JPH09298012A - Composition for semi-conducting layer of power cable - Google Patents

Composition for semi-conducting layer of power cable

Info

Publication number
JPH09298012A
JPH09298012A JP11086796A JP11086796A JPH09298012A JP H09298012 A JPH09298012 A JP H09298012A JP 11086796 A JP11086796 A JP 11086796A JP 11086796 A JP11086796 A JP 11086796A JP H09298012 A JPH09298012 A JP H09298012A
Authority
JP
Japan
Prior art keywords
less
composition
ethylene
volume resistivity
carbon black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11086796A
Other languages
Japanese (ja)
Other versions
JP3414581B2 (en
Inventor
Makoto Masuda
誠 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP11086796A priority Critical patent/JP3414581B2/en
Publication of JPH09298012A publication Critical patent/JPH09298012A/en
Application granted granted Critical
Publication of JP3414581B2 publication Critical patent/JP3414581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composition which has excellent molding workability at the time of extrusion molding, a small change with temperature in volume resistivity of an acquired semi-conducting layer, and also an excellent heat deformation characteristic. SOLUTION: Carbon black, which has DBP oil absorption not less than 300[ml/100g] and a specific surface area not smaller than 1000[m<2> /g], is added to an ethylen copolymer wherein content of a monomer copolymerizing with ethylene is not less than 30wt.% and MFR is not more than 25[g/10min] by not less than 4 PHR but less than 10 PHR. Further, modulus of heat deformation at the time when cross-linking is conducted by adding a cross-linking agent is caused to be not greater than 30% at 120 deg.C when a 34N load is applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電力ケーブルの半
導電層を形成する半導電性組成物に関し、特に体積抵抗
率の温度変化の少ない電力ケーブルの半導電層用組成物
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductive composition for forming a semiconductive layer of a power cable, and more particularly to a composition for a semiconductive layer of a power cable whose volume resistivity changes little with temperature.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】近年
の電力ケーブルの主流である架橋ポリエチレン絶縁ケー
ブルは、絶縁体界面における電界集中の緩和や部分放電
の防止を目的として、図1に示されるように、ケーブル
導体1と絶縁体3との境界面並びに絶縁体3の外表面
に、それぞれ内部半導電層2および外部半導電層4を設
け、外部半導電層4の外表面に金属遮蔽層5および押え
巻きテープ6、更にシース層7を設けることが一般的な
構造となっている。前記内部半導電層2および外部半導
電層4は、ポリエチレンやエチレン系共重合体をベース
樹脂とし、これに導電性カーボンブラックを適当量配合
して半導電化された半導電性組成物から形成され、電力
ケーブルの製造時に絶縁体3と同時に押出成形され、ケ
ーブル導体1上並びに絶縁体3上に形成される。
2. Description of the Related Art A cross-linked polyethylene insulation cable, which has been the mainstream of electric power cables in recent years, is shown in FIG. 1 for the purpose of relaxing electric field concentration at the insulator interface and preventing partial discharge. The inner semiconductive layer 2 and the outer semiconductive layer 4 are provided on the boundary surface between the cable conductor 1 and the insulator 3 and the outer surface of the insulator 3, and the metal shielding layer 5 is formed on the outer surface of the outer semiconductive layer 4. In addition, the press-wrap tape 6 and the sheath layer 7 are generally provided. The inner semi-conductive layer 2 and the outer semi-conductive layer 4 are formed from a semi-conductive composition which is made semi-conductive by using polyethylene or an ethylene copolymer as a base resin and adding conductive carbon black in an appropriate amount. And is extruded at the same time as the insulator 3 when the power cable is manufactured, and is formed on the cable conductor 1 and the insulator 3.

