JPH09298418A - High gain planar antenna - Google Patents

High gain planar antenna

Info

Publication number
JPH09298418A
JPH09298418A JP11343096A JP11343096A JPH09298418A JP H09298418 A JPH09298418 A JP H09298418A JP 11343096 A JP11343096 A JP 11343096A JP 11343096 A JP11343096 A JP 11343096A JP H09298418 A JPH09298418 A JP H09298418A
Authority
JP
Japan
Prior art keywords
dielectric layer
radiation
dielectric
gain
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11343096A
Other languages
Japanese (ja)
Inventor
Rai Iwai
雷 祝
Ikuhiro Shiroishi
郁裕 城石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11343096A priority Critical patent/JPH09298418A/en
Publication of JPH09298418A publication Critical patent/JPH09298418A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the antenna with a high radiation efficiency and with a narrow radiation beam and a high radiation gain with respect to the high gain planar antenna advantageous in a radio communication system using a microwave or a millimeter wave. SOLUTION: A ground conductor plate 2 is formed on one side of a 1st dielectric layer with a thickness equivalent to a half propagation wavelength and a 2nd dielectric layer 3 having a higher dielectric constant with a thickness equivalent to a 1/4 propagation wavelength is formed on the other side. Furthermore, an open resonator consisting of a 3rd dielectric layer 4 and a metallic patch 5 is formed in the middle of a bottom side of the 1st dielectric layer 1 in contact with the ground conductor plate 2. A leakage wave excited by the open resonator is emitted while being propagated through the 1st and 2nd dielectric layers to attain a narrow radiation beam and a high radiation gain.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波、ミリ
波等の無線通信システムにおいて利用される高利得平面
アンテナに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high gain plane antenna used in a radio communication system such as a microwave and a millimeter wave.

【0002】[0002]

【従来の技術】狭放射ビームで高放射利得の送受信アン
テナを実現するために、パラボラアンテナが広く利用さ
れている。しかしパラボラアンテナは、大きくて重く、
また風雪等の影響を受けないように、パラボラと給電ア
ンテナ素子とを強固に取り付ける必要がありコストが高
くなる欠点がある。
2. Description of the Related Art Parabolic antennas are widely used to realize a transmitting / receiving antenna with a narrow radiation beam and high radiation gain. However, the parabolic antenna is large and heavy,
In addition, it is necessary to firmly attach the parabola and the feeding antenna element so as not to be affected by wind and snow, and there is a drawback that the cost becomes high.

【0003】そこで従来、薄い誘電体層の表面にパッチ
アンテナ素子を形成した平面アンテナは、薄形、低価
格、軽量の特徴があり注目されている。図4にアンテナ
素子を複数配列し、それらの間を給電線路により結びつ
けたマイクロストリップパッチアレーアンテナを示す。
Therefore, conventionally, a planar antenna having a patch antenna element formed on the surface of a thin dielectric layer has attracted attention because of its features such as thin shape, low cost and light weight. FIG. 4 shows a microstrip patch array antenna in which a plurality of antenna elements are arranged and connected between them by a feed line.

【0004】裏面に接地導体板15が一面に形成された
誘電体層12の表面には、複数個のパッチアンテナ素子
10を所定の間隔でもって配列している。隣接する4つ
のパッチアンテナ素子10は給電線路11を通して接続
され、サブアレーアンテナ14を形成している。さらに
これらサブアレーアンテナ14は、分配器13により連
結されている。そして分配器13及び給電線路11を通
して、各パッチアンテナ素子10に給電することによっ
て、狭放射ビームで、高い放射利得を達成している。
A plurality of patch antenna elements 10 are arranged at predetermined intervals on the surface of the dielectric layer 12 having the back surface on which the ground conductor plate 15 is formed. The four patch antenna elements 10 adjacent to each other are connected through a feed line 11 to form a sub array antenna 14. Further, these sub array antennas 14 are connected by a distributor 13. By feeding each patch antenna element 10 through the distributor 13 and the feeding line 11, a high radiation gain is achieved with a narrow radiation beam.

