JPH09298837A - Capacitor device - Google Patents

Capacitor device

Info

Publication number
JPH09298837A
JPH09298837A JP8107845A JP10784596A JPH09298837A JP H09298837 A JPH09298837 A JP H09298837A JP 8107845 A JP8107845 A JP 8107845A JP 10784596 A JP10784596 A JP 10784596A JP H09298837 A JPH09298837 A JP H09298837A
Authority
JP
Japan
Prior art keywords
voltage
capacitors
power storage
storage device
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8107845A
Other languages
Japanese (ja)
Inventor
Shozo Kato
昇三 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8107845A priority Critical patent/JPH09298837A/en
Publication of JPH09298837A publication Critical patent/JPH09298837A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniformly distribute voltage without increasing the number of capacitors by connecting a constant voltage element in parallel to each capacitor which has breakdown voltage lower than the allowable voltage of the capacitor. SOLUTION: Capacitors C1 to C5 are connected in series and Zener diodes ZD1 to ZD5 as constant voltage elements are connected in parallel to each capacitor. Breakdown voltage of Zener diodes ZD1 to ZD5 is lower than the allowable voltage of the capacitors C1 to C5. When the capacitors C1 to C5 are charged at the same time, a voltage inversely proportional to each impedance is applied to the capacitors C1 to C5. When the terminal voltage of each capacitor C1 to C5 reaches the breakdown voltage of Zener diodes ZD1 to ZD5, the Zener diodes begin to conduct, and the voltage applied to the capacitors C1 to C5 is restricted below the allowable voltage and is charged to other capacitors C1 to C5. In this way, all the capacitors C1 to C5 are charged to the breakdown voltage of the Zener diodes ZD1 to ZD5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池等の発電
電力を蓄電する複数の蓄電器からなる蓄電装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power storage device including a plurality of power storage devices for storing generated power such as solar cells.

【0002】[0002]

【従来の技術】電光式道路表示器、電光式看板、門灯等
の表示装置では、発光素子に発光ダイオード(LED)
を使用したものがある。これらの表示装置は、太陽電池
を備えており、昼間に太陽電池の発生電力を蓄電器に充
電しておき、夜間に蓄電器から必要な電力を取り出して
表示に供するように構成されている。
2. Description of the Related Art In a display device such as an electric road indicator, an electric signboard, and a gate light, a light emitting diode (LED) is used as a light emitting element.
There is one that uses. These display devices are provided with a solar cell, and are configured to charge the storage battery with the power generated by the solar cell in the daytime and take out necessary power from the storage battery for display at night.

【0003】低耐圧の蓄電器を用いて高電圧用の蓄電装
置を構成する場合、複数の蓄電器を直列接続することが
行われる。この場合、個々の蓄電器に印加される電圧を
均等にするため、従来では、特性(静電容量)の近い蓄
電器を選別しこれらを組み合わせて蓄電装置を構成して
いる。
When a high-voltage power storage device is constructed using a low-voltage power storage device, a plurality of power storage devices are connected in series. In this case, in order to equalize the voltages applied to the individual power storage devices, conventionally, power storage devices having similar characteristics (capacitance) are selected and combined to form a power storage device.

【0004】しかし、静電容量の近い値をもつ蓄電器同
士を組み合わせたとしても、個々の蓄電器には静電容量
や漏れ電流等の特性上のばらつきがあり、均等な電圧配
分は困難である。このため、定格電圧も単純に直列数倍
にすることができず、ある程度の余裕を考慮することが
必要になり、従って単純計算による個数よりも多くの蓄
電器が必要になる。
However, even if capacitors having similar capacitances are combined, individual capacitors have variations in characteristics such as capacitance and leakage current, and it is difficult to evenly distribute the voltage. For this reason, the rated voltage cannot be simply multiplied by several in series, and it is necessary to consider a certain amount of margin. Therefore, more capacitors than the number calculated by simple calculation are required.

