JPH09297944A - Information reproduction control method for optical magnetic information recording medium - Google Patents

Information reproduction control method for optical magnetic information recording medium

Info

Publication number
JPH09297944A
JPH09297944A JP11493996A JP11493996A JPH09297944A JP H09297944 A JPH09297944 A JP H09297944A JP 11493996 A JP11493996 A JP 11493996A JP 11493996 A JP11493996 A JP 11493996A JP H09297944 A JPH09297944 A JP H09297944A
Authority
JP
Japan
Prior art keywords
magneto
reproduction
optical
recording medium
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11493996A
Other languages
Japanese (ja)
Inventor
Hisataka Sugiyama
久貴 杉山
Hideki Saga
秀樹 嵯峨
Jiichi Miyamoto
治一 宮本
Hiroyuki Awano
博之 粟野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11493996A priority Critical patent/JPH09297944A/en
Publication of JPH09297944A publication Critical patent/JPH09297944A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten a scanning direction diameter so as to improve apparent resolution by reducing a Kerr rotational angle by head produced by light spot irradiation and making a reproducing signal to respond to a part formed by eliminating a response limit region from an irradiation part in order to form the response limit region. SOLUTION: The strength and scanning speed of a light spot 102 are set in a magneto-optical disk having a plurality of marks magnetized on a recording surface, and this spot is irradiated with a light. Because of the irradiation, a temperature distribution protruded in the center is formed inside the light spot 102. A Kerr rotational angle is reduced by heat produced thereby, and a response limit region 101 is formed. Thus, after a recording layer 105 is cooled to a room temperature after scanning of the light spot, the magnetization of the recording layer 105 is recovered to a state before the scanning and the shape of a mark 104 is read. Thus, since a reproducing signal reflects the response of a part formed by eliminating the response limit region 101 from the irradiation part of the light spot 102, the scanning direction diameter of the light spot 102 is shortened to the diameter of an effective spot 103 and seeming resolution is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、情報記録密度の増
大を図ることができる光磁気情報記録媒体の情報再生の
情報再生制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an information reproduction control method for reproducing information from a magneto-optical information recording medium capable of increasing the information recording density.

【0002】[0002]

【従来の技術】一般に光磁気情報記録媒体(以下、光磁
気ディスクと呼ぶ)は、光磁気記録膜上にレーザ光を照
射させて光磁気記録膜の照射部分の温度をキュリー温度
に上昇させ、磁化方向を他の部分と変えることにより情
報の記録を行う。再生時にはこの磁化変位により照射し
たレーザ光の反射光がカー効果(Kerr効果)により
偏向することを利用し、この媒体からの反射光の偏光状
態を通じて読み出し、光電変換素子によって電気信号に
変換後、電気的に処理されて情報として復元する。ま
た、前記レーザ光の照射によって磁性層に磁区として記
録された記録部分はマークと呼ばれ、このマークを検出
するために照射されるレーザ光は光スポットと呼ばれ
る。
2. Description of the Related Art Generally, a magneto-optical information recording medium (hereinafter referred to as a magneto-optical disk) irradiates a laser beam onto a magneto-optical recording film to raise the temperature of an irradiated portion of the magneto-optical recording film to a Curie temperature. Information is recorded by changing the magnetization direction from the other part. At the time of reproduction, by utilizing the fact that the reflected light of the laser light irradiated by this magnetization displacement is deflected by the Kerr effect (Kerr effect), it is read out through the polarization state of the reflected light from this medium, and after being converted into an electric signal by a photoelectric conversion element, It is electrically processed and restored as information. A recording portion recorded as a magnetic domain on the magnetic layer by the irradiation of the laser light is called a mark, and the laser light irradiated to detect the mark is called a light spot.

【0003】この光磁気情報記録媒体上のマークを読み
取って記録情報に復元するためには、記録媒体及び再生
装置の誤り率/変調方式/信号検出方式等に応じて所定
以上の信号対雑音比(S/N比)が要求される。しかし
ながら近年の高記録密度化の要求によって、マークの微
小化や光スポット走査方向の記録線密度が上昇してお
り、マーク長とマーク間隔を短縮しているため、近年の
媒体では短いマークが狭い間隔を隔てて連続している部
分では再生信号強度が低下し、その部分での局所的なS
/N比が劣化し情報を復元する際の誤り率が上昇する不
具合が発生している。
In order to read the mark on the magneto-optical information recording medium and restore it to the recorded information, a signal-to-noise ratio of a predetermined value or more depending on the error rate / modulation method / signal detection method of the recording medium and the reproducing apparatus. (S / N ratio) is required. However, due to the recent demand for higher recording density, finer marks and higher recording linear density in the light spot scanning direction are being used, and the mark length and the mark interval are shortened. The reproduced signal strength decreases in the part that is continuous with an interval, and the local S
There is a problem that the / N ratio deteriorates and the error rate at the time of restoring information increases.

【0004】これは例えば、光源の波長をλ,対物レン
ズの開口数をNAとし、光スポットの直径をλ/NAと
定義すると、例えばλ=680nm,NA=0.55の
光学系で得られる直径1.2μmの光スポットを用い
て、直径0.40μmのマークが0.80μmごとに連
続して形成されている部分を走査しても、マークの有無
を正確に判定するために十分な強度の再生信号は得られ
ない精度である。
For example, when the wavelength of the light source is λ, the numerical aperture of the objective lens is NA, and the diameter of the light spot is λ / NA, for example, an optical system with λ = 680 nm and NA = 0.55 can be obtained. Sufficient intensity to accurately determine the presence / absence of a mark even when scanning a portion where marks having a diameter of 0.40 μm are continuously formed every 0.80 μm using a light spot having a diameter of 1.2 μm. The reproduction signal of is the precision that cannot be obtained.

【0005】この問題に対して複数の磁性層からなる磁
気超解像記録媒体を用い、該光磁気超解像磁性膜上を光
スポットで走査して該光スポット内の磁性層の一部にマ
スク磁区を形成し、これによりスポットが縮小したのと
同等の効果を得て光学系の見かけの分解能が向上する方
法が、特開平3−93056号公報及び特開平3−93
058号公報等に開示されている。
To solve this problem, a magnetic super-resolution recording medium composed of a plurality of magnetic layers is used, and the magneto-optical super-resolution magnetic film is scanned with a light spot so that a part of the magnetic layer in the light spot is scanned. A method of forming a mask magnetic domain and thereby obtaining an effect equivalent to that of reducing a spot and improving the apparent resolution of an optical system is disclosed in JP-A-3-93056 and JP-A-3-93.
It is disclosed in Japanese Patent Publication No. 058.

【0006】[0006]

【発明が解決しようとする課題】前記従来技術による複
数の磁性層からなる磁気超解像記録媒体を用いる技術
は、磁気超解像記録媒体からの再生信号波形が時間方向
に前後非対称であるために複雑な信号処理が必要とさ
れ、信号処理回路の規模の点で不利であると言う不具合
を招いていた。
In the technique of using the magnetic super-resolution recording medium composed of a plurality of magnetic layers according to the prior art, the reproduced signal waveform from the magnetic super-resolution recording medium is asymmetric in the longitudinal direction. However, complicated signal processing is required, which is disadvantageous in terms of the scale of the signal processing circuit.

【0007】また従来技術は、マスク磁区の変形による
動作ノイズに発生ともない、再生信号におけるS/N比
が低下して情報を復元する際の誤り率が上昇するため、
記録密度の増大には限界があると言う不具合もあった。
Further, in the prior art, the S / N ratio in the reproduced signal is lowered and the error rate at the time of restoring the information is increased with the occurrence of the operation noise due to the deformation of the mask magnetic domain.
There is also a problem that there is a limit to the increase in recording density.

【0008】更に従来技術では、光学系のばらつきや機
構系のばらつきにより記録再生する光スポットが歪み、
その結果として再生信号の伝達特性がばらつき、または
劣化する不具合があった。これら不具合を解決するため
に波形等化回路を設け、電気的に伝達特性を改善するこ
とも考えられるが、この方法によっても等化を行なうと
符号間の干渉を低減信号振幅を改善することができるも
のの、ノイズも増加させるという不具合を招くものであ
った。また、装置の特性は装置毎/光磁気ディスク毎に
バラツキがあるために波形等化回路を装置毎に設定する
必要があると共に、光磁気ディスク毎,更にディスク内
外周でも等化回路の設定を切り換える必要があると言う
不具合もあった。
Further, in the prior art, the optical spot for recording and reproducing is distorted due to the variation of the optical system and the variation of the mechanical system,
As a result, there has been a problem that the transfer characteristics of the reproduced signal vary or deteriorate. In order to solve these problems, a waveform equalization circuit may be provided to electrically improve the transfer characteristic. However, this method also reduces the interference between codes and improves the signal amplitude. Although it can be done, it causes a problem that noise is also increased. In addition, because the characteristics of the device vary from device to device / magneto-optical disk, it is necessary to set the waveform equalization circuit for each device, and also to set the equalization circuit for each magneto-optical disk, and also for the inner and outer disks. There was also a problem that it was necessary to switch.

【0009】本発明の目的は、前記従来技術による不具
合を除去することであり、光磁気記録媒体を用いた情報
記録再生装置の記録密度増大を図る場合に、前述の記録
線密度の限界を越える光磁気記録媒体の情報再生方式お
よび各種変動要因による信号特性のばらつきを吸収する
光磁気情報記録媒体の情報再生制御方法を提供すること
である。
An object of the present invention is to eliminate the above-mentioned problems caused by the prior art, and when the recording density of an information recording / reproducing apparatus using a magneto-optical recording medium is increased, the recording linear density limit mentioned above is exceeded. An object of the present invention is to provide an information reproduction method for a magneto-optical recording medium and an information reproduction control method for a magneto-optical information recording medium that absorbs variations in signal characteristics due to various factors.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
本発明による光磁気情報記録媒体の情報再生制御方法
は、レーザ光の照射によって光磁気情報記録媒体に磁気
光学効果により情報の記録再生を行う光磁気再生系と、
該光磁気再生系のカット・オフ空間周波数に略等しい線
密度で形成されたマークを走査して得られる再生信号中
のキャリア強度が+1dBの再生光量の増加に対して+
1dB以上の変化率で増加する時に再生信号中のノイズ
強度が+1dBの再生光量の増加に対して+1dB以下
の変化率で増加する光磁気情報記録媒体を用い、前記光
磁気再生系が光磁気情報記録媒体に対して前記キャリア
強度が+1dBの前記再生光量の増加に対して+1dB
以上の変化率で増加する範囲の再生光量でマークを走査
する様に光学ヘッドの出力値を制御することを特徴とす
る。
In order to achieve the above object, an information reproducing control method for a magneto-optical information recording medium according to the present invention records and reproduces information on a magneto-optical information recording medium by irradiation of laser light by a magneto-optical effect. A magneto-optical reproduction system
The carrier intensity in the reproduction signal obtained by scanning the mark formed with the linear density substantially equal to the cut-off spatial frequency of the magneto-optical reproduction system is ++ 1 with respect to the increase of the reproduction light amount by +1 dB.
The magneto-optical information recording medium uses a magneto-optical information recording medium in which the noise intensity in the reproduced signal increases at a rate of change of +1 dB or less with respect to an increase in the amount of reproduction light of +1 dB when increasing at a rate of change of 1 dB or more. With respect to the recording medium, the carrier intensity is +1 dB and the reproduction light amount is increased by +1 dB.
It is characterized in that the output value of the optical head is controlled so that the mark is scanned with the reproduction light amount in the range increasing with the above change rate.

