【0006】本発明者は、骨密度の測定方法について、
上記先行技術と異なる方法を採用した。すなわち、骨密
度の測定部位を症状が一番現れやすい腰椎(L2−4)
とし、測定手段を単一光子吸収法(Single-photon abso
rptiometry)から、二重エネルギーX線吸収測定法(Du
al Energy X-ray absorptiometry;DEXA)に変更し
た。かかる測定手段を用いて遺伝子多型と骨密度等との
関係並びに遺伝子多型とオステオカルシン−骨代謝回転
との関係を調べたところ、驚くべきことに、アポリポプ
ロテインE(ApoE)の表現型が骨密度に密接に関係し
ていることを見出し本発明に到達した。
The inventor of the present invention relates to a method of measuring bone density,
A method different from the above-mentioned prior art was adopted. That is, the lumbar vertebra (L2-4) where the symptoms are most likely to appear at the measurement site of bone density
And the measuring means is a single-photon absorption method (Single-photon abso
dual energy X-ray absorption measurement method (Du
al Energy X-ray absorptiometry; DEXA). When the relationship between the gene polymorphism and bone density and the relationship between the gene polymorphism and osteocalcin-bone turnover were examined using such a measuring means, surprisingly, the phenotype of apolipoprotein E (A po E) was found. The present invention was found to be closely related to bone density and arrived at the present invention.

【0007】[0007]

【課題を解決するための手段】かくして本発明によれ
ば、下記方法が提案される。 (1)ヒト検体中のアポリポプロテインE(ApoE)の
多型について測定し、それと骨密度に基づく骨疾患とを
関連付けることを特徴とする、骨密度に基づく骨疾患罹
患リスクの予測方法。 (2)ヒト検体中のアポリポプロテインE(ApoE)の
表現型遺伝子の多型について測定し、それと骨密度に基
づく骨疾患とを関連付けることを特徴とする、骨密度に
基づく骨疾患罹患リスクの予測方法。 (3)前記遺伝子の多型が、Apo2/2、Apo2/3、A
po2/4、Apo3/3、A po3/4およびApo4/4の6種
の型である前記(2)記載の予測方法。 (4)前記遺伝子型がApo4(Apo2/4、Apo3/4
またはApo4/4)を低骨密度型に基づく骨疾患罹患高
リスク型と分類し、Apo2(Apo2/2またはApo
2/3)およびApo3(Apo3/3)を非低密度型に基づ
く骨疾患罹患低リスク型と分類する前記(1)〜(3)
のいずれか記載の予測方法。 (5)前記骨疾患が骨粗鬆症である前記(1)〜(4)
のいずれか記載の予測方法。
Thus, according to the present invention
For example, the following method is proposed. (1) Apolipoprotein E (ApoE)
Measure polymorphisms and compare them with bone disease based on bone density
Bone disease based on bone density characterized by associating
How to predict disease risk. (2) Apolipoprotein E (ApoE)
Phenotypic polymorphisms were measured and based on that and bone density.
Bone density is characterized by being associated with
A method for predicting the risk of having a bone disease based on the method. (3) The polymorphism of the gene is ApoE2/2, ApoE2/3, A
poE2/4, ApoE3/3, A poE3/4And ApoE4/46 kinds of
(2) The prediction method according to (2) above. (4) The genotype is ApoEFour(ApoE2/4, ApoE3/4
Or ApoE4/4) High bone disease based on low bone density type
Classified as risk type, ApoETwo(ApoE2/2Or ApoE
2/3) And ApoEThree(ApoE3/3) Based on non-low density type
The above (1) to (3) classified as low risk type of bone disease
Prediction method according to any one of. (5) The above-mentioned (1) to (4), wherein the bone disease is osteoporosis
Prediction method according to any one of.