【0003】ところで、前記半導電層2,4は、実用上
体積抵抗率として概ね105 Ω−cm以下の導電性を有
することが要求されている。また、体積抵抗率は温度依
存性を示し、温度の上昇とともに増加し、ある温度を境
にして減少に転ずる傾向がある。しかし、このような体
積抵抗率の温度依存性は実用上好ましくなく、架橋ポリ
エチレン絶縁の電力ケーブルの場合室温から(短時間許
容電流下での使用を考慮すると)130℃程度の範囲に
おいて、体積抵抗率の変位(最大値と最小値との差)が
少ないことが好ましいとされている。
By the way, the semiconductive layers 2 and 4 are required to have a conductivity of about 10 5 Ω-cm or less in practical use. Further, the volume resistivity shows temperature dependency, tends to increase as the temperature rises, and tends to decrease at a certain temperature. However, such temperature dependence of the volume resistivity is not preferable for practical use, and in the case of a power cable of crosslinked polyethylene insulation, the volume resistance is in the range of room temperature to about 130 ° C (considering use under a short-time permissible current). It is said that it is preferable that the displacement of the rate (difference between the maximum value and the minimum value) is small.

【0004】このような体積抵抗率に関する要求に対し
ては、カーボンブラックの配合量を高めることが有効な
解決策となり得るが、その一方において、引張伸び
値、脆化特性等の機械的特性が低下する、溶融時の粘
度が高くなり押出加工性が悪くなる、吸水量が多くな
りケーブルの絶縁破壊の原因となる水トリーの発生・成
長を助長する、等の問題が生じてくる。また、同様の体
積抵抗率に関する要求に対して、特開平4−25573
6号公報は、高温における体積抵抗率の上昇を抑制する
ものとして亜リン酸アルキルエステルを添加することを
提案している。しかし、前記特開平4−255736号
公報においても、亜リン酸アルキルエステルの添加量が
多いと、押出成形時における加工性が低下してしまうこ
とが記載されている。
In order to meet the requirement regarding the volume resistivity, increasing the blending amount of carbon black can be an effective solution, but on the other hand, the mechanical properties such as tensile elongation value and brittleness property are There are problems such as a decrease, an increase in viscosity during melting and deterioration of extrusion processability, and an increase in water absorption, which promotes generation and growth of a water tree that causes dielectric breakdown of the cable. In addition, in order to meet the same requirements regarding volume resistivity, Japanese Patent Laid-Open No. 25573/1992.
Japanese Patent Publication No. 6 proposes to add an alkyl phosphite as a substance that suppresses an increase in volume resistivity at high temperature. However, Japanese Patent Application Laid-Open No. 4-255736 also describes that when the amount of the alkyl phosphite added is large, the workability during extrusion molding decreases.

【0005】本発明は上記問題点に鑑みてなされたもの
で、押出成形時の加工性に優れ、しかも得られる半導電
層の体積抵抗率の温度変化が少なく、加熱変形特性にも
優れる電力ケーブルの半導電層用組成物を提供すること
を目的とする。
The present invention has been made in view of the above problems, and is an electric power cable which is excellent in workability at the time of extrusion molding, has less volume change of the volume resistivity of the obtained semiconductive layer, and is excellent in heat deformation characteristics. It is an object of the present invention to provide a semiconductive layer composition.

【0006】[0006]

【課題を解決するための手段】上記の目的は、本発明
の、エチレンと共重合する単量体の含有量が30重量%
以上でMFRが25〔g/10min〕以下であるエチ
レン系共重合体に、DBP吸油量が300〔ml/10
0g〕以上で比表面積が1000〔m2 /g〕以上であ
るカーボンブラックを4PHR以上10PHR未満添加
し、かつ架橋剤を添加して架橋した時の加熱変形率が1
20℃、34N荷重付加時に30%以下であることを特
徴とする電力ケーブルの半導電層用組成物により達成さ
れる。
Means for Solving the Problems The above object is to achieve a content of the ethylene copolymerizable monomer of the present invention of 30% by weight.
Above, the ethylene-based copolymer having an MFR of 25 [g / 10 min] or less has a DBP oil absorption of 300 [ml / 10].
0 g] or more and a specific surface area of 1000 [m 2 / g] or more is added in an amount of 4 PHR or more and less than 10 PHR and a cross-linking agent is added to obtain a thermal deformation rate of 1
It is achieved by a composition for a semiconductive layer of a power cable, which is 30% or less when a load of 20 ° C. and a load of 34 N is applied.