【0011】更に本発明による光磁気情報記録媒体の情
報再生制御方法は、レーザ光の照射によって光磁気情報
記録媒体に磁気光学効果により情報の記録再生を行う光
磁気再生系と、該光磁気再生系のカット・オフ空間周波
数よりも十分に低い線密度で形成されたマークを走査し
て得られる再生信号中のキャリア強度と前記カット・オ
フ空間周波数に略等しい線密度で形成されたマークを走
査して得られる再生信号中のキャリア強度の差が再生光
量の増加にともない減少する光磁気情報記録媒体を用
い、前記光磁気再生系が光磁気情報記録媒体に対して前
記カット・オフ空間周波数に略等しい線密度で形成され
たマークを走査して得られる再生信号中のキャリア強度
が+1dBの再生光量の増加に対して+1dB以上の変
化率で増加する範囲の再生光量でマークを走査すること
を第2の特徴とする。
Further, the information reproducing control method for a magneto-optical information recording medium according to the present invention comprises a magneto-optical reproducing system for recording and reproducing information on the magneto-optical information recording medium by a magneto-optical effect by irradiation of a laser beam, and the magneto-optical reproducing system. Scan a mark formed with a linear density substantially equal to the cut-off spatial frequency and the carrier intensity in the reproduced signal obtained by scanning a mark formed with a linear density sufficiently lower than the cut-off spatial frequency of the system. By using a magneto-optical information recording medium in which the difference in carrier intensity in the reproduced signal obtained by decreasing with the increase of the reproducing light amount, the magneto-optical reproducing system to the cut-off spatial frequency for the magneto-optical information recording medium A range in which the carrier intensity in a reproduction signal obtained by scanning marks formed with substantially equal linear density increases at a rate of change of +1 dB or more with respect to an increase of the reproduction light amount of +1 dB. The second feature scanning a mark reproducing light quantity.

【0012】更に本発明は、前記特徴による情報再生制
御方法において、前記光学ヘッドの出力値を制御する際
の再生信号の振幅またはその微分振幅を検出し、該再生
光量を再設定することを特徴とする。
Further, the present invention is characterized in that, in the information reproduction control method according to the above feature, the amplitude of the reproduction signal or the differential amplitude thereof when controlling the output value of the optical head is detected and the reproduction light amount is reset. And

【0013】[0013]

【発明の実施の形態】以下、本発明の一実施形態による
光磁気情報記録媒体の情報再生制御方法を図面を参照し
て説明する。図1は本発明の一実施形態情報再生制御方
法の等化方法を説明するための図、図2は本実施形態で
用いる記録媒体の動作を説明するための図、図3は本実
施形態で用いる記録媒体の構造の例を説明するための
図、図4は本実施形態で用いる記録媒体中の磁性層の温
度特性を説明するための図、図5は本実施形態の記録媒
体の応答制限領域の形成による分解能の変化を説明する
ための図、図6は本実施形態による再生光量による信号
レベルの変化および再生光量の設定方法を説明するため
の図、図7は従来技術による波形等化回路の一例を示す
図、図8は該等化特性を本発明により学習及び制御する
回路を示す図、図9は再生特性を学習する方法の原理を
説明するための図、図10は等化特性の異なる再生信号
の一例を示す図である。
DETAILED DESCRIPTION OF THE INVENTION An information reproduction control method for a magneto-optical information recording medium according to an embodiment of the present invention will be described below with reference to the drawings. 1 is a diagram for explaining an equalization method of an information reproduction control method according to an embodiment of the present invention, FIG. 2 is a diagram for explaining the operation of a recording medium used in this embodiment, and FIG. 3 is this embodiment. FIG. 4 is a diagram for explaining an example of the structure of a recording medium used, FIG. 4 is a diagram for explaining temperature characteristics of a magnetic layer in the recording medium used in this embodiment, and FIG. 5 is a response limitation of the recording medium of this embodiment. FIG. 6 is a diagram for explaining a change in resolution due to formation of a region, FIG. 6 is a diagram for explaining a change in a signal level according to the reproduction light amount and a method for setting the reproduction light amount according to the present embodiment, and FIG. 7 is a waveform equalization according to a conventional technique. FIG. 8 is a diagram showing an example of a circuit, FIG. 8 is a diagram showing a circuit for learning and controlling the equalization characteristic according to the present invention, FIG. 9 is a diagram for explaining the principle of a method for learning the reproduction characteristic, and FIG. It is a figure which shows an example of the reproduction signal from which a characteristic differs.

【0014】まず本発明の概念を説明する。本発明は前
記した課題を解決するための手段の欄で述べた如く、再
生光学系のカット・オフ空間周波数に略等しい線密度で
形成されたマークを走査して得られる再生信号中のキャ
リア強度が+1dBの再生光量の増加に対して、+1d
B以上の変化率で増加する時に再生信号中のノイズ強度
が+1dBの再生光量の増加に対して+1dB以下の変
化率で増加する記録媒体を用い、再生光量をキャリア強
度が+1dBの前記再生光量の増加に対して+1dB以
上の変化率で増加する範囲に設定することを特徴として
いる。
First, the concept of the present invention will be described. As described in the section of the means for solving the above-mentioned problems, the present invention provides carrier strength in a reproduced signal obtained by scanning a mark formed with a linear density substantially equal to the cut-off spatial frequency of the reproducing optical system. Is + 1d with respect to an increase in the reproduction light amount of +1 dB
A recording medium in which the noise intensity in the reproduced signal increases at a rate of change of +1 dB or less with respect to an increase of the amount of reproduction light of +1 dB when increasing at a rate of change of B or more is used. The feature is that the range is set to increase at a change rate of +1 dB or more with respect to the increase.

【0015】更に本発明は、再生光学系のカット・オフ
空間周波数よりも十分に低い線密度で形成されたマーク
を走査して得られる再生信号中のキャリア強度と前記カ
ット・オフ空間周波数に略等しい線密度で形成されたマ
ークを走査して得られる再生信号中のキャリア強度の差
が再生光量の増加にともない減少する記録媒体を用い、
再生光量を、カット・オフ空間周波数に略等しい線密度
で形成されたマークを走査して得られる再生信号中のキ
ャリア強度が+1dBの再生光量の増加に対して+1d
B以上の変化率で増加する範囲に設定することを特徴と
している。更に本発明は前記特徴の光磁気再生系におい
て、ある設定での再生光量下での再生信号の信号振幅又
は、スライスレベル等により検出される位相情報をもと
に最適な伝達特性になるように再生パワーを制御するこ
とを特徴としている。
Further, according to the present invention, the carrier intensity in a reproduced signal obtained by scanning a mark formed with a line density sufficiently lower than the cut-off spatial frequency of the reproduction optical system and the cut-off spatial frequency are substantially the same. Using a recording medium in which the difference in carrier intensity in a reproduction signal obtained by scanning marks formed with equal linear density decreases with an increase in reproduction light amount,
The reproduction light quantity is + 1d with respect to the increase of the reproduction light quantity in which the carrier intensity in the reproduction signal obtained by scanning the mark formed with the linear density substantially equal to the cut-off spatial frequency is +1 dB.
The feature is that it is set in a range that increases at a change rate of B or more. Further, in the magneto-optical reproduction system having the above characteristics, the present invention provides an optimum transfer characteristic based on the phase information detected by the signal amplitude of the reproduction signal under a certain amount of reproduction light or the slice level. It is characterized by controlling the reproduction power.

【0016】本発明で前述の記録媒体を用いる理由は、
これら媒体が光スポットの強度および走査速度を適当に
設定することにより、光スポット内に照射によって加熱
されKerr回転角が低下した領域(以降、本明細書中
ではこのKerr回転角の低下した領域を「応答制限領
域」と呼ぶ)を形成するためである。
The reason for using the above-mentioned recording medium in the present invention is as follows.
By appropriately setting the intensity of the light spot and the scanning speed of these media, a region in which the Kerr rotation angle is reduced by being heated by irradiation in the light spot (hereinafter, this region in which the Kerr rotation angle is lowered is referred to as This is to form a “response restriction area”).

【0017】即ち、光磁気記録では光磁気記録媒体から
の反射光の偏光面の回転を検出することにより再生信号
を得ているため、昇温部分のKerr回転角が低下した
領域が再生信号にあまり寄与しなくなることを利用し、
光スポット照射部分から応答制限領域を除いた部分から
再生信号を得る様に構成し、結果的に光スポットの走査
方向の直径が短縮されたのと同じ効果が得られ、光学系
の見かけの分解能を改善するためである。
That is, in magneto-optical recording, since the reproduction signal is obtained by detecting the rotation of the plane of polarization of the reflected light from the magneto-optical recording medium, the region where the Kerr rotation angle is decreased in the temperature rising portion becomes the reproduction signal. Taking advantage of not contributing much,
The playback signal is configured to be obtained from the part where the response limit area is excluded from the light spot irradiation part, and as a result, the same effect as when the diameter of the light spot in the scanning direction is shortened is obtained, and the apparent resolution of the optical system is obtained. Is to improve.