【0008】従来、アポリポプロテインE(ApoE)に
関しては、種々のことが知られている。すなわち、Apo
E遺伝子は、第19染色体にあり、299個のアミノ酸
をコードとし、そのイソプロテインとしてE2、E3お
よびE4が知られている。このうちE3が野生型とさ
れ、2つのApoE対立遺伝子の組合せによって6種類の
遺伝子型とそれに対立するApoE表現型(E4/4
4/3、E4/2、E3/3、E3/2、E2/2)が出現すること
になる。そしてApoEの異常に基づくレムナントの代謝
障害によってIII型高脂血症が発症することが山村によ
って報告されている(山村 卓“家族性III型高脂血
症”医学のあゆみVol.172、No.5、276−2
80;1995)。しかしながら、アポリポプロテイン
Eの遺伝子型が骨密度に基づいて疾患の予測に関連して
いることは、本発明によって明らかにされた知見であ
る。
Conventionally, various things have been known regarding apolipoprotein E (A po E). That is, A po
The E gene is located on chromosome 19 and codes for 299 amino acids, and its isoproteins E2, E3, and E4 are known. Among E3 is the wild type, by a combination of the two A po E allele six genotypes and A po E phenotype opposed thereto (E 4/4,
E 4/3 , E 4/2 , E 3/3 , E 3/2 , E 2/2 ) will appear. The A po E type III hyperlipidemia by metabolic disorders remnants abnormality in that the onset has been reported by Yamamura (Takashi Yamamura "familial Type III hyperlipidemia" Medical History Vol.172, No. 5, 276-2
80; 1995). However, it is a finding revealed by the present invention that the apolipoprotein E genotype is associated with the prediction of disease based on bone density.

【0009】本発明を実施するに当り、アポリポプロテ
インE(ApoE)の測定は種々知られているが、本発明
はその方法は限定されない。その1つの方法として、プ
ラズマを使用する等電焦点電気泳動法(Isoelectric fo
cusing electrophoresis)が好んで使用される(例えば
Clin、Chem.40、No.1、11−13;19
94)。また、定量法としては、抗ヒトヤギ型抗体およ
びアルカリホスフアターゼで標識化した抗ヤギIgG抗
体を組合せる免疫学的測定方法が有利に利用できる。検
体からのApoEの採取源は、このプロテインが産生され
ている生体試料であれば特に限定されないが、採取の容
易性から血清であるのが好ましい。一方、ゲノムDNA
の多型分析を行う場合の生体試料の採取源は、特に制限
されないが、血球成分が採取し易くこれで十分である。
In carrying out the present invention, various methods for measuring apolipoprotein E (A po E) are known, but the present invention is not limited to the method. As one of the methods, an isoelectric focusing method using plasma (Isoelectric fo
cusing electrophoresis is preferably used (eg Clin, Chem. 40, No. 1, 11-13; 19).
94). Further, as a quantification method, an immunological measurement method in which an anti-human goat antibody and an anti-goat IgG antibody labeled with alkaline phosphatase are combined can be advantageously used. The source of ApoE collected from the sample is not particularly limited as long as it is a biological sample in which this protein is produced, but serum is preferable from the viewpoint of ease of collection. On the other hand, genomic DNA
The collection source of the biological sample in the case of performing the polymorphism analysis is not particularly limited, but the blood cell component is easy to collect, and this is sufficient.

【0010】以下、本発明についてさらに具体的に説明
する。 a)骨塩測定;全体および腰部骨塩密度(BMD)は、
高速スキャンモードを使用する二重エネルギーX線吸光
光度分析法(ルナDPX−L. Lunar Pad C
o. WI.USA)によって測定された。全体および腰
部のBMD(A−P図形)の測定における変動係数は、
それぞれ1.5%および0.5%であった。Z−スコアー
は日本人女性20,000人のデーターに基づいてルナ
DPX−Lソフトウェアを使用して算出した。そのZ−
スコアーは、自動的に年令(10才間隔)および体重に
合わせて調整された。 b)骨代謝マーカーおよびカルシウム調製ホルモンの測
定;血清および尿サンプルは、全検体共早朝に取得し
た。完全オステオカルシン(完全オステオカルシンEL
ISAキット、帝人(株)製、東京、日本)、完全PT
H(完全PTH IRMAキット、ニコルス、米国)、
25−OHおよび1.25(OH)2ビタミンD(25−
DにはCPB法、1.25−Dには放射リセプターアッ
セイ法;サンプルを抽出し、精製後測定)の血清レベル
を測定した。尿のデオキシピリジノリン排出量は、HP
LC法(Bone Miner 8、87−96;199
0)によって測定され、またその値を同じサンプルのク
レアチニン濃度によって標準化した。
The present invention will be described in more detail below. a) Bone mineral measurement; total and lumbar bone mineral density (BMD)
Dual energy X-ray absorptiometry using fast scan mode (Luna DPX-L. Lunar Pad C
o. WI USA). The coefficient of variation in the measurement of the BMD (AP figure) of the whole body and the lumbar region is
They were 1.5% and 0.5%, respectively. Z-scores were calculated using Luna DPX-L software based on data from 20,000 Japanese women. That Z-
Scores were automatically adjusted for age (10 year intervals) and weight. b) Measurement of bone metabolism markers and calcium preparation hormones; serum and urine samples were collected early in the morning together with all samples. Complete osteocalcin (Complete osteocalcin EL
ISA kit, Teijin Limited, Tokyo, Japan), complete PT
H (Complete PTH IRMA Kit, Nichols, USA),
25-OH and 1.25 (OH) 2 Vitamin D (25-
The serum level was measured by CPB method for D, radiative receptor assay method for 1.25-D; sample was extracted, and measured after purification). Urinary deoxypyridinoline excretion is HP
LC method (Bone Miner 8, 87-96; 199)
0) and its value was normalized by the creatinine concentration of the same sample.