【0007】本発明に係る半導電性組成物によれば、カ
ーボンブラックの吸油量と比表面積とを規定すること
で、従来よりも少ない配合量でも実用上必要とされる導
電性が得られ、しかも配合量が少ないことにより半導電
性組成物の押出成形時における加工性を向上させること
ができる。一方、カーボンブラックの配合量が少ないこ
とによる体積抵抗率の温度変化に対する安定性の低下
(変位が大きくなること)については、エチレン系共重
合体に占めるエチレンと共重合する単量体(以下、コモ
ノマーと呼ぶ)の含有量を30%以上とすることで改善
し、またエチレン系共重合体のMFR(メルトフローレ
ート)を25〔g/10min〕以下とすることで、耐
熱性を確保することができる。
According to the semiconductive composition of the present invention, by defining the oil absorption amount and the specific surface area of carbon black, the conductivity required for practical use can be obtained with a smaller amount than the conventional amount. Moreover, since the compounding amount is small, the processability during extrusion molding of the semiconductive composition can be improved. On the other hand, regarding the decrease in the stability of the volume resistivity with respect to temperature changes (increased displacement) due to the small amount of carbon black compounded, the monomer that copolymerizes with ethylene in the ethylene-based copolymer (hereinafter, To improve the heat resistance by setting the content of the (comonomer) to be 30% or more, and by setting the MFR (melt flow rate) of the ethylene-based copolymer to 25 [g / 10 min] or less. You can

【0008】[0008]

【発明の実施の形態】以下に、本発明に係る電力ケーブ
ルの半導電層用組成物について説明する。本発明の半導
電性組成物のベース樹脂はエチレン系共重合体であり、
エチレンと共重合するコモノマーは特に制限されるもの
ではないが、例えばエチレン−アクリル酸エステル共重
合体(例えばエチレン−アクリル酸メチル共重合体やエ
チレン−アクリル酸エチル共重合体等)、エチレン−酢
酸ビニル共重合体等を好適に使用することができる。こ
のコモノマーの含有量はエチレン系共重合体の30重量
%以上であることが望ましく、これより少ないと体積抵
抗率の温度変化による安定性の改善が不十分となる。図
2は、コモノマーである酢酸ビニルの含有量が10、2
0、33重量%であるエチレン−酢酸ビニル共重合体
に、DBP吸油量495〔ml/100g〕、比表面積
1270〔m2 /g〕であるカーボンブラックを一律4
PHR添加して作製した半導電性組成物を用い、三層同
時押出架橋にて製造したケーブル(6kVクラス、導体
断面積60mm2 )の外部半導電層の体積抵抗率の温度
依存性を示すグラフである。同図から明らかなように、
酢酸ビニルの含有量が多くなるほど体積抵抗率の変位が
小さくなる傾向にあり、特に酢酸ビニルの含有量が33
重量%では、変位が1桁以内に収まっている。
BEST MODE FOR CARRYING OUT THE INVENTION The composition for a semiconductive layer of a power cable according to the present invention will be described below. The base resin of the semiconductive composition of the present invention is an ethylene-based copolymer,
The comonomer that is copolymerized with ethylene is not particularly limited, and examples thereof include ethylene-acrylic acid ester copolymers (for example, ethylene-methyl acrylate copolymer and ethylene-ethyl acrylate copolymer), ethylene-acetic acid. Vinyl copolymers and the like can be preferably used. The content of this comonomer is preferably 30% by weight or more of the ethylene copolymer, and if it is less than this, the improvement of stability due to temperature change of volume resistivity becomes insufficient. FIG. 2 shows that the content of vinyl acetate as a comonomer is 10, 2
Carbon black having a DBP oil absorption of 495 [ml / 100 g] and a specific surface area of 1270 [m 2 / g] was uniformly added to an ethylene-vinyl acetate copolymer of 0,33% by weight.
Graph showing the temperature dependence of the volume resistivity of the outer semiconductive layer of the cable (6 kV class, conductor cross-sectional area 60 mm 2 ) produced by three-layer coextrusion crosslinking using the semiconductive composition produced by adding PHR. Is. As is clear from the figure,
The displacement of the volume resistivity tends to decrease as the content of vinyl acetate increases, and in particular, the content of vinyl acetate is 33%.
In% by weight, the displacement is within one digit.