【0018】この応答制限領域は、温度上昇によるKe
rr回転角の低下領域であるから、応答制限領域を形成
するために磁場を特別に印加する必要もなく、更にKe
rr回転角は記録膜の温度に対して連続的に変化するの
で磁区によるマスク領域とは異なり磁壁のような明確な
境界部分は存在しないため、応答制限領域の形成は空間
的に連続的であり、再生光量とともに連続的に伝達特性
を可変とすることができる。また、同じ理由で、走査時
の磁壁移動によって発生する従来の磁気超解像動作に特
有の動作ノイズの発生を防止できる。また同時に再生信
号は、マークの前エッジと後エッジとで良好な対称性を
持ち、信号処理回路の規模の点で有利となる。またマー
クが隣接して形成されている場合でも、応答制限領域は
磁区によるマスク領域とは異なり、マーク磁区との磁気
的相互作用に起因する光磁気再生信号の非線形性が少な
い。すなわち複数のマークが隣接した場合の応答は、各
々のマークが個別に存在した場合の応答の加算によって
精度良く近似可能である。また前述の様に光学ヘッドの
出力値を制御する際の再生信号の振幅またはその微分振
幅を検出し、該再生光量を再設定することにより、装置
毎/光磁気ディスク毎及びディスク内外周におけるバラ
ツキを容易に補正することができる。以上が本発明の基
本的概念である。
This response-limited region has a Ke due to temperature rise.
Since it is a region where the rr rotation angle is reduced, it is not necessary to apply a magnetic field to form the response limiting region.
Since the rr rotation angle changes continuously with respect to the temperature of the recording film, there is no clear boundary portion such as a domain wall unlike the mask area due to the magnetic domain, so that the formation of the response limiting area is spatially continuous. It is possible to continuously change the transfer characteristic together with the reproduction light amount. Further, for the same reason, it is possible to prevent the occurrence of operation noise peculiar to the conventional magnetic super-resolution operation caused by the domain wall movement during scanning. At the same time, the reproduced signal has good symmetry between the front edge and the rear edge of the mark, which is advantageous in terms of the scale of the signal processing circuit. Even when the marks are formed adjacent to each other, unlike the mask region formed by the magnetic domains, the response limited area has less nonlinearity of the magneto-optical reproduction signal due to the magnetic interaction with the mark magnetic domains. That is, the response when a plurality of marks are adjacent to each other can be accurately approximated by adding the responses when the respective marks are individually present. Further, as described above, the amplitude of the reproduction signal when controlling the output value of the optical head or the differential amplitude thereof is detected, and the reproduction light amount is reset, so that there is a variation in each device / magneto-optical disk and the inner and outer circumferences of the disk. Can be easily corrected. The above is the basic concept of the present invention.

【0019】さて、まず本実施形態で用いる光磁気ディ
スク(光磁気情報記録媒体)の構造の一例を図3を用い
て説明する。図3(a)は1層の磁性層からなる光磁気
ディスクの断面構成を示し、図3(b)は2層の磁性層
からなる光磁気ディスクの断面構成を示す図である。
Now, an example of the structure of the magneto-optical disk (magneto-optical information recording medium) used in this embodiment will be described with reference to FIG. FIG. 3A shows a sectional structure of a magneto-optical disk composed of one magnetic layer, and FIG. 3B shows a sectional structure of a magneto-optical disk composed of two magnetic layers.

【0020】図3(a)に示す光磁気ディスクは、光透
過性の基体202上に光透過性の第1の保護層203a
を形成し、この第1の保護層203a上に記録層105
を積層し、更に該記録層105上に第2の保護層203
b,反射層204を順に積層している。この反射層20
4上に必要があれば更にUV樹脂性の保護皮膜層205
を形成しても良い。
The magneto-optical disk shown in FIG. 3A has a light-transmissive first protective layer 203a on a light-transmissive substrate 202.
And the recording layer 105 is formed on the first protective layer 203a.
And a second protective layer 203 on the recording layer 105.
b and the reflective layer 204 are sequentially stacked. This reflective layer 20
4 if necessary, further UV resin protective film layer 205
May be formed.

【0021】この第1の保護層203aは多重干渉によ
って記録層の見かけのKerr回転角を増大させる干渉
層としての機能も兼ねている。記録層105は室温T
ROOM付近で有限の保磁力Hc,Kerr回転角θKを持
つフェリ磁性体膜であり、図4(a)に示すような温度
特性を持つ。この温度特性は、温度Tを上昇させると保
持力Hcが補償温度TCOMP=170°C前後で発散し、
Curie温度Tc=240°C近傍で零となる特性を
表している。一方、回転角θKは、温度Tの上昇ととも
に減少し、T=TcでHc=0,回転角θK=0の常磁
性状態となる特性を表している。
The first protective layer 203a also serves as an interference layer for increasing the apparent Kerr rotation angle of the recording layer due to multiple interference. The recording layer 105 has a room temperature T
It is a ferrimagnetic film having a finite coercive force Hc and a Kerr rotation angle θ K near ROOM , and has a temperature characteristic as shown in FIG. This temperature characteristic shows that when the temperature T is raised, the holding force Hc diverges at a compensation temperature T COMP = 170 ° C.
The characteristic is zero near the Curie temperature Tc = 240 ° C. On the other hand, the rotation angle θ K decreases as the temperature T rises, and represents the characteristic that at T = Tc, Hc = 0 and the rotation angle θ K = 0 and the paramagnetic state occurs.

【0022】図3(b)に示す光磁気ディスクは、光透
過性の基体202上に光透過性の第1の保護層203a
を形成し、この第1の保護層203a上に再生層106
を積層し、さらに記録層105,第2の保護層203b
を順に積層している。この第2の保護層203b上に必
要なら更にUV樹脂性の保護皮膜層205を形成しても
良い。
The magneto-optical disk shown in FIG. 3B has a light-transmissive first protective layer 203a on a light-transmissive substrate 202.
And the reproducing layer 106 is formed on the first protective layer 203a.
The recording layer 105 and the second protective layer 203b.
Are sequentially stacked. If necessary, a UV resin protective film layer 205 may be further formed on the second protective layer 203b.

【0023】この第1の保護層203aは多重干渉によ
って再生層106の見かけのKerr回転角を増大させ
る干渉層としての機能も兼ねている。記録層105及び
再生層106は、図4(b)に示すとおりそれぞれの補
償温度がTCOMP1=0°C,TCOMP2=200°C、Cu
rie温度がTc1=150°C,Tc2=260°Cの特
性を持つフェリ磁性体膜が好ましい。またTCOMP1はT
ROOM前後、TCOMP2はTc1前後の値を持ち、なおかつ
COMP1<TCOMP2かつTROOM<Tc1<Tc2なる関係
が成立している。
The first protective layer 203a also has a function as an interference layer for increasing the apparent Kerr rotation angle of the reproducing layer 106 due to multiple interference. As shown in FIG. 4B, the compensation temperatures of the recording layer 105 and the reproduction layer 106 are T COMP1 = 0 ° C., T COMP2 = 200 ° C., and Cu.
A ferrimagnetic film having a rie temperature of Tc1 = 150 ° C and Tc2 = 260 ° C is preferable. Also, T COMP1 is T
Before and after ROOM , T COMP2 has a value around Tc1, and the relations of T COMP1 <T COMP2 and T ROOM <Tc1 <Tc2 are established.

【0024】このように形成した光磁気ディスクは、光
スポットを照射すると、この照射部分の記録膜の温度が
局部的に上昇し、Kerr回転角が変化する。この状態
を次に図2を参照して説明する。
When the magneto-optical disk thus formed is irradiated with a light spot, the temperature of the recording film at the irradiated portion locally rises and the Kerr rotation angle changes. This state will be described next with reference to FIG.

【0025】まず図2(a)は、図3(a)に示した光
磁気ディスクの表面の記録膜表面の磁区分布と、光磁気
ディスク断面方向から見た磁区分布と、光磁気ディスク
の記録膜の温度及びKerr回転角分布とを表す図であ
る。また磁性層中の矢印の長さおよび向きは、それぞれ
磁化の大きさおよび磁化方向を示している。
First, FIG. 2A shows the magnetic domain distribution on the surface of the recording film on the surface of the magneto-optical disk shown in FIG. 3A, the magnetic domain distribution seen from the cross section of the magneto-optical disk, and the recording on the magneto-optical disk. It is a figure showing the temperature and Kerr rotation angle distribution of a film. The length and direction of the arrow in the magnetic layer indicate the magnitude and direction of magnetization, respectively.

【0026】本実施形態による光磁気ディスクは、記録
層105がフェリ磁性体であり、図4(a)に示した如
く、温度Tを上昇させるとKerr回転角θKが温度T
の上昇とともに減少し、温度T=TcでKerr回転角
θK=0の常磁性状態となる特性を持っている。そこで
図2(a)の如く、予め記録面に磁化された複数のマー
クを持つ光磁気ディスクに光スポット102の強度およ
び走査速度を適当に設定して照射すると、光スポット1
02内は照射によって中央が突出したカーブの温度分布
となり、この加熱によってKerr回転角が低下した応
答制限領域101(図中、交差した斜線で示す)が形成
される。この応答制限領域101の最高温度TRDは、C
urie温度Tcよりも低いものとし、最高温度TRD
おける記録層105の保持力Hcが反磁界等に比べ十分
に大きいものになるよう選択する。
In the magneto-optical disk according to the present embodiment, the recording layer 105 is a ferrimagnetic material, and as shown in FIG. 4A, when the temperature T is increased, the Kerr rotation angle θ K becomes the temperature T.
Has a characteristic that it decreases with an increase in temperature and becomes a paramagnetic state with a Kerr rotation angle θ K = 0 at a temperature T = Tc. Therefore, as shown in FIG. 2A, when a magneto-optical disk having a plurality of marks magnetized in advance on the recording surface is irradiated with the intensity and scanning speed of the light spot 102 set appropriately, the light spot 1
The inside of 02 has a temperature distribution of a curve whose center protrudes due to irradiation, and this heating forms a response limiting region 101 (shown by crossed diagonal lines in the figure) in which the Kerr rotation angle is reduced. The maximum temperature T RD of the response limiting area 101 is C
It is set lower than the urie temperature Tc, and is selected so that the coercive force Hc of the recording layer 105 at the maximum temperature T RD is sufficiently larger than the demagnetizing field and the like.

【0027】これにより、光スポットの走査後に記録層
105が室温TROOMまで冷却されれば記録層105の磁
化は走査前の状態に回復するので、マーク104の形状
は読み出し動作の影響を受けなくなる。
As a result, if the recording layer 105 is cooled to the room temperature T ROOM after the scanning of the light spot, the magnetization of the recording layer 105 is restored to the state before the scanning, so that the shape of the mark 104 is not affected by the reading operation. .