【0011】c)アポリポプロテインE表現型および脂
質の血清レベルの測定;サンプル調製のため、EDTA
処理したプラズマを全検体から取得し、分析するまで−
50℃にて保存した。アポE表現型の決定手順は、片岡
らの報告(Clin.Chem.40、11−13;19
94)による方法によって行われた。簡単に説明する
と、プラズマサンプルをトウィーン20(Tween
20)およびジチオスレイトールで15分間前処理し、
次いで調製されたサンプルを等電点電気泳動にかけた。
初期焦点化を30分間行い、続いて前焦点化を15分間
実施し、次の焦点化(最終焦点化)を追加的に90分間
行った。イムノブロッティングをカンボらによる方法
(Kamboh et al;J.Lipid Res.2
9、1535−1543;1988)に従って実施し
た。ここで、ヒトアポEに対する第1抗体は、ヤギ中で
産生し、アルカリホスフアターゼで標識化した抗ヤギI
gG抗体はウサギ中で調製した。また、コレステロー
ル、HDL−コレステロールおよびトリグリセリドの血
清レベルを酵素法を用いる自動化分析器により検体で測
定した。 d)統計分析;アポE表現型間におけるBMDおよび生
化学マーカーにおける相違をANOVAを使用してテス
トした。フィッシャーの保護最小有意差(PLSD)テ
ストをBMDまたは他のマーカーに対して、アポEの各
表現型およびZ−スコアーの間の相違関係を評価するた
めに使用した。0.05より小さいP値は、統計学的に
有意義であると考えられる。
C) Determination of apolipoprotein E phenotype and serum levels of lipids; EDTA for sample preparation
Obtain processed plasma from all samples and analyze-
Stored at 50 ° C. The procedure for determining the ApoE phenotype was reported by Kataoka et al. (Clin. Chem. 40, 11-13; 19
94). Briefly, a plasma sample was sampled on Tween 20 (Tween).
20) and dithiothreitol for 15 minutes,
The prepared sample was then subjected to isoelectric focusing.
Initial focusing was done for 30 minutes, followed by pre-focusing for 15 minutes and subsequent focusing (final focusing) for an additional 90 minutes. The immunoblotting method by Kambo et al. (Kamboh et al; J. Lipid Res. 2)
9, 1535-1543; 1988). Here, the first antibody against human apoE was produced in goat and labeled with alkaline phosphatase.
gG antibody was prepared in rabbits. Serum levels of cholesterol, HDL-cholesterol and triglyceride were also measured on the samples by an automated analyzer using the enzymatic method. d) Statistical analysis; Differences in BMD and biochemical markers between ApoE phenotypes were tested using ANOVA. The Fisher's Protected Least Significant Difference (PLSD) test was used to assess the difference between each ApoE phenotype and Z-score against BMD or other markers. P-values less than 0.05 are considered statistically significant.

【0012】[0012]

【実施例】以下、実施例を掲げて本発明をさらに詳細に
説明する。実施例において、無作為に選んだ閉経後の4
7〜82才の日本人女性125人を対象として、前記し
た方法に従って、各々の検体のプロテイン型(遺伝子
型)、オステオカルシン等の骨関連マーカーの濃度およ
び骨密度[DPXによる。測定部位は腰椎(lumba
r spine、L2−4BMD)と全身(総BM
D)]を求めた。
EXAMPLES The present invention will be described in more detail below with reference to examples. In the example, randomly selected postmenopausal 4
According to the method described above, 125 Japanese women aged 7 to 82 were tested according to the method described above, and the concentrations of protein-related (genotype) and bone-related markers such as osteocalcin and bone density [by DPX]. The measurement site is the lumbar spine (lumba
r spine, L2-4BMD) and whole body (total BM
D)] was calculated.