【0009】また、コモノマーの含有量の上限は特に制
限されるものではない。しかし、一方においてエチレン
系共重合体はコモノマー含有量が多くなるほど半導電層
とした時の加熱変形特性が低下する傾向にある。この加
熱変形特性に関しては、半導電層についての規定は無い
が、絶縁体についてはJIS C 3005に試験方法
が規定され、一般的には120℃において34N荷重付
加時の加熱変形率が40%以下であることが実用上好ま
しいとされている。従って、半導電層に関しても同等以
上の特性を保持することが望ましいと考え、本発明では
120℃において34N荷重付加時の加熱変形率が30
%以下と規定した。従って、上記の加熱変形率を満足す
るようにコモノマー配合量の上限が決定されるべきであ
り、併せて本発明では架橋度を高めるとともに、MFR
を25〔g/10min〕以下と規定することで、耐熱
性を向上させている。
The upper limit of the comonomer content is not particularly limited. On the other hand, on the other hand, the ethylene-based copolymer tends to deteriorate in heat distortion characteristics when it is formed into a semiconductive layer as the comonomer content increases. Regarding the heat deformation characteristics, there is no specification for the semiconductive layer, but for insulators, the test method is specified in JIS C 3005. Generally, the heat deformation rate at a temperature of 120 ° C when a 34N load is applied is 40% or less. Is practically preferred. Therefore, it is considered that it is desirable to maintain the same or higher characteristics for the semi-conductive layer, and in the present invention, the thermal deformation rate at a load of 34 N at 120 ° C. is 30.
% Or less. Therefore, the upper limit of the comonomer blending amount should be determined so as to satisfy the above-mentioned heat deformation rate. In addition, in the present invention, the crosslinking degree is increased and the MFR is increased.
Is specified to be 25 [g / 10 min] or less, heat resistance is improved.

【0010】本発明に係るカーボンブラックは、そのD
BP吸油量が300〔ml/100g〕以上で、かつ比
表面積が1000〔m2 /g〕以上であることが好まし
く、両値とも大きい方がより望ましい。ここで、前記D
BP吸油量とは、カーボンブラック100g当たりに包
含され得るジブチルフタレートの量(単位ml)と定義
される。上記のDBP吸油量及び比表面積を有するカー
ボンブラックとしては、例えばライオン株式会社製「ケ
ッチェンブラックEC DJ−600」、三菱化学株式
会社製「#3950」等を挙げることができる。また、
このカーボンブラックは、前記エチレン系共重合体に4
PHR以上10PHR未満配合される。カーボンブラッ
クの配合量が4PHR未満の場合には、得られる半導電
層の体積抵抗率として実用上必要とされる105 Ω−c
m以下の導電性が得られない。また、カーボンブラック
の配合量が10PHR以上になると半導電性組成物の粘
度が高くなり過ぎて、成形加工時の流動性が低下し、ま
た得られる半導電層の機械的特性も劣悪なものとなる。
The carbon black according to the present invention has D
It is preferable that the BP oil absorption is 300 [ml / 100 g] or more and the specific surface area is 1000 [m 2 / g] or more, and it is more preferable that both values are large. Where D
The BP oil absorption is defined as the amount of dibutyl phthalate (unit: ml) that can be contained per 100 g of carbon black. Examples of the carbon black having the above DBP oil absorption and specific surface area include “Ketjen Black EC DJ-600” manufactured by Lion Corporation and “# 3950” manufactured by Mitsubishi Chemical Corporation. Also,
This carbon black was added to the ethylene-based copolymer.
More than PHR and less than 10 PHR are mixed. When the blending amount of carbon black is less than 4 PHR, 10 5 Ω-c practically required as the volume resistivity of the obtained semiconductive layer.
A conductivity of m or less cannot be obtained. Further, when the amount of carbon black compounded is 10 PHR or more, the viscosity of the semiconductive composition becomes too high, the fluidity at the time of molding is lowered, and the mechanical properties of the obtained semiconductive layer are poor. Become.