【0028】光磁気記録では光磁気記録媒体100から
の反射光の偏光面の回転を検出し再生信号を得ているの
で、昇温部分のKerr回転角が大幅に減少した領域は
再生信号にあまり寄与しなくなる。即ち、本実施形態に
おいては再生信号が光スポット102照射部分から応答
制限領域101を除いた部分(光スポット102の円か
ら応答制限領域101の斜線の内円部分を除いた変形三
日月部分)の応答を主として反映するので、結果的に光
スポット102の走査方向直径が(前記変形三日月部分
右側の幅に相当する)実効スポット103の径まで短縮
されたのと同じ効果が得られ、光学系の見かけの分解能
を改善することができる。
In magneto-optical recording, since the reproduction signal is obtained by detecting the rotation of the plane of polarization of the reflected light from the magneto-optical recording medium 100, the region where the Kerr rotation angle in the temperature rising portion is greatly reduced is not much in the reproduction signal. It will not contribute. That is, in the present embodiment, the response of the reproduced signal is the portion of the portion irradiated with the light spot 102 excluding the response limiting area 101 (the modified crescent moon portion of the circle of the light spot 102 excluding the shaded inner circle portion of the response limiting area 101). As a result, the same effect as that when the diameter of the light spot 102 in the scanning direction is shortened to the diameter of the effective spot 103 (corresponding to the width on the right side of the modified crescent moon portion) is obtained, and the apparent appearance of the optical system is obtained. The resolution of can be improved.

【0029】図3(b)に示した光磁気ディスクにおい
ても同様に光学系の見かけの分解能を改善することがで
きる。即ち、本光磁気ディスクは、図4(b)の如く、
保持力Hc2が補償温度TCOMP2前後で一旦発散し、C
urie温度Tc2で零となる特性のフェリ磁性体の記
録層105と、温度T=TROOM前後に補償温度を有し、
Kerr回転角θKが温度Tの上昇とともに減少し、T
=Tc2で回転角θK=0の常磁性状態となる特性を持
つフェリ磁性体の再生層106とを積層しているため、
温度T=TROOM前後の状態で再生層106に記録層10
5の磁区すなわちマークを転写し、再生層106と記録
層105の磁区分布形状が同一となる特性を持ってい
る。
Also in the magneto-optical disk shown in FIG. 3B, the apparent resolution of the optical system can be similarly improved. That is, the present magneto-optical disk is as shown in FIG.
The holding force Hc2 diverges once around the compensation temperature T COMP2 , and C
a recording layer 105 of a ferrimagnetic material having a characteristic of becoming zero at the urie temperature Tc2, and a compensation temperature around the temperature T = T ROOM ,
The Kerr rotation angle θ K decreases as the temperature T increases, and
= Tc2, a reproduction layer 106 of a ferrimagnetic material having a paramagnetic state with a rotation angle θ K = 0 is laminated.
The recording layer 10 is formed on the reproducing layer 106 in a state around the temperature T = T ROOM.
5 has a characteristic that the magnetic domain distribution shapes of the reproducing layer 106 and the recording layer 105 are the same, by transferring the magnetic domains, ie, marks.

【0030】この光磁気ディスクに対して光スポット1
02の強度および走査速度を適当に設定して照射する
と、図2(b)に示すように光スポット102内には照
射によって加熱されKerr回転角が低下した応答制限
領域101が形成される。応答制限領域101の最高温
度TRDはTc2よりも低いものとし、TRDにおける記録
層105のHc2は反磁界等に比べ十分に大きいものに
なるよう選択する。
A light spot 1 is applied to this magneto-optical disk.
When the intensity of 02 and the scanning speed are appropriately set and the irradiation is performed, a response limiting region 101, which is heated by the irradiation and has a reduced Kerr rotation angle, is formed in the light spot 102 as shown in FIG. 2B. The maximum temperature T RD of the response limiting region 101 is set lower than Tc2, and Hc2 of the recording layer 105 at T RD is selected to be sufficiently larger than the demagnetizing field or the like.

【0031】これにより、光スポット102による走査
時の記録層105中のマーク104の形状が走査時の温
度上昇による影響を受けることがなくなると共に、応答
制限領域101の再生層106は、温度上昇によってK
err回転角θKが低下する。
As a result, the shape of the mark 104 in the recording layer 105 at the time of scanning by the light spot 102 is not affected by the temperature increase at the time of scanning, and the reproducing layer 106 in the response limiting area 101 is affected by the temperature increase. K
The err rotation angle θ K decreases.

【0032】光磁気記録では光磁気記録媒体100から
の反射光の偏光面の回転を検出し再生信号を得ているの
で、再生層昇温部分のKerr回転角が大幅に減少した
応答低下領域は再生信号にあまり寄与しなくなる。即
ち、前記実施形態同様に再生信号は光スポット102照
射部分から応答制限領域101を除いた部分の応答を主
として反映するので、結果的に光スポット102の走査
方向直径が実効スポット103の幅まで短縮されたのと
同じ効果が得られ、光学系の見かけの分解能を改善する
ことができる。尚、図2(b)は図2(a)同様に光磁
気ディスクの表面の記録膜表面の磁区分布と、光磁気デ
ィスク断面方向から見た磁区分布と、光磁気ディスクの
記録膜の温度及びKerr回転角分布とを表す図であ
る。また磁性層中の矢印の長さおよび向きは、それぞれ
磁化の大きさおよび磁化方向を示している。
In magneto-optical recording, the rotation of the plane of polarization of the reflected light from the magneto-optical recording medium 100 is detected to obtain a reproduction signal. Therefore, the response-decreasing region in which the Kerr rotation angle in the temperature-raising portion of the reproduction layer is greatly reduced is It does not contribute much to the reproduction signal. That is, as in the above embodiment, the reproduction signal mainly reflects the response of the portion excluding the response limited region 101 from the irradiated portion of the light spot 102, so that the diameter of the light spot 102 in the scanning direction is shortened to the width of the effective spot 103. The same effect as described above can be obtained and the apparent resolution of the optical system can be improved. 2B is similar to FIG. 2A, the magnetic domain distribution on the surface of the recording film on the surface of the magneto-optical disk, the magnetic domain distribution seen from the cross-sectional direction of the magneto-optical disk, the temperature of the recording film on the magneto-optical disk, and It is a figure showing Kerr rotation angle distribution. The length and direction of the arrow in the magnetic layer indicate the magnitude and direction of magnetization, respectively.

【0033】この様に構成した光磁気ディスクに対して
適当な光量の光スポットを適当な速度で走査し、応答制
限領域101を形成した場合の分解能の変化の例を図5
に示す。図5は、波長λ=0.68μm,絞り込みレン
ズの開口数がNA=0.55の特性を持つ光ヘッドを用
い、縦軸が光磁気再生信号のスペクトル強度を、再生光
学系のカット・オフ空間周波数よりも十分に低い直流付
近(カット・オフ空間周波数の1/10)のスペクトル
強度で正規化したものである。
An example of a change in resolution when the response limiting area 101 is formed by scanning a light spot having an appropriate amount of light on the magneto-optical disk thus constructed at an appropriate speed is shown in FIG.
Shown in In FIG. 5, an optical head having a characteristic of wavelength λ = 0.68 μm and aperture lens numerical aperture NA = 0.55 is used, and the vertical axis indicates the spectrum intensity of the magneto-optical reproduction signal and the cut-off of the reproduction optical system. It is normalized by the spectrum intensity in the vicinity of direct current (1/10 of cut-off spatial frequency) sufficiently lower than the spatial frequency.

【0034】本例における光スポットの直径は、0.8
9μmであり、カット・オフ空間周波数2.3×10^
31p/mm(「^」はべき乗を表す演算子)の2周期の
長さに等しい。図中、再生光量PRD=1.0mWの範囲
では記録膜が十分に加熱されず、レスポンスが低下した
まま応答制限領域101がほとんど形成されていないこ
とを表している。これに対しPRD=3.0mWの状態で
は応答制限領域101が形成されており、光学系のカッ
ト・オフ空間周波数の約1/2倍以上の空間周波数で形
成されたマークのレスポンスが特に大きく改善されてい
ることが判る。
The diameter of the light spot in this example is 0.8.
9 μm, cut-off spatial frequency 2.3 × 10 ^
It is equal to the length of two cycles of 31 p / mm (“^” is an operator representing a power). In the figure, the recording film is not sufficiently heated in the range of the reproducing light amount P RD = 1.0 mW, and the response limiting region 101 is hardly formed while the response is lowered. On the other hand, in the state of P RD = 3.0 mW, the response limiting region 101 is formed, and the response of the mark formed at the spatial frequency about 1/2 times or more the cut-off spatial frequency of the optical system is particularly large. You can see that it has been improved.

【0035】次に前述の本実施形態による再生光量に対
する光磁気再生信号の信号レベルの変化を、マークの空
間周波数をパラメータとして図6を用いて説明する。
Next, the change in the signal level of the magneto-optical reproduction signal with respect to the reproduction light amount according to the above-described embodiment will be described with reference to FIG. 6 using the spatial frequency of the mark as a parameter.

【0036】まず、一般に磁性膜の温度上昇にともなう
Kerr回転角の低下によるキャリア強度の低下を無視
し得る理想的な場合、通常の光磁気再生系でのキャリア
強度は再生光量に比例し、再生光量の+1dB増加に対
するキャリア強度の増加量は+1dBとなる。しかしな
がら、図5に示した様に再生光学系のカット・オフ空間
周波数に等しい空間周波数2.3×10^31p/mmの
マークから得られる光磁気再生信号(実線で示すキャリ
ア)は、再生光量を1.0mW以上の範囲に応答制限領
域を形成することにより、磁性膜の温度上昇によるKe
rr回転角の減少分以上に再生光学系の見かけの分解能
を著しく改善し、再生光量が+1dB増加するのに対し
てキャリア強度を+1dB以上増加することができる。
First, in an ideal case where the decrease in carrier strength due to the decrease in Kerr rotation angle due to the increase in temperature of the magnetic film can be generally ignored, the carrier strength in a normal magneto-optical reproducing system is proportional to the reproducing light quantity, The amount of increase in carrier intensity with respect to the increase in light intensity of +1 dB is +1 dB. However, as shown in FIG. 5, a magneto-optical reproduction signal (carrier shown by a solid line) obtained from a mark having a spatial frequency of 2.3 × 10 ^ 31 p / mm equal to the cut-off spatial frequency of the reproduction optical system is reproduced. By forming the response limiting region in the range of the light amount of 1.0 mW or more, the Ke due to the temperature rise of the magnetic film
The apparent resolution of the reproducing optical system can be remarkably improved more than the decrease of the rr rotation angle, and the carrier intensity can be increased by +1 dB or more while the reproducing light amount is increased by +1 dB.