【0013】実施例1 この集団におけるアポE表現型の頻度は、E2/3では1
0.4%、E3/3では67.2%、E2/4では1.6%、E
3/4では20.0%およびE4/4では0.8%であった。こ
れら表現型を3つのカテゴリー、つまりアポE2(E
2/3)、アポE3(E3/3)およびアポE4(E2/43/4
および4/4)に分類した。
Example 1 The frequency of the apoE phenotype in this population is 1 in E 2/3.
0.4%, E 3/3 67.2%, E 2/4 1.6%, E
3/4 was 20.0% and E 4/4 was 0.8%. These phenotypes are classified into three categories, namely ApoE2 (E
2/3 ), Apo E3 (E 3/3 ) and Apo E4 (E 2/4 , 3/4)
And 4/4 ).

【0014】実施例2 それぞれの表現型(Apo2、Apo3およびApo4
の間で年令、体重、身長、全蛋白、クレアチニン、カル
シウム、リンおよび尿中カルシウムの測定結果を下記表
1に示した。
Example 2 Respective phenotypes (A po E 2 , A po E 3 and A po E 4 )
Table 1 below shows the measurement results of age, weight, height, total protein, creatinine, calcium, phosphorus, and urinary calcium among the animals.

【0015】[0015]

【表1】 [Table 1]

【0016】表中、アポE2およびE3はそれぞれアポ
2/3およびE3/3を意味する。アポE4グループはアポ
2/4(n=2)、アポ3/4(n=25)、アポE
4/4(n=1)を有する検体を包含している。アポE4
グループにおける体重は、フィッシャーのPLSDでの
P値は0.05であり、E3グループより高い値を示し
ている。YSMは月経閉止後の期間(年)を意味し、
( )内は標準誤差を示す。前記表1に示されるとお
り、年令、身長および月経閉止後の期間は、これら3つ
のカテゴリー間に有意差は認められなかった。しかし、
E4グループの体重(54.0±1.5kg)はE3グル
ープの体重(50.8±0.8kg)よりも重い傾向であ
った。
In the table, apo E2 and E3 mean apo E 2/3 and E 3/3 , respectively. Apo E4 Group has Apo E 2/4 (n = 2), Apo 3/4 (n = 25), Apo E
Includes specimens with 4/4 (n = 1). Apo E4
Regarding the body weight in the group, the P value by Fisher's PLSD is 0.05, which is higher than that in the E3 group. YSM means the period (years) after menopause,
Standard error is shown in parentheses. As shown in Table 1, there was no significant difference in age, height and postmenopausal period among these three categories. But,
The weight of the E4 group (54.0 ± 1.5 kg) tended to be heavier than that of the E3 group (50.8 ± 0.8 kg).

【0017】実施例3 骨密度とApoEの表現型のタイプとの関係を下記表2に
示した。
Example 3 The relationship between bone density and ApoE phenotype is shown in Table 2 below.

【0018】[0018]

【表2】 [Table 2]