【0005】一方、図4に示すように、蓄電器自体の特
性のばらつきを前提にして、各蓄電器C1〜C5のそれ
ぞれに分圧抵抗r1〜r5を並列接続して電圧配分の均
等化を図った蓄電装置が知られている。
On the other hand, as shown in FIG. 4, voltage distribution resistors r1 to r5 are connected in parallel to each of the capacitors C1 to C5 on the premise of variations in the characteristics of the capacitors themselves to equalize the voltage distribution. A power storage device is known.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記抵抗分圧
回路を用いた蓄電器において、電圧分配の均等性を良く
するためには、抵抗r1〜r5の抵抗値を低くする必要
があるが、抵抗値を低くすると電力を長時間保存する場
合に抵抗素子を通じて放電される電力が大きくなり、蓄
電効率が悪くなる。従って、抵抗素子を通じて放電され
る電力分を補うために多くの蓄電器が必要になる。多く
の蓄電器使用することは、コスト的に高くなり、好まし
くない。
However, in order to improve the uniformity of voltage distribution in the capacitor using the resistance voltage dividing circuit, it is necessary to lower the resistance values of the resistors r1 to r5. When the value is lowered, the electric power discharged through the resistance element increases when the electric power is stored for a long time, and the storage efficiency deteriorates. Therefore, many capacitors are needed to supplement the electric power discharged through the resistance element. It is not preferable to use many capacitors because of high cost.

【0007】本発明の目的は、蓄電器の個数を増加させ
ることなく電圧分配を均等に行うことができる蓄電装置
を提供することにある。
An object of the present invention is to provide a power storage device capable of uniformly distributing voltage without increasing the number of power storage devices.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明は、複数の蓄電器を直列接続し
た蓄電装置において、各蓄電器と並列に降伏電圧が蓄電
器の許容電圧以下である定電圧素子を接続して構成され
る。この請求項1に記載の発明によれば、直列接続され
た複数の蓄電器に同時に充電していくと、充電器のイン
ピーダンスのそ相違により各蓄電器には各インピーダン
スに反比例した電圧が配分される。そして、各蓄電器の
両端電圧が定電圧素子の降伏電圧に到達すると、定電圧
素子の導通が始まり、蓄電器に加わる電圧を許容電圧以
下に制限し、他の蓄電器に充電が行われる。以下同様に
して、全ての蓄電器はそれぞれの蓄電器に並列接続され
た定電圧素子の降伏電圧まで充電される。また、降伏電
圧に至らない電圧では、定電圧素子には電流がほとんど
流れないので、低い電圧の場合に抵抗分配器のような並
列素子による損失はなく電力保存性能は良くなる。更
に、定電圧素子の降伏電圧の選定次第でディレーティン
グを少なくすることができる。
In order to solve the above-mentioned problems, the invention according to claim 1 is an electricity storage device in which a plurality of electricity storage devices are connected in series, and when the breakdown voltage is in parallel with each electricity storage device and is equal to or less than the allowable voltage of the electricity storage device. It is configured by connecting a certain constant voltage element. According to the invention described in claim 1, when a plurality of capacitors connected in series are charged at the same time, a voltage inversely proportional to each impedance is distributed to each capacitor due to the difference in impedance of the charger. Then, when the voltage across each capacitor reaches the breakdown voltage of the constant voltage element, conduction of the constant voltage element begins, the voltage applied to the capacitor is limited to the allowable voltage or less, and another capacitor is charged. In the same manner, all the capacitors are charged to the breakdown voltage of the constant voltage element connected in parallel to each capacitor. Further, at a voltage that does not reach the breakdown voltage, almost no current flows in the constant voltage element, so that in the case of a low voltage, there is no loss due to a parallel element such as a resistor divider, and the power storage performance is improved. Furthermore, the derating can be reduced depending on the selection of the breakdown voltage of the constant voltage element.

【0009】請求項2記載の発明は、複数の蓄電器を直
列接続した蓄電装置において、各蓄電器と並列に降伏電
圧が蓄電器の許容電圧以下である発光ダイオードを接続
して構成される。この請求項2に記載の発明は、許容電
圧が2〜3V程度の蓄電器に対して、一般に発光ダイオ
ードは比較的良好な定電圧特性を有し、電流容量的、価
格的にも本発明に適している。発光ダイオードの種類に
よっては、発光ダイオードと直列にダイオードを組み合
わせることにより、蓄電器の許容電圧とほぼ一致させる
ことも可能になる。以上のように、殆ど単純計算による
個数と同等の個数での蓄電器で蓄電装置を実現でき、従
来より低価格で実現できる。また、このような構成によ
り、過電圧保護回路も兼用でき、更に、コスト的にも有
利になる。
According to a second aspect of the present invention, in a power storage device in which a plurality of power storage devices are connected in series, a light emitting diode whose breakdown voltage is equal to or lower than an allowable voltage of the power storage device is connected in parallel with each power storage device. In the invention according to claim 2, the light emitting diode generally has a relatively good constant voltage characteristic with respect to a capacitor having an allowable voltage of about 2 to 3 V, and is suitable for the present invention in terms of current capacity and price. ing. Depending on the type of the light emitting diode, by combining the light emitting diode with the diode in series, it is possible to make the voltage substantially equal to the allowable voltage of the capacitor. As described above, the power storage device can be realized by the number of power storage devices that is almost the same as the number of power storage devices calculated by simple calculation, and can be realized at a lower cost than before. Further, with such a configuration, an overvoltage protection circuit can also be used, which is also advantageous in terms of cost.