【0005】[0005]

【発明が解決しようとする課題】上記従来のマイクロス
トリップパッチアレーアンテナでは、放射利得を改善し
ようとすると、パッチアンテナ素子の数を大幅に増やさ
なければならない。しかしながら素子数を増加すると、
給電線路間、パッチアンテナ素子間、また給電線路とパ
ッチアンテナ素子間の電磁結合や漏洩波を軽減するため
に、給電線路の形状が複雑になり、設計にも手間がかか
る。また給電点から各パッチアンテナ素子までの長い給
電線路において、誘電体損失、導体損失、放射損失、ま
た線路間の電磁結合による伝送損失が大きくなるため、
高放射効率化には限界がある。
In the conventional microstrip patch array antenna described above, the number of patch antenna elements must be significantly increased in order to improve the radiation gain. However, if the number of elements is increased,
In order to reduce electromagnetic coupling and leakage waves between the power feed lines, between the patch antenna elements, and between the power feed line and the patch antenna elements, the shape of the power feed lines becomes complicated and it takes time to design. Also, in a long feed line from the feed point to each patch antenna element, dielectric loss, conductor loss, radiation loss, and transmission loss due to electromagnetic coupling between the lines become large.
There is a limit to achieving high radiation efficiency.

【0006】さらに給電線路の導体は、パッチアンテナ
素子と同一面にあるため、給電線路から発生する寄生放
射は、アンテナ素子から放射される電波に加わり、意図
する放射パターンを実現し辛い問題がある。
Further, since the conductor of the feed line is on the same plane as the patch antenna element, parasitic radiation generated from the feed line is added to the radio wave radiated from the antenna element, which makes it difficult to realize an intended radiation pattern. .

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明の高利得平面アンテナは、開放型共振器から
放射される漏洩波を誘電率の異なる多層誘電体構造を使
用して伝搬し、このときに放射される電波を最大放射方
向に集中合成し、漏洩波の電力の高利得化のために有効
利用することで、設計の手間などなく、容易に優れた放
射特性を実現できるようにする。
In order to solve the above problems, a high gain planar antenna according to the present invention propagates a leaky wave radiated from an open type resonator by using a multilayer dielectric structure having different permittivity. However, by concentrating the radio waves radiated at this time in the maximum radiation direction and effectively using them to increase the gain of the power of the leaky waves, excellent radiation characteristics can be easily realized without the design effort. To do so.

【0008】[0008]

【発明の実施の形態】本発明の請求項1に記載の発明
は、開放型共振器から供給される電力を、誘電率が互い
に異なる多層の誘電体層中を反射させながら伝搬させ、
このとき放射される漏洩波を、最大放射方向に集中合成
し、漏洩波の電力を高利得化のために有効利用すること
を特徴とするものであり、これにより狭放射ビームで高
放射利得を達成する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention propagates electric power supplied from an open type resonator while being reflected in multiple dielectric layers having different permittivities,
The feature is that the leaky waves radiated at this time are concentrated and combined in the maximum radiating direction, and the power of the leaky waves is effectively used for high gain. To achieve.

【0009】また本発明の請求項2に記載の発明は、伝
搬波長の1/2の厚さを有する第1の誘電体層と、前記
第1の誘電体層の一表面に形成され、前記伝搬波長の1
/4の厚さを有するとともに、前記第1の誘電体層の誘
電率より高い誘電率を有する第2の誘電体層と、前記第
1の誘電体層の他表面に形成された接地導体板と、前記
接地導体板近傍の第1の誘電体層に設けた開放型共振器
とを有するものであり、これにより第1と第2の誘電体
層の境界面に沿って多重反射しながら伝搬する漏洩波の
放射は、最大放射方向に集中合成され、狭放射ビームか
つ高放射利得を達成する。
According to a second aspect of the present invention, the first dielectric layer having a thickness of ½ of the propagation wavelength and the first dielectric layer are formed on one surface of the first dielectric layer. Propagation wavelength 1
Second dielectric layer having a thickness of / 4 and a dielectric constant higher than that of the first dielectric layer, and a ground conductor plate formed on the other surface of the first dielectric layer. And an open type resonator provided in the first dielectric layer in the vicinity of the ground conductor plate, which allows multiple reflection along the interface between the first and second dielectric layers while propagating. The radiations of the leaky waves are concentrated and combined in the maximum radiation direction to achieve a narrow radiation beam and a high radiation gain.