【0019】表中、LBMDおよびTBMDは、それぞ
れ腰部椎骨および全身のBMDを示し、それぞれの測定
サイトにおけるZ−スコアーを示した。フィッシャーP
LSDによるAl−P活性は、アポE4グループでは、
アポE3グループよりも高い値を示している。尿のデオ
キシピリジノリン(DPD)の単位はピコモル/マイク
ロモル・クレアチニンであり、( )内は標準誤差を示
す。前記表2から明らかなように、これら3つのグルー
プにおける腰部のBMD値は、E2(1.018±0.0
69g/cm2)、E3(0.917±0.019g/c
2)およびE4(0.857±0.031g/cm2
(p=0.029)の値で有意差が認められた。また、
同じ傾向が全身BMDにおいても認められた(p=0.
034)。E4(196±14IU)におけるアルカリ
ホスフアターゼ活性の血清レベルは、E3(169±5
IU)の場合よりも高かった(p=0.023、フィッ
シャーのPLSDによる)。しかし、骨塩マーカーの血
清または尿レベルでは、有意差は認められなかった。E
4グループにおける血清コレステロールは、他の2つの
グループの場合よりも高く(p=0.027)、そして
E4におけるトリグリセリドレベルは、アポE3グルー
プの場合よりも高かった(p=0.049)。アポE4
の骨減少が起こるメカニズムは明確ではないが、アポリ
ポプロテインE表現型は骨減少の新しい遺伝子マーカー
になると確信できる。
In the table, LBMD and TBMD represent the lumbar vertebrae and whole body BMD, respectively, and the Z-score at each measurement site. Fisher P
Al-P activity by LSD is
The value is higher than that of the Apo E3 group. The unit of urinary deoxypyridinoline (DPD) is picomole / micromole creatinine, and the standard error is shown in parentheses. As is clear from Table 2 above, the BMD value of the lumbar region in these three groups was E2 (1.018 ± 0.0).
69 g / cm 2 ), E3 (0.917 ± 0.019 g / c)
m 2 ) and E4 (0.857 ± 0.031 g / cm 2 )
A significant difference was recognized in the value of (p = 0.29). Also,
The same tendency was observed in whole body BMD (p = 0.
034). Serum levels of alkaline phosphatase activity in E4 (196 ± 14 IU) were E3 (169 ± 5).
IU) (p = 0.023, by Fisher's PLSD). However, there were no significant differences in serum or urine levels of bone mineral markers. E
Serum cholesterol in the four groups was higher than in the other two groups (p = 0.027) and triglyceride levels in E4 were higher than in the apo E3 group (p = 0.049). Apo E4
Although the mechanism by which bone loss occurs is unclear, we believe that the apolipoprotein E phenotype may be a novel genetic marker for bone loss.

【0020】実施例4 ApoEの表現型のタイプと脂質の血清レベルとの関係を
下記表3に示した。
[0020] shows the relationship between Example 4 A po phenotype types and lipid serum levels of E in the following Table 3.

【0021】[0021]

【表3】 [Table 3]

【0022】3つのアポEグループにおける血清コレス
テロールレベルは、ANOVAの測定により有意差が認
められる。一方、血清トリグリセリドレベルは、フィッ
シャーPLSDによりアポE3およびアポE4間におい
て有意差がある。( )内は標準誤差を示す。
Serum cholesterol levels in the three ApoE groups are significantly different by ANOVA measurements. On the other hand, serum triglyceride levels are significantly different between Apo E3 and Apo E4 by Fisher PLSD. Standard error is shown in parentheses.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ヒト検体中のアポリポプロテインE(A
poE)の多型について測定し、それと骨密度に基づく骨
疾患とを関連付けることを特徴とする、骨密度に基づく
骨疾患罹患リスクの予測方法。
1. Apolipoprotein E (A in human samples
A method for predicting a risk of developing a bone disease based on bone density, which comprises measuring the polymorphism of poE ) and associating it with a bone disease based on bone density.
【請求項2】 ヒト検体中のアポリポプロテインE(A
poE)の表現型遺伝子の多型について測定し、それと骨
密度に基づく骨疾患とを関連付けることを特徴とする、
骨密度に基づく骨疾患罹患リスクの予測方法。
2. Apolipoprotein E (A in human samples
measuring the polymorphism of the phenotypic gene of po E) and associating it with the bone disease based on bone density,
A method for predicting the risk of developing a bone disease based on bone density.
【請求項3】 前記遺伝子の多型が、Apo2/2、Apo
2/3、Apo2/4、Apo3/3、Apo3/4およびApo
4/4の6種の型である請求項2記載の予測方法。
3. The polymorphism of the gene is A po E 2/2 , A po
E 2/3 , A po E 2/4 , A po E 3/3 , A po E 3/4 and A po E
The prediction method according to claim 2, wherein there are 6 types of 4/4 .
【請求項4】 前記遺伝子型がApo4(Apo2/4、A
po3/4またはApo4/4)を低骨密度型に基づく骨疾患
罹患高リスク型と分類し、Apo2(Apo 2/2またはA
po2/3)およびApo3(Apo3/3)を非低密度型に
基づく骨疾患罹患低リスク型と分類する請求項1〜3の
いずれか記載の予測方法。
4. The genotype is ApoEFour(ApoE2/4, A
poE3/4Or ApoE4/4) Bone disease based on low bone density type
Classified as high risk type, ApoETwo(ApoE 2/2Or A
poE2/3) And ApoEThree(ApoE3/3) To non-low density type
The bone disease-related low risk type based on
Prediction method according to any one.
【請求項5】 前記骨疾患が骨粗鬆症である請求項1〜
4のいずれか記載の予測方法。
5. The method according to claim 1, wherein the bone disease is osteoporosis.
4. The prediction method according to any one of 4 above.
JP11607196A 1996-05-10 1996-05-10 Forecasting method for bone disease morbific risk Abandoned JPH09299337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11607196A JPH09299337A (en) 1996-05-10 1996-05-10 Forecasting method for bone disease morbific risk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11607196A JPH09299337A (en) 1996-05-10 1996-05-10 Forecasting method for bone disease morbific risk