【0011】本発明においては、半導電層の耐熱性と機
械的特性を向上させるために架橋剤を添加する。本発明
に係る架橋剤としては、エチレン系共重合体の架橋反応
に通常使用されるものであれば、特に制約されることな
く使用できるが、このような要望を満足する架橋剤とし
て、例えば、ジクミルパーオキサイド(DCP)、2,
5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘ
キシン−3等を挙げることができる。また、架橋剤の添
加量も通常のエチレン系共重合体の架橋反応に添加され
る量で構わないが、多量になるとスコーチ不安を増長す
ることになることから、半導電層とした時の加熱変形率
が前記数値を満足できる量を実験的に求め、その範囲と
することが望ましい。
In the present invention, a crosslinking agent is added to improve the heat resistance and mechanical properties of the semiconductive layer. As the cross-linking agent according to the present invention, as long as it is usually used for the cross-linking reaction of the ethylene-based copolymer, it can be used without particular limitation, as a cross-linking agent satisfying such a demand, for example, Dicumyl peroxide (DCP), 2,
Examples thereof include 5-dimethyl-2,5-di (t-butylperoxy) hexyne-3. Further, the amount of the crosslinking agent added may be the amount added to the crosslinking reaction of the ordinary ethylene-based copolymer, but if a large amount increases the scorch anxiety, heating at the time of forming the semiconductive layer It is desirable to experimentally find an amount that allows the deformation rate to satisfy the above-mentioned numerical value, and to set the range.

【0012】本発明に係る半導電性組成物は、上記エチ
レン系共重合体、カーボンブラックおよび架橋剤を必須
成分とするが、必要に応じて本発明の効果を損なわない
範囲でその他の添加剤、例えば酸化防止剤(例えば、
4,4’−チオビス−(6−第3−ブチル−m−クレゾ
ール)、2,2,4−トリメチル−1,2−ジヒドロキ
ノリンの重合物)等を適量添加することができる。
The semiconductive composition according to the present invention contains the above-mentioned ethylene copolymer, carbon black and a crosslinking agent as essential components, but other additives may be added, if necessary, within a range that does not impair the effects of the present invention. , Eg antioxidants (eg,
An appropriate amount of 4,4′-thiobis- (6-tert-butyl-m-cresol), a polymer of 2,2,4-trimethyl-1,2-dihydroquinoline) or the like can be added.

【0013】本発明に係る電力ケーブルの半導電層用組
成物に関して、実施例並びに比較例をもとにより明確に
する。 〔実施例1〜3および比較例1〜4〕ベース樹脂とし
て、酢酸ビニル含有量の異なる2種類のエチレン−酢酸
ビニル共重合体EVA1(酢酸ビニル含有量:33重量
%)およびEVA2(酢酸ビニル含有量:20重量%)
を使用し、これに比表面積およびDBP吸油量の異なる
3種類のカーボンブラック(1)〜(3)、架橋剤(ジ
クミルパーオキサイド)及び酸化防止剤(4,4’−チ
オビス−(6−第3−ブチル−m−クレゾール))を第
1表に示した配合量(PHR)添加して、半導電性組成
物を作製した。
The composition for the semiconductive layer of the power cable according to the present invention will be clarified based on Examples and Comparative Examples. Examples 1 to 3 and Comparative Examples 1 to 4 As base resins, two kinds of ethylene-vinyl acetate copolymers EVA1 (vinyl acetate content: 33% by weight) and EVA2 (vinyl acetate content) having different vinyl acetate contents are used. Amount: 20% by weight)
Is used, and three types of carbon blacks (1) to (3) having different specific surface areas and DBP oil absorptions, a cross-linking agent (dicumyl peroxide) and an antioxidant (4,4′-thiobis- (6- 3-butyl-m-cresol)) was added in the compounding amount (PHR) shown in Table 1 to prepare a semiconductive composition.