【0010】以下に、本発明の請求項1および請求項2
に記載された発明の実施の形態について、図面を参照し
ながら説明する。図1(a),(b)は、本発明の高利
得平面アンテナの一実施の形態における断面図及び平面
図をそれぞれ示している。1/2伝搬波長の厚さh1を
有する第1の誘電体層1の一面には、接地導体板2を形
成しており、他表面には、この第1の誘電体層1の誘電
率よりも大きな誘電率を有し、1/4伝搬波長の厚さh
2を有する第2の誘電体層3を形成している。また第1
の誘電体層1の下面中央には、接地導体板2に接して、
その寸法が第1の誘電体層1や第2の誘電体層3と比べ
て遥かに小さい面積である第3の誘電体層4を設けてい
る。
The following are claims 1 and 2 of the present invention.
Embodiments of the invention described in 1) will be described with reference to the drawings. 1 (a) and 1 (b) are a cross-sectional view and a plan view, respectively, of an embodiment of a high gain planar antenna of the present invention. A ground conductor plate 2 is formed on one surface of the first dielectric layer 1 having a thickness h1 of ½ propagation wavelength, and a dielectric constant of the first dielectric layer 1 is formed on the other surface. Also has a large dielectric constant, and has a thickness h of 1/4 propagation wavelength.
A second dielectric layer 3 having 2 is formed. Also the first
In the center of the lower surface of the dielectric layer 1 of, in contact with the ground conductor plate 2,
A third dielectric layer 4 is provided whose dimensions are much smaller than those of the first dielectric layer 1 and the second dielectric layer 3.

【0011】これら誘電体層の材料として例えば、第1
の誘電体層1としては、テフロン等に代表される高周波
用低誘電率材料を、第2の誘電体層3としては、チタン
酸バリウムを主成分とするセラミック等に代表される高
周波用高誘電率材料を、第3の誘電体層4としては、ガ
ラスを主成分とし、第1と第2の誘電体層の中間の誘電
率を持つ高周波用材料を用いることができる。
The material of these dielectric layers is, for example, the first
The dielectric layer 1 is a high frequency low dielectric constant material typified by Teflon, and the second dielectric layer 3 is a high frequency high dielectric material typified by a ceramic containing barium titanate as a main component. As the third dielectric layer 4, a high frequency material having glass as a main component and having a dielectric constant intermediate between those of the first and second dielectric layers can be used as the index material.

【0012】また第3の誘電体層4の上部には、第3の
誘電体層4よりも面積の小さな金属パッチ5を設け、接
地導体板2、第3の誘電体層4、金属パッチ5により、
第1の誘電体層1と第2の誘電体層3の二層構造に電力
を送り出す開放型共振器を形成している。そして金属パ
ッチ5の下部の接地導体板2には、小さなスロット7を
開けており、同軸線6の中心導体を第3の誘電体層4を
通して、金属パッチ5と接触させることにより、この開
放型共振器に給電している。
A metal patch 5 having an area smaller than that of the third dielectric layer 4 is provided on the third dielectric layer 4, and the ground conductor plate 2, the third dielectric layer 4, and the metal patch 5 are provided. Due to
An open type resonator for sending electric power is formed in the two-layer structure of the first dielectric layer 1 and the second dielectric layer 3. Then, a small slot 7 is opened in the ground conductor plate 2 below the metal patch 5, and the central conductor of the coaxial wire 6 is passed through the third dielectric layer 4 and brought into contact with the metal patch 5, so that the open type Powering the resonator.