【0037】そこで本実施形態においては、再生光学系
のカット・オフ空間周波数に等しい密度のマークを再生
した場合、再生光量の+1dB増加に対するキャリア強
度の増加が+1dBを越える範囲に再生光量を設定する
ことにより、特に高い空間周波数におけるレスポンスが
改善された光磁気再生信号を得ることができる。
Therefore, in the present embodiment, when a mark having a density equal to the cut-off spatial frequency of the reproducing optical system is reproduced, the reproduction light amount is set within a range in which the increase of the carrier intensity with respect to the increase of the reproduction light amount by +1 dB exceeds +1 dB. As a result, it is possible to obtain a magneto-optical reproduction signal with an improved response especially at a high spatial frequency.

【0038】前述したとおり、本発明における応答制限
領域は温度上昇によるKerr回転角の低下領域による
ものであり、マスク領域を形成するために磁場を特別に
印加する必要はない。また、これらの応答は温度に関し
て連続的に変化するので、磁区によるマスク領域とは異
なり磁壁のような明確な境界部分は存在せず、応答制限
領域の形成は空間的に連続的である。従って走査時の磁
壁移動によって発生する従来の磁気超解像動作に特有の
動作ノイズ発生を防止することができる。
As described above, the response limiting region in the present invention is due to the region where the Kerr rotation angle decreases due to the temperature rise, and it is not necessary to apply a magnetic field specially to form the mask region. Further, since these responses continuously change with respect to temperature, there is no clear boundary portion such as a domain wall unlike the mask region due to magnetic domains, and the formation of the response limiting region is spatially continuous. Therefore, it is possible to prevent the occurrence of operation noise peculiar to the conventional magnetic super-resolution operation caused by the movement of the magnetic domain wall during scanning.

【0039】図6に再生光学系のカット・オフ空間周波
数に等しい空間周波数2.3×10^31p/mmのマー
クを再生した場合の、空間周波数2.3×10^31p/
mm前後でのノイズ強度を図中下段にあわせて示す。特
開平3−93058号公報に開示の磁気超解像媒体の場
合、マスク磁区が形成が開始される前後の再生光量で
は、+1dBの再生光量の増加に対して再生信号中のノ
イズ強度が+1dBを大きく越える変化率で増加する領
域がある。これに対し本実施形態では、再生信号中のノ
イズ強度は再生光量が増加するにつれて単調に増加する
が、再生光量に対するノイズ強度の増加率は常に+1d
B/dB以下とすることができる。
[0039] in the case of reproducing the mark of equal spatial frequency 2.3 × 10 ^ 31 p / mm cut-off spatial frequency of the reproducing optical system in FIG. 6, the spatial frequency 2.3 × 10 ^ 31 p /
The noise intensity around mm is also shown in the lower part of the figure. In the case of the magnetic super-resolution medium disclosed in Japanese Patent Application Laid-Open No. 3-93058, the noise intensity in the reproduced signal is +1 dB with respect to the increase of the reproduction light amount of +1 dB in the reproduction light amount before and after the formation of the mask magnetic domain. There is a region that increases at a rate of change that greatly exceeds it. On the other hand, in the present embodiment, the noise intensity in the reproduction signal monotonically increases as the reproduction light amount increases, but the increase rate of the noise intensity with respect to the reproduction light amount is always + 1d.
It can be B / dB or less.

【0040】また、本実施形態ではマークが隣接して形
成されている場合でも、マーク磁区と応答制限領域との
磁気的相互作用に起因する光磁気再生信号の非線形性が
原理的に小さい。すなわち複数のマークが隣接した場合
の応答は、各々のマークが個別に存在した場合の応答の
加算として精度良く近似することができる。
Further, in this embodiment, even if the marks are formed adjacent to each other, the non-linearity of the magneto-optical reproduction signal due to the magnetic interaction between the mark magnetic domain and the response limiting region is small in principle. That is, the response when a plurality of marks are adjacent to each other can be accurately approximated as an addition of responses when each mark is individually present.

【0041】図6で示した再生光量設定範囲において、
実際の変調方式に最適な等化特性を実現する例を図1に
示す。図1(a)は、波長λ=0.68μm,絞り込み
レンズの開口数がNA=0.55の光ヘッドを用い、こ
の時の光学ヘッドの線速度をV=10(m/s)とし、
NRZ(non-return-zero)変調方式に本実施形態を適
用した例である。図中の横軸は、図5に示した横軸の空
間周波数に線速度Vを掛けて、周波数f(MHz)にし
たものである。
In the reproduction light amount setting range shown in FIG.
FIG. 1 shows an example of realizing the optimum equalization characteristic for the actual modulation method. In FIG. 1A, an optical head having a wavelength λ = 0.68 μm and a numerical aperture of a focusing lens NA = 0.55 is used, and the linear velocity of the optical head at this time is V = 10 (m / s),
This is an example in which the present embodiment is applied to an NRZ (non-return-zero) modulation method. The horizontal axis in the figure is the frequency f (MHz) obtained by multiplying the spatial frequency on the horizontal axis shown in FIG. 5 by the linear velocity V.

【0042】この場合、ディスク上に絞り込まれたスポ
ット径Wsは一般に(λ/NA)で与えられ、Ws=
1.2μmとなる。ここで、図1上では、低い再生光量
1mWでは原信号特性301のようになる。図5で述べ
たように、カットオフ周波数fcは、1/(λ/(2×
NA))×v=16.3(MHz)となる。ここで、記
録線密度を0.40μm/bitとした場合、NRZ方
式では、最短マーク長が0.4μmで周期が0.8μm
となり、周波数にすると12.5(MHz)である。こ
の線密度を実現するためには、最短マーク繰り返し周波
数12.5(MHz)316では図に示すように信号レ
ベルの低下が著しいため、原信号特性301では十分に
再現することができないことが判る。この時の原再生信
号310を図10(a)に示す。本図の如き原再生信号
310では、検出の信頼性を示す開口が開いていないこ
とがわかる。
In this case, the spot diameter Ws narrowed down on the disc is generally given by (λ / NA), and Ws =
It becomes 1.2 μm. Here, in FIG. 1, the original signal characteristic 301 is obtained at a low reproduction light amount of 1 mW. As described in FIG. 5, the cutoff frequency fc is 1 / (λ / (2 ×
NA)) × v = 16.3 (MHz). Here, when the recording linear density is 0.40 μm / bit, in the NRZ method, the shortest mark length is 0.4 μm and the period is 0.8 μm.
And the frequency is 12.5 (MHz). In order to realize this linear density, it is understood that the original signal characteristic 301 cannot be sufficiently reproduced at the shortest mark repetition frequency of 12.5 (MHz) 316, because the signal level is significantly lowered as shown in the figure. . The original reproduction signal 310 at this time is shown in FIG. In the original reproduction signal 310 as shown in the figure, it can be seen that the opening showing the reliability of detection is not opened.

【0043】これに対し、信号レベルが十分とれる理想
特性302(図1)が得られれば、前述した条件のNR
Z方式で所望の線密度が実現できる。この時の再生信号
311は、図10(a)に示すように開口が十分開いて
いる。このような再生信号波形を得るために、一般的に
信号処理として波形等化処理が行われる。これは、例え
ば図7に示す如き波形等化回路を用い、必要な帯域、こ
の例では12.5(MHz)付近の信号レベルを上げる
ような等化特性303を生成し、原信号特性301を理
想特性302に改善する方法である。
On the other hand, if the ideal characteristic 302 (FIG. 1) in which the signal level is sufficient can be obtained, the NR of the above-mentioned condition is obtained.
A desired linear density can be realized by the Z method. At this time, the reproduction signal 311 has a sufficiently opened opening as shown in FIG. In order to obtain such a reproduced signal waveform, waveform equalization processing is generally performed as signal processing. For example, a waveform equalization circuit as shown in FIG. 7 is used to generate an equalization characteristic 303 that raises the signal level in a required band, in this example, around 12.5 (MHz), and the original signal characteristic 301 is set. This is a method of improving the ideal characteristic 302.

【0044】図7の回路は、3タップトランスバーサル
型等化回路と呼ばれるものであり、2つの遅逓回路40
1及び402と、ゲイン回路403及び404と、加算
回路405とから構成する。本回路は、入力信号である
再生信号出力406を3つに分ける。この分けられた信
号407は遅逓量τの遅逓回路401に入力され、信号
408は遅逓量2×τの遅逓回路402に入力され、他
の信号410は(−K1)のゲイン量のゲイン回路40
3でゲイン調整される。前記遅逓回路401及び402
の出力並びにゲイン回路403の出力は加算器405で
加算されることにより、等化後の再生信号409が得ら
れる。
The circuit shown in FIG. 7 is called a 3-tap transversal type equalizer circuit, and has two delay circuits 40.
1 and 402, gain circuits 403 and 404, and an addition circuit 405. This circuit divides the reproduction signal output 406 which is an input signal into three. The divided signal 407 is input to the delay circuit 401 of the delay amount τ, the signal 408 is input to the delay circuit 402 of the delay amount 2 × τ, and the other signals 410 are the gain amount of (−K1). Gain circuit 40
Gain is adjusted at 3. The delay circuits 401 and 402
And the output of the gain circuit 403 are added by the adder 405 to obtain a reproduction signal 409 after equalization.

【0045】本例における遅逓回量τは、一般に最短マ
ーク繰り返し周期の1/2程度に設定し、ゲイン量K
1,K2は、あるデータ検出点でのマークの信号が前後
の最短マーク繰り返し周期の1/2の間隔で離れた検出
点で漏れ込む(符号間干渉)量がゼロになるように設定
する。これが図1(a)の等化特性303に対応する。
また一般にはゲインK1とゲインK2は等値であるが、
漏れ込みが前後で非対称な場合は異なる値に設定され
る。
The delay amount τ in this example is generally set to about ½ of the shortest mark repetition period, and the gain amount K
1 and K2 are set so that the signal of the mark at a certain data detection point leaks to the detection points distant at intervals of 1/2 of the shortest mark repetition period before and after (inter-code interference) becomes zero. This corresponds to the equalization characteristic 303 of FIG.
Generally, the gain K1 and the gain K2 are equal values,
If the leak is asymmetrical before and after, it is set to a different value.