【0014】以上の如く作製された半導電性組成物につ
いて、導電性、体積抵抗率安定性、耐熱性、吸水性及び
加工性に関する試験を行った。各試験方法及び判定基準
は以下の通りである。 〔導電性〕半導電性組成物を三層同時押出架橋してケー
ブル(6kVクラス、導体断面積60mm2 )の外部半
導電層に加工し、室温で体積抵抗率を測定した。その値
が105 Ω−cm以下を「○」、105 Ω−cmより上
を「×」とした。 〔体積抵抗率安定性〕半導電性組成物を三層同時押出架
橋してケーブル(6kVクラス、導体断面積60m
2 )の外部半導電層に加工し、室温から130℃の温
度範囲にわたり体積抵抗率を測定した。前記温度範囲で
の体積抵抗率の変位が1桁未満を「○」、1桁以上を
「×」とした。 〔耐熱性〕JIS C 3005に準拠し、120℃に
おいて34N荷重付加時の加熱変形率を測定し、加熱変
形率が30%未満を「○」、30%以上を「×」とし
た。 〔吸水性〕カールフィッシャー法による水分量測定値が
200ppm未満を「○」、200ppm以上を「×」
とした。 〔加工性〕上記ケーブルを製造するために外部半導電層
を押出成形加工する際、成形機のモータが過負荷の状態
になったり、メルトフラクチャーの発生が見られる場合
を「×」、見られない場合を「○」とした。以上の試験
結果を第1表に示す。
The semiconducting composition prepared as described above was tested for conductivity, volume resistivity stability, heat resistance, water absorption and processability. The test methods and criteria are as follows. [Conductivity] The semiconductive composition was co-extruded and crosslinked in three layers to be processed into an outer semiconductive layer of a cable (6 kV class, conductor cross-sectional area 60 mm 2 ), and the volume resistivity was measured at room temperature. A value of 10 5 Ω-cm or less was evaluated as “◯”, and a value above 10 5 Ω-cm was evaluated as “x”. [Volume resistivity stability] A cable (6 kV class, conductor cross-sectional area 60 m) obtained by coextruding and cross-linking three layers of a semiconductive composition.
m 2 ) was processed into an outer semiconductive layer, and the volume resistivity was measured over a temperature range from room temperature to 130 ° C. The displacement of the volume resistivity in the above temperature range is less than one digit is “◯”, and one digit or more is “x”. [Heat resistance] Based on JIS C 3005, the heat deformation rate at a load of 34 N was measured at 120 ° C., and the heat deformation rate was less than 30% as “◯”, and 30% or more as “x”. [Water absorption] A water content measured by the Karl Fischer method is "○" when less than 200 ppm, and "X" when it is 200 ppm or more.
And [Workability] When the outer semiconductive layer is extrusion-molded to produce the above cable, the case where the motor of the molding machine is overloaded or the occurrence of melt fracture is seen as "x", When there was not, it was marked as "○". The above test results are shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】表1から明らかなように、本発明の実施例
〜の各半導電性組成物は、導電性、体積抵抗率安定
性、耐熱性、吸水性及び加工性の何れについても優れて
いることが確認された。これに対し、比較例の半導電
性組成物は、DBP吸油量及び比表面積とも本発明の範
囲外であるカーボンブラック(3)を使用したため、特
に導電性、体積抵抗率の安定性に問題がある。また、比
較例の半導電性組成物は、DBP吸油量及び比表面積
とも本発明の範囲内であるカーボンブラック(1)を配
合したものであるが、本発明で特定した上限値(10P
HR未満)よりも多く配合されているために、吸水性及
び加工性に問題がある。一方、比較例の半導電性組成
物は、DBP吸油量及び比表面積とも本発明の範囲内で
あるカーボンブラック(1)を配合したものであるが、
本発明で特定した下限値(4PHR)よりも少なく配合
されているために、導電性、体積抵抗率安定性に加え
て、耐熱性にも問題がある。更に、比較例の半導電性
組成物は、コモノマー含有量が本発明で特定した下限値
(30重量%)よりも少ないために、体積抵抗率の安定
性に問題がある。
As is clear from Table 1, each of the semiconductive compositions of Examples 1 to 3 of the present invention is excellent in conductivity, volume resistivity stability, heat resistance, water absorption and processability. It was confirmed. On the other hand, since the semiconductive composition of the comparative example uses carbon black (3) whose DBP oil absorption and specific surface area are outside the scope of the present invention, there is a problem particularly in the stability of conductivity and volume resistivity. is there. Further, the semiconductive composition of the comparative example is a composition in which carbon black (1) having both the DBP oil absorption amount and the specific surface area is within the range of the present invention, but the upper limit value (10P
(Less than HR), there is a problem in water absorption and processability. On the other hand, the semiconductive composition of the comparative example is a composition in which carbon black (1) having a DBP oil absorption amount and a specific surface area within the scope of the present invention is blended.
Since the content is less than the lower limit (4 PHR) specified in the present invention, there is a problem in heat resistance in addition to conductivity and volume resistivity stability. Further, the semiconductive composition of Comparative Example has a problem in stability of volume resistivity because the comonomer content is less than the lower limit value (30% by weight) specified in the present invention.