【0013】次に上記構成の高利得平面アンテナについ
て、その特性を図2を参照しながら説明する。図2
(a)は上記アンテナの電波の放射状態を示す模式図で
ある。図において同軸線から供給された電力は、開放型
共振器の共振周波数の付近で最も大きく励振され、その
主な電力が二層の第1と第2の誘電体層に送り出され
る。
Next, the characteristics of the high-gain planar antenna having the above structure will be described with reference to FIG. FIG.
(A) is a schematic diagram which shows the radiation state of the electric wave of the said antenna. In the figure, the electric power supplied from the coaxial line is excited most in the vicinity of the resonance frequency of the open type resonator, and the main electric power is sent out to the two first and second dielectric layers.

【0014】その送り出される電力のわずか一部は、矢
印Aで示すように、直接に空間中に放射される。しかし
残りの大半は、接地導体板2と、誘電率の高い第2の誘
電体層3との間で多重反射されて、第1の誘電体層1に
沿って伝搬する漏洩波に変わる。そしてこの漏洩波は、
伝搬しながら空間中に電波として放射される(矢印
B)。
Only a small part of the delivered electric power is radiated directly into the space, as indicated by arrow A. However, most of the rest is multiple-reflected between the ground conductor plate 2 and the second dielectric layer 3 having a high dielectric constant and converted into a leaky wave propagating along the first dielectric layer 1. And this leaky wave is
While propagating, it is radiated as a radio wave in the space (arrow B).

【0015】ここで漏洩波が多重反射を繰り返し、第1
の誘電体層1と第2の誘電体層3との境界に沿って伝搬
しながら放射される動作原理を、図3を用いて詳しく説
明する。図3(a)に示すように、第1の誘電体層1に
入力される電波は、第1と第2の誘電体層の境界面で一
部が反射され(矢印A)、一部が透過して第2の誘電体
層3に入る(矢印B)。そして透過した電波は、第2の
誘電体層3と空気との境界面で一部が反射され、一部が
透過して漏洩波となる(矢印C)。
Here, the leaky wave repeats multiple reflections, and the first
The operating principle of radiation while propagating along the boundary between the dielectric layer 1 and the second dielectric layer 3 will be described in detail with reference to FIG. As shown in FIG. 3A, a part of the radio wave input to the first dielectric layer 1 is reflected by an interface between the first and second dielectric layers (arrow A), and a part of the radio wave is reflected. It penetrates and enters the second dielectric layer 3 (arrow B). Then, a part of the transmitted electric wave is reflected at the boundary surface between the second dielectric layer 3 and the air, and a part of the electric wave is transmitted and becomes a leak wave (arrow C).

【0016】この漏洩波は図3(b)に示すように、矢
印Dで示す方向に沿って伝搬しながら、矢印Eで示す方
向に電波を放射する。矢印Fはその漏洩波の放射パター
ンを示しているが、その放射するメインビームの方向
は、境界面の伝搬速度と自由空間中の光速との比によっ
て決まり、また放射するメインビームの形状は、漏洩波
の放射量による電力の減衰係数と前記伝搬速度との比に
より決まる。
As shown in FIG. 3B, the leaky wave propagates along the direction indicated by the arrow D and radiates radio waves in the direction indicated by the arrow E. The arrow F shows the radiation pattern of the leaky wave. The direction of the main beam to be emitted is determined by the ratio of the propagation velocity at the boundary surface to the speed of light in free space, and the shape of the main beam to be emitted is It is determined by the ratio between the attenuation coefficient of electric power due to the radiation amount of leaked waves and the propagation velocity.

【0017】図2(b)は、本実施の形態における高利
得平面アンテナと、図4で示した従来のマイクロストリ
ップパッチアレーアンテナの等価放射口面での電力分布
をそれぞれ示している。図中Bで示す従来のものでは、
パッチ上に流れ込む電流密度は、半周期正弦関数形の分
布になり、放射口面での電力成分は、金属パッチの近傍
に集中し、金属パッチから離れると急に減少していく。
FIG. 2B shows the power distribution on the equivalent radiation surface of the high gain planar antenna according to the present embodiment and the conventional microstrip patch array antenna shown in FIG. 4, respectively. In the conventional type shown by B in the figure,
The current density flowing into the patch has a half-period sinusoidal distribution, and the electric power component on the radiation surface is concentrated near the metal patch, and suddenly decreases with distance from the metal patch.