【0046】この一般の波形等化回路を用いる手法は、
隣接マークからの符号間干渉が抑圧され、信号レベルが
改善される利点があるものの以下の理由で限界がある。
一つは等化のゲインが高いと再生信号に含まれるノイズ
成分を増加させる問題があり、更に図示した回路では、
前後の3つの信号で処理をする3タップ式であり、さら
に2つとなりの信号レベルの変動を引き起こすために生
じる等化残りノイズが発生する問題があった。
The method using this general waveform equalization circuit is as follows.
Although there is an advantage that intersymbol interference from adjacent marks is suppressed and the signal level is improved, there is a limit for the following reasons.
One is that if the equalization gain is high, there is a problem of increasing the noise component contained in the reproduced signal.
It is a 3-tap type that processes with three signals before and after, and there is a problem that equalization residual noise occurs due to the fluctuation of the signal level of the next two signals.

【0047】そこで本実施形態では、再生光量を、図6
右側に示した再生光量設定範囲の2.5mWに設定し
た。これによって、図5に示したようにレスポンスは、
高周波領域で増加し、図1(a)のレスポンス特性30
4を得ることができた。このパワー領域では、図6で示
したようにノイズの増加を伴わずに信号レベルが改善さ
れる。但し、更に高周波の領域では、不要な高域の強調
はノイズ成分だけが含まれるために、本実施形態では図
1のローパスフィルタ308を通して、理想特性303
を得ることにした。この結果、本実施形態によって得ら
れた再生信号は、図10(a)の右端に示す如く、ノイ
ズの影響も十分小さく開口の十分開いた再生信号(波
形)312を得ることができた。
Therefore, in the present embodiment, the reproduction light amount is set as shown in FIG.
The reproducing light amount setting range shown on the right side was set to 2.5 mW. As a result, the response as shown in FIG.
The response characteristic 30 shown in FIG. 1A increases in the high frequency region.
I was able to get 4. In this power region, the signal level is improved without increasing noise as shown in FIG. However, in a higher frequency region, unnecessary high-frequency emphasis includes only noise components, and therefore, in the present embodiment, the ideal characteristic 303 is obtained through the low-pass filter 308 of FIG.
Decided to get. As a result, as shown in the right end of FIG. 10A, the reproduction signal obtained by the present embodiment was able to obtain a reproduction signal (waveform) 312 in which the influence of noise was sufficiently small and the aperture was sufficiently opened.

【0048】一方、図1(b)は、パーシャルレスポン
ス方式を適用した場合の実施形態を示す図である。この
パーシャルレスポンス方式は、隣接マークからの漏れ込
みを許容した方式であり、再生信号波形は図10(b)
に示すようにPR(1,1)の場合、3値の多値レベル
検出となる。この例では、線密度0.35μm/bit
であり、必要な等化特性305は、中域の信号レベルを
上げる必要がある。これに対し本実施形態では再生光量
を2.0mWに設定することで伝達特性306が得ら
れ、これにローパスフィルタ308を設定することによ
り、理想PR(1,1)用等化特性305及び理想PR
(1,1)特性307が得られた。これにより、再生パ
ワーを制御する前の再生信号313に対し、図10
(b)に示すような信頼性の高い再生信号(波形)31
4が得られた。
On the other hand, FIG. 1B is a diagram showing an embodiment in which the partial response method is applied. This partial response method is a method in which leakage from an adjacent mark is allowed, and the reproduced signal waveform is shown in FIG.
In the case of PR (1, 1) as shown in FIG. 3, ternary multi-value level detection is performed. In this example, the linear density is 0.35 μm / bit.
Therefore, the required equalization characteristic 305 needs to raise the signal level in the middle range. On the other hand, in the present embodiment, the transfer characteristic 306 is obtained by setting the reproduction light amount to 2.0 mW, and the equalization characteristic 305 for the ideal PR (1,1) and the ideal PR (1,1) are set by setting the low-pass filter 308. PR
The (1,1) characteristic 307 was obtained. As a result, as compared with the reproduction signal 313 before the reproduction power is controlled, FIG.
A highly reliable reproduction signal (waveform) 31 as shown in (b)
4 was obtained.

【0049】次に、図1に示した理想の等化特性を得る
ために再生パワー及びローパスフィルタを設定する方法
及び等化特性を学習する方法及びこれを実現する回路を
以下図8及び9を用いて説明する。この図8は再生特性
の学習及び再生パワーの制御回路の一例を示したもので
あり、図9(a)及び(b)は学習方法の2つの例を示
す図である。図9(a)は、光磁気ディスク上のデータ
領域の前に、予め学習領域として装置で用いる変調方式
に現われる記録周波数の異なる繰り返しのマーク列51
7を記録しておき、後で再生して後述する学習に用い
る。この学習領域は、ディスク上の内周/外周/または
半径方向に区切られた各ゾーンの一部に設けておくのが
好ましい。
Next, a method of setting a reproduction power and a low-pass filter to obtain the ideal equalization characteristic shown in FIG. 1, a method of learning the equalization characteristic, and a circuit for realizing the method will be described below with reference to FIGS. It demonstrates using. FIG. 8 shows an example of a reproduction characteristic learning and reproduction power control circuit, and FIGS. 9A and 9B are diagrams showing two examples of the learning method. FIG. 9A shows a repetitive mark row 51 having different recording frequencies, which appears in the modulation method used in the apparatus as a learning area, in front of the data area on the magneto-optical disk.
7 is recorded and reproduced later to be used for learning described later. This learning area is preferably provided in a part of each zone on the disc, which is divided into the inner circumference / outer circumference / or the radial direction.

【0050】再生学習の頻度は、ドライブ装置を工場か
ら出荷する前/ユーザがディスクを挿入した場合/連続
してディスクが挿入されている場合は30分おき/更に
記録データをディスクに記録する毎等の必要に応じて行
う事が考えられる。また書き換え可能な記録媒体に対し
ては記録パワーを学習する領域と兼用しても良いし、そ
の際学習領域は書換えして何度も使用しても良い。勿
論、再生学習領域は出荷前にあらかじめ記録しておき、
上記必要に応じて再生学習のみ行ってもよい。
The frequency of the reproduction learning is before shipment of the drive device from the factory / when the user inserts the disc / when the discs are continuously inserted, every 30 minutes / every time recording data is recorded on the disc. It is conceivable to do it as necessary. For a rewritable recording medium, it may also be used as an area for learning the recording power, and in this case, the learning area may be rewritten and used many times. Of course, the replay learning area is recorded in advance before shipping,
Only the reproduction learning may be performed if necessary.

【0051】図9(a)の学習の原理は、ゲート516
で検出される低周波領域に対応する最長パターン列で再
生信号振幅512を基準として、ゲート515で検出さ
れた高周波領域に対応する再生信号振幅511の比をあ
る目標の値にすることで、例えば図1(a)に示した目
標の等化後の再生特性302が得られるように、最長マ
ーク繰り返し周波数315と最短マーク繰り返し周波数
316での信号振幅が一致するように再生パワーを制御
することによって行われる。尚、本実施形態では最短と
最長パターンの2つの周波数のみでの学習を行なってい
るが、その間のパターン長の繰り返しパターンを用いて
さらに完全に理想特性302になるように学習を行なっ
てもよい。
The principle of learning shown in FIG.
By setting the ratio of the reproduction signal amplitude 511 corresponding to the high frequency region detected by the gate 515 to a certain target value with reference to the reproduction signal amplitude 512 in the longest pattern sequence corresponding to the low frequency region detected by By controlling the reproduction power so that the signal amplitudes at the longest mark repetition frequency 315 and the shortest mark repetition frequency 316 match so that the target reproduction characteristic 302 after equalization shown in FIG. 1A is obtained. Done. In the present embodiment, learning is performed only with two frequencies, that is, the shortest pattern and the longest pattern, but it is also possible to perform learning so that the ideal characteristic 302 is more completely obtained by using a repeating pattern having a pattern length between them. .

【0052】次に学習の第2の実施例を図9(b)を用
いて説明する。この学習は図1で示した再生特性の変動
が再生信号の原波形517の立ち上がり、又は立ち下が
りに現われることを利用したものである。例えば、再生
パワーが1mWの時は図1(a)の原信号特性301の
ように高周波領域で振幅がとれないことを反映して、再
生信号は制御前特性518のように立ち上がり、立ち下
がりが理想特性519よりも勾配が低いことが判る。こ
こで、理想特性は再生パワー2.5mWでの再生信号で
有り、目標の等化後の再生特性302を示している。更
に再生信号の勾配は原波形の1階微分信号520の振幅
513で得られるので、最適な再生特性が得られる微分
信号振幅をスライスレベル値514とし、この値が得ら
れるように再生パワーを制御する様に学習を行なっても
よい。但し、微分振幅は媒体の反射率や再生パワーなど
の変化による再生受光量の値でも変化するので、予め未
記録部分での反射受光量を検出し規格化することによっ
て更に高精度な制御が可能となる。
Next, a second embodiment of learning will be described with reference to FIG. This learning utilizes the fact that the fluctuation of the reproduction characteristic shown in FIG. 1 appears at the rising or falling of the original waveform 517 of the reproduced signal. For example, when the reproduction power is 1 mW, the reproduction signal rises and falls like the pre-control characteristic 518, which reflects that the amplitude cannot be taken in the high frequency region like the original signal characteristic 301 of FIG. 1A. It can be seen that the slope is lower than the ideal characteristic 519. Here, the ideal characteristic is a reproduction signal at a reproduction power of 2.5 mW, and shows the reproduction characteristic 302 after the target equalization. Further, since the gradient of the reproduction signal is obtained by the amplitude 513 of the first-order differential signal 520 of the original waveform, the differential signal amplitude which gives the optimum reproduction characteristic is set as the slice level value 514, and the reproduction power is controlled so as to obtain this value. You may learn as you do. However, since the differential amplitude also changes with the value of the amount of light received for reproduction due to changes in the reflectance of the medium and the reproduction power, more accurate control is possible by detecting and standardizing the amount of reflected light received in the unrecorded area in advance. Becomes

【0053】次に、図9の学習方法を実現する回路実施
例を図8を用いて説明する。図に示す回路は、設定した
ローパスフィルタを通り図9(b)の学習例に対しては
未記録部分での反射受光量で規格化された微分信号であ
る再生信号500を入力とし、後述する学習を行う再生
信号レスポンス学習回路501と、該学習回路501に
よって学習されたレスポンスに相当するパワー設定用ア
ドレスを入力とし、該アドレスに対応したパワー設定用
のデジタルデータを出力するROM502と、該デジタ
ルデータを入力とし、アナログデータに変換して出力す
るD/Aコンバータ503と、このアナログデータに基
づいて半導体レーザ505を駆動するレーザ駆動電流源
504とを備え、再生信号500を入力した前記学習回
路501が後述するレスポンスに相当するパワー設定用
アドレスを出力し、このアドレスを入力するROM50
2が該入力アドレスに対応させたパワー設定用のデジタ
ルデータを出力し、これを入力した次段のD/Aコンバ
ータ503がD/A変換を行い、これによってレーザ駆
動電流源504が入力したアナログ電圧設定を元に出力
を制御し、半導体レーザ505を駆動して半導体レーザ
(光学ヘッド)の再生出力を制御する様に動作する。
Next, a circuit embodiment for realizing the learning method of FIG. 9 will be described with reference to FIG. The circuit shown in the figure receives the reproduction signal 500, which is a differential signal standardized by the amount of reflected light received in the unrecorded portion, for the learning example of FIG. A reproduced signal response learning circuit 501 for performing learning, a power setting address corresponding to the response learned by the learning circuit 501 as an input, a ROM 502 for outputting power setting digital data corresponding to the address, and the digital The learning circuit that has a D / A converter 503 that receives data as input, converts the data into analog data, and outputs the analog data, and a laser drive current source 504 that drives the semiconductor laser 505 based on the analog data, and inputs the reproduction signal 500. 501 outputs a power setting address corresponding to a response described later, and inputs this address R M50
2 outputs digital data for power setting corresponding to the input address, and the D / A converter 503 at the next stage, which has input this, performs D / A conversion, whereby the analog input by the laser drive current source 504. The output is controlled based on the voltage setting, and the semiconductor laser 505 is driven to operate so as to control the reproduction output of the semiconductor laser (optical head).

【0054】次に前記した再生信号レスポンス学習回路
501について詳細に説明する。この回路501は、再
生信号500を増幅するプリアンプ506と、図9
(a)に示したゲート信号515及び516に対して各
信号の振幅のピーク検出信号511及び512を検出す
る一対のピークディテクタ507と、該ピーク検出信号
512を入力とし、予め設計された最短マーク長と最長
マーク長の振幅比1/K(=B/A)を演算する割り算
器509と、ピーク検出信号511及び算器509の出
力信号を入力とし、これら入力信号の誤差信号を出力す
る作動アンプ508と、該作動アンプ508の出力をデ
ィジタルデータに変換して出力するA/Dコンバータ5
10とを備え、差動アンプ508による誤差信号がゼロ
になるようにA/Dコンバータ510の出力からパワー
設定用ディジタル信号を出力させる様に構成している。
一方、図9(b)の学習方式の場合は差動アンプ508
の片側の入力に図9(b)に示したスライスレベル設定
値514を入力させ、検出された微分振幅値513と差
動を取り、誤差信号を得るように構成する。
Next, the reproduction signal response learning circuit 501 described above will be described in detail. This circuit 501 includes a preamplifier 506 that amplifies the reproduction signal 500, and FIG.
A pair of peak detectors 507 for detecting the peak detection signals 511 and 512 of the amplitudes of the gate signals 515 and 516 shown in FIG. Operation to input the output signal of the divider 509 for calculating the amplitude ratio 1 / K (= B / A) of the length and the longest mark length, the peak detection signal 511 and the calculator 509, and to output the error signal of these input signals An amplifier 508 and an A / D converter 5 for converting the output of the operation amplifier 508 into digital data and outputting the digital data.
10 and is configured to output the power setting digital signal from the output of the A / D converter 510 so that the error signal from the differential amplifier 508 becomes zero.
On the other hand, in the case of the learning method of FIG. 9B, the differential amplifier 508
The slice level setting value 514 shown in FIG. 9B is input to one input of the above, and a differential is obtained with the detected differential amplitude value 513 to obtain an error signal.

【0055】この様に本実施形態による学習機能を用い
ることで、装置毎やディスク交換時によって変動する再
生特性の変動を吸収することもできる。さらに、図8に
は、図7に示した電気的等化回路は含まれていないが、
再生信号500として図7の等化回路を通したものに本
方式を適用することもできる。この場合、出荷前にノミ
ナルの再生パワーを図6に示した再生光量設定範囲の中
間値、例えば2.0mWに設定しておき、出荷前に生じ
る装置毎やディスク交換時によって変動する再生特性の
変動に対し、レスポンスを上げたり、下げたりできる値
に設定しておけば良い。このパワー設定においては、図
7に示した等化回路の定数(遅逓量τ、ゲインK1,K
2)は、例えば、図1の例では理想の等化特性303に
なるように設定しておく。このようにしておくことで、
出荷後に生じる装置毎やディスク交換時によって変動す
る再生特性の変動を前述の方法で検出し、再生パワーを
適応的に制御することで、回路的に複雑な適応等化(A
daptive Equalization)等を用いなくても、最適等化
を行うことができる。
As described above, by using the learning function according to the present embodiment, it is possible to absorb the fluctuation of the reproduction characteristics which varies depending on each device or when the disc is replaced. Further, although FIG. 8 does not include the electrical equalization circuit shown in FIG. 7,
The present method can also be applied to the reproduction signal 500 that has passed through the equalization circuit of FIG. 7. In this case, the nominal reproduction power is set to the intermediate value of the reproduction light amount setting range shown in FIG. 6, for example, 2.0 mW before shipment, and the reproduction characteristics of the reproduction characteristics which vary before and after the device or when the disc is replaced are changed. It should be set to a value that can increase or decrease the response to fluctuations. In this power setting, the constants of the equalization circuit shown in FIG. 7 (delay amount τ, gains K1, K
2) is set so as to have an ideal equalization characteristic 303 in the example of FIG. By doing this,
By detecting the fluctuation of the reproduction characteristic which occurs after shipment from device to device or when the disc is replaced by the above-mentioned method and adaptively controlling the reproduction power, a circuit-complex adaptive equalization (A
Optimal equalization can be performed without using daptive Equalization).

【0056】[0056]

【発明の効果】以上延べた如く本発明によれば、再生光
学系のカット・オフ空間周波数に略等しい線密度で形成
されたマークを走査して得られる再生信号中のキャリア
強度が+1dBの再生光量の増加に対して、+1dB以
上の変化率で増加する時に再生信号中のノイズ強度が+
1dBの再生光量の増加に対して+1dB以下の変化率
で増加する記録媒体を用い、再生光量をキャリア強度が
+1dBの前記再生光量の増加に対して+1dB以上の
変化率で増加する範囲に設定することによって、昇温部
分のKerr回転角が低下した領域が再生信号にあまり
寄与しなくなることを利用し、光スポット照射部分から
応答制限領域を除いた部分から再生信号を得る様に構成
し、結果的に光スポットの走査方向の直径が短縮された
のと同じ効果が得られ、光学系の見かけの分解能を改善
することができる。
As described above, according to the present invention, the reproduction of the carrier intensity of +1 dB in the reproduction signal obtained by scanning the mark formed with the linear density substantially equal to the cut-off spatial frequency of the reproduction optical system. The noise intensity in the reproduced signal is + when increasing with a change rate of +1 dB or more with respect to the increase of the light amount.
A recording medium that increases at a rate of change of +1 dB or less with respect to an increase of the amount of reproduction light of 1 dB is used, and the amount of reproduction light is set in a range that increases at a rate of change of +1 dB or more with respect to an increase in the amount of reproduction light having a carrier intensity of +1 dB. By utilizing the fact that the region where the Kerr rotation angle of the temperature rising part is reduced does not contribute much to the reproduction signal, the reproduction signal is obtained from the part where the response limit region is excluded from the light spot irradiation part. As a result, the same effect as that of reducing the diameter of the light spot in the scanning direction can be obtained, and the apparent resolution of the optical system can be improved.

【0057】更に本発明は、再生光学系のカット・オフ
空間周波数よりも十分に低い線密度で形成されたマーク
を走査して得られる再生信号中のキャリア強度と前記カ
ット・オフ空間周波数に略等しい線密度で形成されたマ
ークを走査して得られる再生信号中のキャリア強度の差
が再生光量の増加にともない減少する記録媒体を用い、
再生光量を、カット・オフ空間周波数に略等しい線密度
で形成されたマークを走査して得られる再生信号中のキ
ャリア強度が+1dBの再生光量の増加に対して+1d
B以上の変化率で増加する範囲に設定することによっ
て、昇温部分のKerr回転角が低下した領域が再生信
号にあまり寄与しなくなることを利用し、光スポット照
射部分から応答制限領域を除いた部分から再生信号を得
る様に構成し、結果的に光スポットの走査方向の直径が
短縮されたのと同じ効果が得られ、光学系の見かけの分
解能を改善することができる。従って本発明によれば情
報再生装置において高密度変調方式に最適な等化特性を
光学系や媒体の変動にかかわらず得ることが可能とな
り、情報記録密度の増大を図ることが可能となる。これ
により記録情報量の増大と転送レートの向上に大きな効
果がある。
Further, according to the present invention, the carrier intensity in a reproduction signal obtained by scanning a mark formed with a line density sufficiently lower than the cut-off spatial frequency of the reproduction optical system and the cut-off spatial frequency are substantially equal to each other. Using a recording medium in which the difference in carrier intensity in a reproduction signal obtained by scanning marks formed with equal linear density decreases with an increase in reproduction light amount,
The reproduction light quantity is + 1d with respect to the increase of the reproduction light quantity in which the carrier intensity in the reproduction signal obtained by scanning the mark formed with the linear density substantially equal to the cut-off spatial frequency is +1 dB.
By setting the range in which the rate of change increases at B or higher, the region where the Kerr rotation angle of the temperature rising portion is reduced does not contribute much to the reproduction signal, and the response limiting region is removed from the light spot irradiation portion. The reproduction signal is obtained from the portion, and as a result, the same effect as that of reducing the diameter of the light spot in the scanning direction is obtained, and the apparent resolution of the optical system can be improved. Therefore, according to the present invention, it is possible to obtain the optimum equalization characteristic for the high-density modulation system in the information reproducing apparatus regardless of the fluctuation of the optical system or the medium, and it is possible to increase the information recording density. This has a great effect on the increase of the recording information amount and the transfer rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態による情報再生制御方法の
等化方法を説明するための図。
FIG. 1 is a diagram illustrating an equalization method of an information reproduction control method according to an embodiment of the present invention.

【図2】本実施形態で用いる記録媒体の動作/作用を説
明するための図。
FIG. 2 is a diagram for explaining the operation / action of the recording medium used in this embodiment.

【図3】本実施形態で用いる記録媒体の構造の例を説明
するための図。
FIG. 3 is a diagram for explaining an example of the structure of a recording medium used in this embodiment.

【図4】本実施形態で用いる記録媒体中の磁性層の温度
特性を説明するための図。
FIG. 4 is a diagram for explaining temperature characteristics of a magnetic layer in a recording medium used in this embodiment.

【図5】本実施形態の記録媒体の応答制限領域の形成に
よる分解能の変化を説明するための図。
FIG. 5 is a diagram for explaining a change in resolution due to formation of a response limited area of the recording medium of the present embodiment.

【図6】本実施形態による再生光量による信号レベルの
変化および再生光量の設定方法を説明するための図。
6A and 6B are views for explaining a change in signal level according to the reproduction light amount and a method for setting the reproduction light amount according to the present embodiment.

【図7】従来技術による波形等化回路の一例を示す図。FIG. 7 is a diagram showing an example of a waveform equalization circuit according to a conventional technique.

【図8】本発明の一実施形態による再生特性を学習及び
制御する回路を示す図。
FIG. 8 is a diagram showing a circuit for learning and controlling reproduction characteristics according to an embodiment of the present invention.

【図9】本実施形態による再生特性を学習する方法の原
理を説明するための図。
FIG. 9 is a diagram for explaining the principle of the method for learning the reproduction characteristic according to the present embodiment.

【図10】本実施形態による等化特性の異なる再生信号
の一例を示す図。
FIG. 10 is a diagram showing an example of reproduced signals having different equalization characteristics according to the present embodiment.

【符号の説明】[Explanation of symbols]

100…光磁気記録媒体、101…応答制限領域、10
2…光スポット、103…実効スポット、104…マー
ク、105…記録層、106…再生層、201…記録
膜、202…基体、203a,b…保護層、204…反
射層、205…保護皮膜層、301…原信号特性、30
3、305、301…必要等化特性、501…再生信号
レスポンス学習回路。
100 ... Magneto-optical recording medium, 101 ... Response limited area, 10
2 ... Optical spot, 103 ... Effective spot, 104 ... Mark, 105 ... Recording layer, 106 ... Reproducing layer, 201 ... Recording film, 202 ... Substrate, 203a, b ... Protective layer, 204 ... Reflective layer, 205 ... Protective coating layer , 301 ... Original signal characteristics, 30
3, 305, 301 ... Necessary equalization characteristics, 501 ... Reproduction signal response learning circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 粟野 博之 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Awano 1-280, Higashi Koigakubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光の照射によって光磁気情報記録
媒体に磁気光学効果により情報の記録再生を行う光磁気
再生系と、該光磁気再生系のカット・オフ空間周波数に
略等しい線密度で形成されたマークを走査して得られる
再生信号中のキャリア強度が+1dBの再生光量の増加
に対して+1dB以上の変化率で増加する時に再生信号
中のノイズ強度が+1dBの再生光量の増加に対して+
1dB以下の変化率で増加する光磁気情報記録媒体を用
い、前記光磁気再生系が光磁気情報記録媒体に対して前
記キャリア強度が+1dBの前記再生光量の増加に対し
て+1dB以上の変化率で増加する範囲の再生光量でマ
ークを走査する様に光学ヘッドの出力値を制御すること
を特徴とする光磁気情報記録媒体の情報再生制御方法。
1. A magneto-optical reproducing system for recording / reproducing information on / from a magneto-optical information recording medium by irradiating a laser beam, and a linear density substantially equal to a cut-off spatial frequency of the magneto-optical reproducing system. When the carrier intensity in the reproduction signal obtained by scanning the formed mark increases at a rate of change of +1 dB or more with respect to the increase in the reproduction light amount of +1 dB, the noise intensity in the reproduction signal increases with respect to the increase of the reproduction light amount of +1 dB. +
A magneto-optical information recording medium that increases at a rate of change of 1 dB or less is used, and the magneto-optical reproduction system has a rate of change of +1 dB or more with respect to the magneto-optical information recording medium with respect to an increase in the reproduction light amount when the carrier intensity is +1 dB. An information reproducing control method for a magneto-optical information recording medium, characterized in that an output value of an optical head is controlled so that a mark is scanned with a reproducing light amount in an increasing range.
【請求項2】 レーザ光の照射によって光磁気情報記録
媒体に磁気光学効果により情報の記録再生を行う光磁気
再生系と、該光磁気再生系のカット・オフ空間周波数よ
りも十分に低い線密度で形成されたマークを走査して得
られる再生信号中のキャリア強度と前記カット・オフ空
間周波数に略等しい線密度で形成されたマークを走査し
て得られる再生信号中のキャリア強度の差が再生光量の
増加にともない減少する光磁気情報記録媒体を用い、前
記光磁気再生系が光磁気情報記録媒体に対して前記カッ
ト・オフ空間周波数に略等しい線密度で形成されたマー
クを走査して得られる再生信号中のキャリア強度が+1
dBの再生光量の増加に対して+1dB以上の変化率で
増加する範囲の再生光量でマークを走査する様に光学ヘ
ッドの出力値を制御することを特徴とする光磁気情報記
録媒体の情報再生制御方法。
2. A magneto-optical reproducing system for recording / reproducing information on / from a magneto-optical information recording medium by irradiation of laser light, and a linear density sufficiently lower than a cut-off spatial frequency of the magneto-optical reproducing system. The difference between the carrier intensity in the reproduced signal obtained by scanning the mark formed by and the carrier intensity in the reproduced signal obtained by scanning the mark formed with a linear density approximately equal to the cut-off spatial frequency is reproduced. Using a magneto-optical information recording medium that decreases with an increase in the amount of light, the magneto-optical reproducing system scans the magneto-optical information recording medium with marks formed at a linear density substantially equal to the cut-off spatial frequency. The carrier intensity in the reproduced signal is +1
Information reproduction control of a magneto-optical information recording medium characterized by controlling an output value of an optical head so that a mark is scanned with a reproduction light amount in a range increasing at a change rate of +1 dB or more with respect to an increase of a reproduction light amount of dB. Method.
【請求項3】 前記光学ヘッドの出力値を制御する際の
再生信号の振幅またはその微分振幅を検出し、該再生光
量を再設定することを特徴とする請求項1又は2記載の
光磁気情報記録媒体の情報再生制御方法。
3. The magneto-optical information according to claim 1, wherein the amplitude of the reproduction signal or the differential amplitude thereof when controlling the output value of the optical head is detected and the reproduction light amount is reset. Information reproduction control method for recording medium.
JP11493996A 1996-05-09 1996-05-09 Information reproduction control method for optical magnetic information recording medium Pending JPH09297944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11493996A JPH09297944A (en) 1996-05-09 1996-05-09 Information reproduction control method for optical magnetic information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11493996A JPH09297944A (en) 1996-05-09 1996-05-09 Information reproduction control method for optical magnetic information recording medium

Publications (1)

Publication Number Publication Date
JPH09297944A true JPH09297944A (en) 1997-11-18

Family

ID=14650399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11493996A Pending JPH09297944A (en) 1996-05-09 1996-05-09 Information reproduction control method for optical magnetic information recording medium

Country Status (1)

Country Link
JP (1) JPH09297944A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200411A (en) * 1998-11-05 2000-07-18 Hitachi Maxell Ltd Magnetic recording medium, recording and reproducing head and magnetic recording and reproducing method
US6778477B2 (en) 2001-07-02 2004-08-17 Sharp Kabushiki Kaisha Reproduction power control method, reproduction power control device, and record reproducing device incorporating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200411A (en) * 1998-11-05 2000-07-18 Hitachi Maxell Ltd Magnetic recording medium, recording and reproducing head and magnetic recording and reproducing method
US6778477B2 (en) 2001-07-02 2004-08-17 Sharp Kabushiki Kaisha Reproduction power control method, reproduction power control device, and record reproducing device incorporating the same

Similar Documents

Publication Publication Date Title
US6411592B1 (en) Optical information recording medium having convex and concave portions for recording information and an additional portion for condition data, and recording and reproducing apparatus for using the medium
US5347505A (en) Optical medium recording method and apparatus employing pulse width delay and/or advancement
US6169714B1 (en) Apparatus and method for recording/reproducing magneto-optical information
JP3703315B2 (en) Magneto-optical recording and reproducing method and reproducing apparatus therefor
US5596559A (en) Information reproducing apparatus for reproducing digital information by self-clock scheme
US6198711B1 (en) Equalizer for optical reproducing apparatus, using partial response method
US5781521A (en) Optical disk recording/reproducing apparatus
JP4499065B2 (en) Information reproducing apparatus and information reproducing method
JPH09297944A (en) Information reproduction control method for optical magnetic information recording medium
JP2000243032A (en) Offset control circuit and offset control method
US7289408B2 (en) Method and apparatus for reproducing recording mark below diffraction limit of light from optical recording medium
US5666339A (en) Optical information reproducing apparatus using transversal filter
Tomita et al. 25 GB Read-only disk system using the two-dimensional equalizer
JP2708597B2 (en) Optical information recording / reproducing method
JP3826388B2 (en) Optical disc apparatus and optical disc access method
JP4234042B2 (en) Multi-value information recording medium, multi-value information waveform equalizer, multi-value information reproducing device
JP2600905B2 (en) Optical recording / reproducing method
JPH04232659A (en) Recorded information reproducing device
JP2762635B2 (en) Optical recording / reproducing method
JPH0850764A (en) Optical disk reproduction device
Hayashi et al. Multilevel Signal Processing Technique for a 30 Gbit/inch2 Phase-Change Optical Disk System
JPH07262640A (en) Magneto-optical recorder and magneto-optical recording/ reproducing device
JP2002319231A (en) Optical information recording and reproducing device
JPH08221839A (en) Magneto-ptical disk device, magneto-optical recording and reproducing method and magneto-optical recording medium
JPH02236823A (en) Optical recording and reproducing system