【0010】請求項3に記載の発明は、複数の蓄電器を
直列接続した蓄電装置において、各蓄電器に対応して設
けられた分圧回路と、前記各分圧回路の分圧電圧を入力
とし且つ出力端子が各蓄電器ごとに接続された複数の電
圧フォロア回路とを備えて構成される。この請求項3に
記載の発明によれば、分圧回路の分圧電圧は均等であ
り、電圧フォロア回路は分圧回路による電圧と同等の電
圧を発生するよう動作し、出力電圧を均等にするよう出
力電流を流し、直列接続された各蓄電器に対等に電圧を
分配する。このとき、電圧フォロア回路では、各直列蓄
電器のばらつき分に相当する電流が流れるだけであるか
ら、少ない電力で済み大きな電力損失にはならない。ま
た、分圧回路の抵抗に高抵抗を使用することにより、電
力損失を少なく抑えることができる。以上のように、正
確な電圧分配が可能であり、単純計算にによる個数と同
等の蓄電器で組み蓄電器回路を実現でき、許容電圧も単
純に計算した値をそのままの値で利用できるので、電圧
利用度を向上でき、蓄電器の個数も少なく済むことにな
る。
According to a third aspect of the present invention, in a power storage device in which a plurality of power storage devices are connected in series, a voltage dividing circuit provided corresponding to each power storage device and a divided voltage of each voltage dividing circuit are input. The output terminal includes a plurality of voltage follower circuits connected to each of the capacitors. According to the third aspect of the present invention, the divided voltage of the voltage dividing circuit is equal, and the voltage follower circuit operates so as to generate a voltage equal to the voltage of the voltage dividing circuit and equalizes the output voltage. Thus, the output current is flowed, and the voltage is equally distributed to the capacitors connected in series. At this time, in the voltage follower circuit, only a current corresponding to the variation of each series storage device flows, so that a small amount of power is sufficient and a large power loss does not occur. Further, by using a high resistance as the resistance of the voltage dividing circuit, the power loss can be suppressed to be small. As described above, accurate voltage distribution is possible, a built-in battery circuit can be realized with the same number of batteries as the number calculated by simple calculation, and the allowable voltage can also be used as it is as a calculated value. Therefore, the number of power storage devices can be reduced.

【0011】[0011]

【発明の実施の形態】次に、本発明の好適な実施の形態
を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments of the present invention will be described with reference to the drawings.

【0012】(I)第1の実施の形態 図1に、本発明の第1の実施の形態に係る蓄電装置の回
路構成が示されている。図1において、蓄電器C1〜C5
は直列に接続され、各蓄電器C1〜C5には、定電圧素子
としてツェナーダイオードZD1〜ZD5並列に接続され
ている。ツェナーダイオードZD1〜ZD5の降伏電圧は
蓄電器C1〜C5の許容電圧以下である。なお、蓄電器C
1〜C5は同じ静電容量であり、ツェナーダイオードZD
1〜ZD5は同じ特性である。
(I) First Embodiment FIG. 1 shows a circuit configuration of a power storage device according to a first embodiment of the present invention. In FIG. 1, capacitors C1 to C5
Are connected in series, and zener diodes ZD1 to ZD5 are connected in parallel to the capacitors C1 to C5 as constant voltage elements. The breakdown voltage of the Zener diodes ZD1 to ZD5 is less than or equal to the allowable voltage of the capacitors C1 to C5. In addition, the battery C
1 to C5 have the same capacitance, Zener diode ZD
1 to ZD5 have the same characteristics.