【0018】一方、図中Aで示す本実施の形態のもの
は、上述のように開放型共振器から出る主な電波は漏洩
波に変わって誘電体層中を伝搬し、開放型共振器から遠
く離れたところまで到着するため、電力分布は従来のも
のよりはるかに緩やかになる。従って、本実施の形態に
おける平面アンテナの有効放射面積は、従来のものより
はるかに広くなる。
On the other hand, in the embodiment of the present invention shown by A in the figure, as described above, the main radio wave emitted from the open type resonator is changed into a leaky wave and propagates in the dielectric layer. Since it arrives far away, the power distribution is much slower than in the past. Therefore, the effective radiation area of the planar antenna in this embodiment is much wider than that of the conventional one.

【0019】図2(c)は本実施の形態における平面ア
ンテナの放射パターンと、図4で示した上記従来のアン
テナの放射パターンを示すものである。図中Bで示す従
来の放射パターンが、上述したような直接放射波で成り
立つ広放射ビームとなっているのに対して、図中Aで示
す本実施の形態の放射パターンは、漏洩波の放射で成り
立つ狭放射ビームとなっている。
FIG. 2 (c) shows the radiation pattern of the planar antenna of this embodiment and the radiation pattern of the conventional antenna shown in FIG. Whereas the conventional radiation pattern shown by B in the figure is a wide radiation beam consisting of direct radiation waves as described above, the radiation pattern of the present embodiment shown by A in the figure is radiation of a leaky wave. It is a narrow radiation beam consisting of.

【0020】また図2(d)は、本実施の形態における
平面アンテナの放射利得と、第1の誘電体層1の厚さと
の関係を示している。放射電波のメインビームは、第1
の誘電体層1の厚さh1の増加によって、図2(c)に
示す放射パターンにも示されるように、第1と第2の誘
電体層の境界面に伝搬する漏洩波の伝搬速度が徐々に遅
くなることから、誘電体表面に対して徐々に垂直方向に
近づいていくことが理解できる。さらにそのメインビー
ムは、第1の誘電体層1の厚さが周波数に対して1/2
伝搬波長になると、図2(c)にも示されるように、漏
洩波の伝搬速度がゼロになり、上記放射開口面での電力
分布が同位相になり垂直になるので、高放射利得となる
ことがわかる。
FIG. 2 (d) shows the relationship between the radiation gain of the planar antenna and the thickness of the first dielectric layer 1 in this embodiment. The main beam of radiated radio waves is
The increase in the thickness h1 of the dielectric layer 1 causes the propagation velocity of the leaky wave propagating to the interface between the first and second dielectric layers as shown in the radiation pattern shown in FIG. 2 (c). It can be understood that it gradually approaches the direction perpendicular to the surface of the dielectric because it gradually slows down. Further, the main beam is such that the thickness of the first dielectric layer 1 is 1/2 the frequency.
At the propagation wavelength, as shown in FIG. 2C, the propagation velocity of the leaky wave becomes zero, and the power distributions on the radiation aperture plane become in-phase and vertical, resulting in high radiation gain. I understand.

【0021】なお、第2の誘電体層3の厚さh2は、ア
ンテナの有効放射面積を最大限に広くするために、漏洩
波の放射量による電力の減衰係数を小さめにし、放射口
面の電力分布を緩やかにする必要があるという理由によ
り、1/4伝搬波長にすることが望ましい。
It should be noted that the thickness h2 of the second dielectric layer 3 is such that the attenuation coefficient of electric power due to the radiation amount of the leaky wave is made small so that the effective radiation area of the antenna is maximized, and the thickness h2 of the radiation port surface is reduced. For the reason that the power distribution needs to be gentle, it is desirable to set the wavelength to 1/4 propagation wavelength.