【0017】[0017]

【発明の効果】以上説明したように、本発明によれば、
カーボンブラックの吸油量と比表面積とを規定すること
で、従来よりも少ない配合量でも実用上必要とされる導
電性が得られ、しかも配合量が少ないことにより半導電
性組成物の成形加工性を向上させることができる。一
方、カーボンブラックの配合量が少ないことによる体積
抵抗率の変化幅が大きくなる問題については、エチレン
系共重合体に占めるコモノマーの含有量を30%以上と
することで改善し、またエチレン系共重合体のMFRを
25〔g/10min〕以下とすることで、耐熱性を確
保することができる。このように、本発明に係る半導電
性組成物は、電力ケーブルの半導電層の形成に好適な組
成物である。
As described above, according to the present invention,
By defining the oil absorption amount and specific surface area of carbon black, the conductivity required for practical use can be obtained with a smaller compounding amount than before, and the processability of the semi-conductive composition can be improved due to the small compounding amount. Can be improved. On the other hand, the problem that the range of change in volume resistivity becomes large due to the small amount of carbon black compounded is improved by setting the comonomer content in the ethylene copolymer to 30% or more. By setting the MFR of the polymer to 25 [g / 10 min] or less, heat resistance can be ensured. Thus, the semiconductive composition according to the present invention is a composition suitable for forming a semiconductive layer of a power cable.

【図面の簡単な説明】[Brief description of drawings]

【図1】架橋ポリエチレン絶縁電力ケーブルの半導電層
の基本的な構成例を示す要部断面図である。
FIG. 1 is a sectional view of essential parts showing a basic configuration example of a semiconductive layer of a crosslinked polyethylene insulated power cable.

【図2】酢酸ビニルの含有量を変えたエチレン−酢酸ビ
ニル共重合体にカーボンブラックを一律4PHR添加し
て作製した半導電性組成物を用い、三層同時押出架橋に
て製造したケーブル(6kVクラス、導体断面積60m
2 )の外部半導電層の体積抵抗率の温度依存性を示す
グラフである。
FIG. 2 is a cable (6 kV) produced by three-layer coextrusion crosslinking using a semiconductive composition produced by uniformly adding 4 PHR of carbon black to an ethylene-vinyl acetate copolymer having a different vinyl acetate content. Class, conductor cross section 60m
3 is a graph showing the temperature dependence of the volume resistivity of the outer semiconductive layer of m 2 ).