【0013】上記図1の回路において、蓄電器C1〜C5
に同時に充電していくと、インピーダンスの相違によ
り、各蓄電器C1〜C5には各インピーダンスに反比例し
た電圧が印加される。各蓄電器C1〜C5の端子電圧がツ
ェナーダイオードZD1〜ZD5の降伏電圧に到達する
と、ツェナーダイオードZD1〜ZD5の導通が始まり、
蓄電器C1〜C5に加わる電圧を許容電圧以下に制限する
と共に、他のC1〜C5に充電する。これにより、全ての
蓄電器C1〜C5は各々の蓄電器C1〜C5に並列接続され
たツェナーダイオードZD1〜ZD5の降伏電圧まで充電
される。
In the circuit of FIG. 1, the capacitors C1 to C5 are used.
When they are charged at the same time, due to the difference in impedance, a voltage inversely proportional to each impedance is applied to each capacitor C1 to C5. When the terminal voltage of each of the capacitors C1 to C5 reaches the breakdown voltage of the Zener diodes ZD1 to ZD5, the Zener diodes ZD1 to ZD5 start conducting,
The voltage applied to the capacitors C1 to C5 is limited to the allowable voltage or lower, and the other capacitors C1 to C5 are charged. As a result, all the capacitors C1 to C5 are charged to the breakdown voltage of the Zener diodes ZD1 to ZD5 connected in parallel to the capacitors C1 to C5.

【0014】また、降伏電圧に至らない電圧では、ツェ
ナーダイオードZD1〜ZD5に電流が殆ど流れないの
で、抵抗分配器のような並列素子による損失は少なく、
電力保存性能は良くなる。更に、ツェナーダイオードの
降伏電圧の選定次第でディレーテェングを少なくするこ
とができる。
Further, at a voltage which does not reach the breakdown voltage, almost no current flows through the Zener diodes ZD1 to ZD5, so that a loss due to a parallel element such as a resistance divider is small,
The power storage performance is improved. Furthermore, depending on the selection of the breakdown voltage of the Zener diode, the delaying can be reduced.

【0015】(II)第2の実施の形態 図2に、本発明の第2の実施の形態を示す。図2におい
て、蓄電器C1〜C5は直列に接続され、各蓄電器C1〜
C5には、定電圧素子として発光ダイオードLED1〜L
ED5が並列に接続されている。発光ダイオードLED1
〜LED5の降伏電圧は、蓄電器C1〜C5の許容電圧以
下である。なお、蓄電器C1〜C5は同じ静電容量であり
発光ダイオードLED1〜LED5は同じ特性である。
(II) Second Embodiment FIG. 2 shows a second embodiment of the present invention. In FIG. 2, capacitors C1 to C5 are connected in series and each capacitor C1 to C5
C5 has a light emitting diode LED1 to L as a constant voltage element.
ED5 is connected in parallel. Light emitting diode LED1
The breakdown voltage of LED5 is less than or equal to the allowable voltage of the capacitors C1 to C5. The capacitors C1 to C5 have the same capacitance, and the light emitting diodes LED1 to LED5 have the same characteristics.

【0016】上記図2の回路において、許容電圧が2〜
3V程度の蓄電器C1〜C5に対して、発光ダイオードL
ED1〜LED5は比較的良好な定電圧特性を有し、静電
容量的、価格的にも定電圧素子として適している。発光
ダイオードLED1〜LED5の種類によっては、各発光
ダイオードLED1〜LED5と直列にダイオードを組み
合わせることにより蓄電器C1〜C5の許容電圧とほぼ一
致させることも可能になる。
In the circuit of FIG. 2, the allowable voltage is 2 to
The light-emitting diode L is connected to the capacitors C1 to C5 of about 3V.
The ED1 to LED5 have relatively good constant voltage characteristics and are suitable as constant voltage elements in terms of capacitance and price. Depending on the type of the light emitting diodes LED1 to LED5, by combining the light emitting diodes LED1 to LED5 with a diode in series, it is possible to substantially match the allowable voltage of the capacitors C1 to C5.

【0017】この実施の形態によれば、単純計算による
個数と同等の蓄電器で蓄電装置を実現でき、従来より低
価格で実現できる。また、上記のような構成により、過
電圧保護回路も兼用でき、更にコスト的にも有利であ
る。
According to this embodiment, a power storage device can be realized with the same number of power storage devices as the number calculated by simple calculation, and can be realized at a lower cost than before. Further, with the above-described configuration, the overvoltage protection circuit can also be used, which is advantageous in terms of cost.