【0022】このように本実施の形態によれば、アンテ
ナの有効放射面積が広くなると共に、垂直方向の放射ビ
ームが狭くなり、放射利得を高くすることができる。
As described above, according to this embodiment, the effective radiation area of the antenna is widened, and the vertical radiation beam is narrowed, so that the radiation gain can be increased.

【0023】なお、上記実施の形態においては、同軸線
により開放型共振器に給電する構成を示したが、接地導
体板上に、金属導体と薄い誘電体層とから構成されるマ
イクロストリップ線路を設けて、電磁結合効果により給
電するよう構成してもよい。さらに開放型共振器は、金
属パッチと誘電体層とで構成したが、その他の開放型誘
電体共振器、または開放型金属導波路共振器で構成して
もよい。
In the above embodiments, the open type resonator is fed by the coaxial line, but a microstrip line composed of a metal conductor and a thin dielectric layer is formed on the ground conductor plate. It may be provided and configured to supply power by the electromagnetic coupling effect. Further, although the open type resonator is composed of the metal patch and the dielectric layer, it may be composed of other open type dielectric resonators or open type metal waveguide resonators.

【0024】[0024]

【発明の効果】以上のように本発明の高利得平面アンテ
ナは、開放型共振器によって2層の誘電体構造で漏洩波
を励振し、また、漏洩波が誘電体層を伝搬しながら空間
中に電波を放射する特性を利用することにより、誘電体
表面と垂直な方向で、狭放射ビームかつ高放射利得の優
れた放射パターンを得ることができる。また電力を分配
するための複雑な給電線路、また、電波を空間中に放射
するための多数のアンテナ素子がなくなるので、伝送損
失は非常に小さくなり、放射効率は非常に高くなるとと
もに、アンテナを小型化することができる。
As described above, the high-gain planar antenna of the present invention excites a leaky wave with a two-layer dielectric structure by an open type resonator, and the leaky wave propagates through the dielectric layer in the space. By utilizing the characteristic of radiating radio waves to the antenna, it is possible to obtain an excellent radiation pattern with a narrow radiation beam and high radiation gain in the direction perpendicular to the dielectric surface. In addition, since there are no complicated feed lines for distributing power and many antenna elements for radiating radio waves into the space, transmission loss is very small, radiation efficiency is very high, and antennas are It can be miniaturized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態における高利得平面アン
テナを示す断面図及び平面図
FIG. 1 is a sectional view and a plan view showing a high-gain planar antenna according to an embodiment of the present invention.

【図2】同高利得平面アンテナの特性を示す説明図FIG. 2 is an explanatory diagram showing characteristics of the high gain planar antenna.

【図3】同高利得平面アンテナの特性を示す説明図FIG. 3 is an explanatory diagram showing characteristics of the high gain planar antenna.

【図4】従来のマイクロストリップパッチアレーアンテ
ナの斜視図
FIG. 4 is a perspective view of a conventional microstrip patch array antenna.

【符号の説明】[Explanation of symbols]

1 第1の誘電体層 2 接地導体板 3 第2の誘電体層 4 第3の誘電体層 5 金属パッチ 6 同軸線 7 スロット 1 1st dielectric layer 2 ground conductor board 3 2nd dielectric layer 4 3rd dielectric layer 5 metal patch 6 coaxial line 7 slot