Publications (1)

Publication Number Publication Date
JPH09299337A true JPH09299337A (en) 1997-11-25

Family

ID=14678001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11607196A Abandoned JPH09299337A (en) 1996-05-10 1996-05-10 Forecasting method for bone disease morbific risk

Country Status (1)

Country Link
JP (1) JPH09299337A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022863A1 (en) * 2000-09-14 2002-03-21 Applied Cell Biotechnologies, Inc. Method of diagnosing osteoporosis and/or estimating risk of osteoporosis fracture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022863A1 (en) * 2000-09-14 2002-03-21 Applied Cell Biotechnologies, Inc. Method of diagnosing osteoporosis and/or estimating risk of osteoporosis fracture

Similar Documents

Publication Publication Date Title
Austin et al. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk.
Willing et al. Bone mineral density and its change in white women: estrogen and vitamin D receptor genotypes and their interaction
Miyao et al. Association of methylenetetrahydrofolate reductase (MTHFR) polymorphism with bone mineral density in postmenopausal Japanese women
Reed et al. Identification and characterization of a gene with base substitutions associated with the absorptive hypercalciuria phenotype and low spinal bone density
Humphries et al. A common DNA polymorphism of the low-density lipoprotein (LDL) receptor gene and its use in diagnosis
Kontula et al. Apolipoprotein E polymorphism determined by restriction enzyme analysis of DNA amplified by polymerase chain reaction: convenient alternative to phenotyping by isoelectric focusing
Eichner et al. Phenotypic effects of apolipoprotein structural variation on lipid profiles. III. Contribution of apolipoprotein E phenotype to prediction of total cholesterol, apolipoprotein B, and low density lipoprotein cholesterol in the healthy women study.
Hasstedt et al. Major locus inheritance of apolipoprotein B in Utah pedigrees
Babu et al. Bone mass effects of a BMP4 gene polymorphism in postmenopausal women
Lee et al. A comprehensive analysis of common genetic variation in prolactin (PRL) and PRL receptor (PRLR) genes in relation to plasma prolactin levels and breast cancer risk: the multiethnic cohort
US5691153A (en) Genetic markers to detect high bone mass
Kaygusuz et al. Does genotype–phenotype correlation exist in vitamin D-dependent Rickets type IA: report of 13 new cases and review of the literature
US20240110927A1 (en) End stage renal disease biomarker panel
Gerdes et al. Regional and hormone‐dependent effects of apolipoprotein E genotype on changes in bone mineral in perimenopausal women
Berg et al. “Variability gene” effect of cholesteryl ester transfer protein (CETP) genes
Pluijm et al. Effects of gender and age on the association of apolipoprotein E ε4 with bone mineral density, bone turnover and the risk of fractures in older people
Olofsson et al. Genetic links between the acute‐phase response and arthritis development in rats
Rauh et al. Genetic evidence from 7 families that the apolipoprotein B gene is not involved in familial combined hyperlipidemia
Köttgen et al. The association of podocin R229Q polymorphism with increased albuminuria or reduced estimated GFR in a large population-based sample of US adults
Keen et al. Genetic factors in osteoporosis: what are the implications for prevention and treatment?
JPH09299337A (en) Forecasting method for bone disease morbific risk
Andrew et al. Linkage and association for bone mineral density and heel ultrasound measurements with a simple tandem repeat polymorphism near the osteocalcin gene in female dizygotic twins
Somekawa et al. Relationship between apolipoprotein E polymorphism, menopausal symptoms, and serum lipids during hormone replacement therapy
Sapir-Koren et al. Genetic effects of estrogen receptor α and collagen IA1 genes on the relationships of parathyroid hormone and 25 hydroxyvitamin D with bone mineral density in Caucasian women
Eichner et al. Phenotypic effects of apolipoprotein structural variation on lipid profiles. I. APO H and quantitative lipid measures in the healthy women study

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050704

A762 Written abandonment of application

Effective date: 20050720

Free format text: JAPANESE INTERMEDIATE CODE: A762