【0018】(III)第3の実施の形態 図3に、本発明の第3の実施の形態を示す。図3におい
て、蓄電器C1〜C5は直列に接続され、蓄電器C1〜C5
には分圧回路として素子R1〜R5が並列に接続されてい
る。各抵抗素子R1〜R4からの出力は、電圧フォロア回
路A1〜A4の入力端子に供給され、該電圧フォロア回路
A1〜A4の出力は、各蓄電器C1〜C4に供給される。な
お、蓄電器C1〜C5は同じ静電容量であり、抵抗R1〜
R5は同じ抵抗値であり、電圧フォロアA1〜A4は同じ
特性である。
(III) Third Embodiment FIG. 3 shows a third embodiment of the present invention. In FIG. 3, capacitors C1 to C5 are connected in series, and capacitors C1 to C5 are connected.
The elements R1 to R5 are connected in parallel as a voltage dividing circuit. The outputs from the resistance elements R1 to R4 are supplied to the input terminals of the voltage follower circuits A1 to A4, and the outputs of the voltage follower circuits A1 to A4 are supplied to the capacitors C1 to C4. The capacitors C1 to C5 have the same capacitance, and the resistors R1 to
R5 has the same resistance value, and the voltage followers A1 to A4 have the same characteristics.

【0019】上記図3の回路において、蓄電器C1〜C5
を充放電する場合に、蓄電器C1 〜C5の静電容量や漏
れ電流やインピーダンスにばらつきがあると、各蓄電器
C1〜C5 の電圧が均等にならず、これらのばらつきに
応じて各蓄電器C1〜C5の分配電圧もばらつくことにな
る。しかし抵抗R1〜R5の出力端子には均等に分圧電圧
が出力される。電圧フォロア回路A1〜A4からの出力を
入力とし出力にも同等の電圧を発生するよう動作し、出
力電圧を均等にするように出力を流す。こうして直列接
続された各蓄電器C1〜C5に均等に電圧を分配する。こ
のとき、電圧フォロア回路A1〜A4では、各直列蓄電器
C1〜C5のばらつき分に担当する電流が流れるだけであ
るから、少ない電力で済み、大きな電力損失にはならな
い。また、抵抗素子R1〜R5に高抵抗のものを利用する
ことにより、電力損失を少なく押さえることができる。
In the circuit shown in FIG. 3, the capacitors C1 to C5 are used.
In the case of charging / discharging, if there are variations in the capacitance, leakage current, or impedance of the capacitors C1 to C5, the voltages of the capacitors C1 to C5 will not be uniform, and the capacitors C1 to C5 will vary according to these variations. The distribution voltage of will also vary. However, the divided voltage is evenly output to the output terminals of the resistors R1 to R5. The outputs from the voltage follower circuits A1 to A4 are input to operate to generate an equivalent voltage at the output, and the output is supplied so as to make the output voltage uniform. Thus, the voltage is evenly distributed to the capacitors C1 to C5 connected in series. At this time, in the voltage follower circuits A1 to A4, only the currents responsible for the variations of the series capacitors C1 to C5 flow, so that a small amount of electric power is sufficient and a large power loss does not occur. In addition, by using high resistance elements as the resistance elements R1 to R5, it is possible to suppress power loss.

【0020】以上のように、正確な電圧分配が可能であ
り、単純計算による個数と同等の個数の蓄電器で蓄電装
置を実現でき、許容電圧も単純に計算した値をそのまま
の値で利用できるので、電圧利用度を向上でき、蓄電器
の個数も少なくて済むことになる。よって、コスト的に
も有利になる。
As described above, since accurate voltage distribution is possible, a power storage device can be realized with the same number of capacitors as the number calculated by simple calculation, and the allowable voltage can also be used as it is as a value that is simply calculated. The voltage utilization can be improved, and the number of capacitors can be reduced. Therefore, it is advantageous in terms of cost.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
各蓄電器と並列に定電圧素子を接続したり、あるいは、
各分圧回路からの出力と各蓄電器の入力との間に電圧フ
ォロア回路を設けているので、蓄電器の個数を増加させ
ることなく電圧分配を均等に行うことができる。
As described above, according to the present invention,
Connect a constant voltage element in parallel with each capacitor, or
Since the voltage follower circuit is provided between the output from each voltage dividing circuit and the input of each capacitor, voltage distribution can be performed uniformly without increasing the number of capacitors.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態に係る蓄電装置の回
路構成図である。
FIG. 1 is a circuit configuration diagram of a power storage device according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態に係る蓄電装置の回
路構成図である
FIG. 2 is a circuit configuration diagram of a power storage device according to a second embodiment of the present invention.

【図3】本発明の第3の実施の形態に係る蓄電装置の回
路構成図である。
FIG. 3 is a circuit configuration diagram of a power storage device according to a third embodiment of the present invention.

【図4】従来の蓄電装置の回路構成図である。FIG. 4 is a circuit configuration diagram of a conventional power storage device.

【符号の説明】[Explanation of symbols]

C1〜C5 蓄電器 ZD1〜ZD5 ツェナーダイオード LED1〜LED5 発光ダイオード r1〜r5 抵抗素子 R1〜R5 抵抗素子 A1〜A4 電圧フォロア C1 to C5 Electric storage device ZD1 to ZD5 Zener diode LED1 to LED5 Light emitting diode r1 to r5 Resistance element R1 to R5 Resistance element A1 to A4 Voltage follower

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の蓄電器を直列接続した蓄電装置に
おいて、各蓄電器と並列に、降伏電圧が蓄電器の許容電
圧以下である定電圧素子が接続されていることを特徴と
する蓄電装置。
1. A power storage device having a plurality of power storage devices connected in series, wherein a constant voltage element having a breakdown voltage equal to or lower than an allowable voltage of the power storage device is connected in parallel with each power storage device.
【請求項2】 複数の蓄電器を直列接続した蓄電装置に
おいて、各蓄電器と並列に、降伏電圧が蓄電器の許容電
圧以下である発光ダイオードが接続されていることを特
徴とする蓄電装置。
2. A power storage device having a plurality of power storage devices connected in series, wherein a light emitting diode having a breakdown voltage equal to or lower than an allowable voltage of the power storage device is connected in parallel with each power storage device.
【請求項3】 複数の蓄電器を直列接続した蓄電装置に
おいて、各蓄電器に対応して設けられた分圧回路と、こ
の各分圧回路の分圧電圧を入力として出力端子が各蓄電
器ごとに接続された複数の電圧フォロア回路とを備えた
ことを特徴とする蓄電装置。
3. In a power storage device in which a plurality of power storage devices are connected in series, a voltage dividing circuit provided corresponding to each power storage device and an output terminal connected to each power storage device with the divided voltage of each voltage dividing circuit as an input. Power storage device including a plurality of voltage follower circuits that are provided.
JP8107845A 1996-04-26 1996-04-26 Capacitor device Pending JPH09298837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8107845A JPH09298837A (en) 1996-04-26 1996-04-26 Capacitor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8107845A JPH09298837A (en) 1996-04-26 1996-04-26 Capacitor device

Publications (1)

Publication Number Publication Date
JPH09298837A true JPH09298837A (en) 1997-11-18

Family

ID=14469525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8107845A Pending JPH09298837A (en) 1996-04-26 1996-04-26 Capacitor device

Country Status (1)

Country Link
JP (1) JPH09298837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289025A (en) * 1997-04-16 1998-10-27 Omron Corp Power conditioner for solar power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289025A (en) * 1997-04-16 1998-10-27 Omron Corp Power conditioner for solar power generation system

Similar Documents

Publication Publication Date Title
US9136714B2 (en) Method and apparatus for performing active balancing control with aid of voltage information sharing
US20110140662A1 (en) Balancing system for a battery pack
US9270127B2 (en) Method and system for balancing electrical cells
US9479000B2 (en) Battery pack including different kinds of cells and power device including the same
US20140356656A1 (en) Intelligent Battery Management System and Method for Optimizing Battery Set to the Best Performance
US20200176825A1 (en) System and method for assigning unique number to cell module controller
US9024583B2 (en) Battery pack with analog switch
US20140159663A1 (en) Battery control circuit
TW201138267A (en) Current balancing device for parallel batteries and controlling method thereof
KR20190048972A (en) Starting battery system for cell balancing of Lithium battery pack and capacitor
JP2003087988A (en) Power storage
US20150035490A1 (en) Battery management system and method
CN113300005A (en) Electric quantity detection device and method and electronic equipment
JP2010045963A (en) Battery circuit and battery pack
KR102533201B1 (en) Voltage equalization device
CN109103959A (en) More battery self-reacting devices and electronic equipment
CN104901377A (en) Energy-storage charging equipment and mobile charging equipment
CN107329019A (en) A kind of lithium battery protection board electric discharge overcurrent protection test device
JPH09298837A (en) Capacitor device
JP2018117438A (en) Power source module with lithium ion capacitor
US9912218B2 (en) Potential definition of input lines of an inverter
US11955832B2 (en) Control circuit, power supply structure, and electronic cigarette
KR20100017325A (en) Charging circuit for charging two batteries
KR102126934B1 (en) Battery Cell Balance Apparatus
CN203596961U (en) Light-emitting diode (LED) drive circuit