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】開放型共振器から供給される電力を、誘電
率が互いに異なる多層の誘電体層中を反射させながら伝
搬させ、このとき放射される漏洩波を、最大放射方向に
集中合成し、漏洩波の電力を高利得化のために有効利用
することを特徴とする高利得平面アンテナ。
1. An electric power supplied from an open-type resonator is propagated while being reflected in multiple dielectric layers having different permittivities, and leakage waves radiated at this time are concentrated and combined in the maximum radiation direction. A high-gain planar antenna characterized by effectively utilizing the power of leaky waves for high gain.
【請求項2】伝搬波長の1/2の厚さを有する第1の誘
電体層と、前記第1の誘電体層の一表面に形成され、前
記伝搬波長の1/4の厚さを有するとともに、前記第1
の誘電体層の誘電率より高い誘電率を有する第2の誘電
体層と、前記第1の誘電体層の他表面に形成された接地
導体板と、前記接地導体板近傍の第1の誘電体層に設け
た開放型共振器とを有する高利得平面アンテナ。
2. A first dielectric layer having a thickness of ½ of the propagation wavelength and a thickness of ¼ of the propagation wavelength formed on one surface of the first dielectric layer. Together with the first
Second dielectric layer having a higher dielectric constant than that of the dielectric layer, a ground conductor plate formed on the other surface of the first dielectric layer, and a first dielectric layer near the ground conductor plate. A high gain planar antenna having an open resonator provided in a body layer.
JP11343096A 1996-05-08 1996-05-08 High gain planar antenna Pending JPH09298418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11343096A JPH09298418A (en) 1996-05-08 1996-05-08 High gain planar antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11343096A JPH09298418A (en) 1996-05-08 1996-05-08 High gain planar antenna

Publications (1)

Publication Number Publication Date
JPH09298418A true JPH09298418A (en) 1997-11-18

Family

ID=14612033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11343096A Pending JPH09298418A (en) 1996-05-08 1996-05-08 High gain planar antenna

Country Status (1)

Country Link
JP (1) JPH09298418A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111366A (en) * 2000-09-29 2002-04-12 Fujitsu Quantum Devices Ltd Current distribution control patch antenna
JP2005033475A (en) * 2003-07-11 2005-02-03 Tokai Rika Co Ltd Antenna assembly
JP2008263494A (en) * 2007-04-13 2008-10-30 Sony Corp Patch antenna and personal digital assistant mounted therewith and having radio communication function
US7952534B2 (en) 2004-03-31 2011-05-31 Toto Ltd. Microstrip antenna

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111366A (en) * 2000-09-29 2002-04-12 Fujitsu Quantum Devices Ltd Current distribution control patch antenna
JP2005033475A (en) * 2003-07-11 2005-02-03 Tokai Rika Co Ltd Antenna assembly
US7952534B2 (en) 2004-03-31 2011-05-31 Toto Ltd. Microstrip antenna
JP2008263494A (en) * 2007-04-13 2008-10-30 Sony Corp Patch antenna and personal digital assistant mounted therewith and having radio communication function

Similar Documents

Publication Publication Date Title
JP2648421B2 (en) Antenna structure having continuous transverse stub element and method of manufacturing the same
RU2652169C1 (en) Antenna unit for a telecommunication device and a telecommunication device
US6424298B1 (en) Microstrip array antenna
US6008770A (en) Planar antenna and antenna array
US5173714A (en) Slot array antenna
US5386215A (en) Highly efficient planar antenna on a periodic dielectric structure
US6798384B2 (en) Multi-element planar array antenna
US3665480A (en) Annular slot antenna with stripline feed
EP0329079B1 (en) Slotted waveguide Antenna
JPH0671171B2 (en) Wideband antenna
CN113316868B (en) Double-end-feed broadside leaky-wave antenna
JP2001127523A (en) Microstrip array antenna with radome
JP2001320228A (en) Dielectric leakage wave antenna
JP2000261235A (en) Triplate line feeding type microstrip antenna
Griffin et al. Electromagnetic design aspects of packages for monolithic microwave integrated circuit-based arrays with integrated antenna elements
JP2001320229A (en) Dielectric leakage wave antenna
US7839349B1 (en) Tunable substrate phase scanned reflector antenna
US7916094B2 (en) Double structure broadband leaky wave antenna
JPH02288707A (en) Flat plate guide antenna
US5903241A (en) Waveguide horn with restricted-length septums
JPH09298418A (en) High gain planar antenna
JPH11191707A (en) Planar array antenna
WO1996010277A9 (en) Planar high gain microwave antenna
WO1996010277A1 (en) Planar high gain microwave antenna
JP2001016027A (en) Laminated aperture surface antenna