【符号の説明】[Explanation of symbols]

1 導体 2 内部半導電層 3 絶縁体 4 外部半導電層 5 金属遮蔽層 6 押え巻きテープ 7 シース 1 conductor 2 inner semi-conductive layer 3 insulator 4 outer semi-conductive layer 5 metal shielding layer 6 hold-down tape 7 sheath

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エチレンと共重合する単量体の含有量が
30重量%以上でMFRが25〔g/10min〕以下
であるエチレン系共重合体に、DBP吸油量が300
〔ml/100g〕以上で比表面積が1000〔m2
g〕以上であるカーボンブラックを4PHR以上10P
HR未満添加し、かつ架橋剤を添加して架橋した時の加
熱変形率が120℃、34N荷重付加時に30%以下で
あることを特徴とする電力ケーブルの半導電層用組成
物。
1. An ethylene-based copolymer having a content of a monomer copolymerizable with ethylene of 30% by weight or more and an MFR of 25 [g / 10 min] or less has a DBP oil absorption of 300.
[Ml / 100g] or more and specific surface area of 1000 [m 2 /
g] or more of carbon black of 4 PHR or more and 10 P or more
A composition for a semiconductive layer of a power cable, characterized in that the heat deformation rate when added below HR and when a crosslinking agent is added to effect crosslinking is 120% or less and 30% or less when a 34N load is applied.
JP11086796A 1996-05-01 1996-05-01 Composition for semiconductive layer of power cable Expired - Fee Related JP3414581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11086796A JP3414581B2 (en) 1996-05-01 1996-05-01 Composition for semiconductive layer of power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11086796A JP3414581B2 (en) 1996-05-01 1996-05-01 Composition for semiconductive layer of power cable

Publications (2)

Publication Number Publication Date
JPH09298012A true JPH09298012A (en) 1997-11-18
JP3414581B2 JP3414581B2 (en) 2003-06-09

Family

ID=14546704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11086796A Expired - Fee Related JP3414581B2 (en) 1996-05-01 1996-05-01 Composition for semiconductive layer of power cable

Country Status (1)

Country Link
JP (1) JP3414581B2 (en)

Also Published As

Publication number Publication date
JP3414581B2 (en) 2003-06-09

Similar Documents

Publication Publication Date Title
AU2007362485B2 (en) Electric article comprising at least one element made from a semiconductive polymeric material and semiconductive polymeric composition
JP6232309B2 (en) High dielectric composition for cable connection, and cable connection using the same
WO2011158420A1 (en) Cable for high-voltage electronic devices
WO2009059670A1 (en) Crosslinkable polyolefin composition comprising dihydrocarbyl tin dicarboxylate as silanol condensation catalyst
EP0012014B1 (en) A process for producing a crosslinked polyethylene insulated cable and an insulated cable so produced
JPH10283851A (en) Direct current power cable and its connection part
JP3414581B2 (en) Composition for semiconductive layer of power cable
JP5364502B2 (en) Semiconductive resin composition for electric wires and cables and electric wires and cables
JP6564258B2 (en) Semiconductive resin composition and power cable using the same
JP2002313137A (en) Semi-conducting resin composite for power cable
JPH09245520A (en) Composition for semiconductive layer of power cable
JPH11172057A (en) Semiconducting resin composition having good water-crosslinkability and power cable made by using it
JP4175588B2 (en) Resin composition for semiconductive layer of power cable
JPH08319381A (en) Electrical insulating resin composition
JPH10172347A (en) Composition for semiconductive layer of crosslinked-polyethylene-insulated power cable
JPH09231839A (en) Direct current cable
KR100291668B1 (en) A semiconductive power cable shield
JP4708393B2 (en) Semiconductive watertight composition
JPH11329077A (en) Composition for semi-conductive layer and power cable
JPH11353942A (en) Power cable
JP3097920B2 (en) Method for producing semiconductive layer of crosslinked polyethylene insulated power cable
WO2002059909A1 (en) An insulation system, in particular for electric power cables
JPS61235444A (en) Semiconductive resin composition
JPH06333418A (en) Semiconductive resin composition for power cable
JP2001093332A (en) Semiconductive resin admixture and manufacturing method of power cable

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees