JPH09296183A - Pretreatment of heavy oil - Google Patents

Pretreatment of heavy oil

Info

Publication number
JPH09296183A
JPH09296183A JP10937196A JP10937196A JPH09296183A JP H09296183 A JPH09296183 A JP H09296183A JP 10937196 A JP10937196 A JP 10937196A JP 10937196 A JP10937196 A JP 10937196A JP H09296183 A JPH09296183 A JP H09296183A
Authority
JP
Japan
Prior art keywords
oil
heavy oil
heavy
introducing
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10937196A
Other languages
Japanese (ja)
Inventor
Kazuo Sato
一夫 佐藤
Masatoshi Yamada
正年 山田
Tsutomu Katagiri
務 片桐
Shinji Nozaki
真司 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP10937196A priority Critical patent/JPH09296183A/en
Publication of JPH09296183A publication Critical patent/JPH09296183A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the backwashing frequency of a filter and pretreat a heavy oil so as to reduce the exchange of a changeover device of oil passage/ backwashing by carrying out the dehydrating treatment of the heavy oil before introducing the heavy oil containing solid grains and moisture into the filter and increasing the oil passage time through the filter. SOLUTION: The dehydrating treatment of a heavy oil is previously carried out by heating, vacuum and contact operations with an inert gas or combined operations thereof, etc., when introducing the heavy oil containing solid grains and moisture (e.g. an atmospheric distillation bottom oil prepared by introducing a raw material oil containing the solid grains into a distillation column and distilling the raw material oil under atmospheric pressure while blowing steam thereinto and a vacuum distillation bottom oil obtained by introducing the atmospheric distillation bottom oil into a distillation column and distilling the atmospheric distillation bottom oil under a reduced pressure while blowing steam thereinto) into a filter. Furthermore, the dehydrating treatment is preferably performed so as to provide <=300wt.ppm. moisture content of the heavy oil.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、原油を常圧蒸留し
て得られる常圧残油、或は常圧残油を減圧蒸留して得ら
れる減圧残油などのごとく、固体粒子と水分とを含有す
る重質油から固体粒子を瀘過分離する際の前処理方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to solid particles and water such as atmospheric residual oil obtained by atmospheric distillation of crude oil or vacuum residual oil obtained by vacuum distillation of atmospheric residual oil. The present invention relates to a pretreatment method when solid particles are filtered and separated from a heavy oil containing water.

【0002】[0002]

【従来の技術】石油油井から汲み上げられる原油中に
は、その産地、採油条件等により成分、含有量、粒径等
の性状等に差異を有するマッドその他の粒状夾雑物が同
伴されている。これらの夾雑物は採油後、貯蔵中におけ
る沈殿により自然分離する場合もあるが、多くの場合、
脱塩、スタビライジングなどの前処理工程において二次
的効果として排除され、石油精製工程において大きな阻
害物質として働くことは少ない。しかしながら、特定の
条件のもとにおいては、後続の精製工程における物理的
又は化学的処理に重大な悪影響を与えることがある。
2. Description of the Related Art In crude oil pumped from a petroleum oil well, mud and other granular contaminants having different properties such as composition, content, particle size and the like depending on the place of production, oil collecting conditions and the like are entrained. These contaminants may spontaneously separate after oil collection due to precipitation during storage, but in many cases,
It is excluded as a secondary effect in pretreatment processes such as desalting and stabilizing, and rarely acts as a major inhibitor in the oil refining process. However, under certain conditions, it can have a significant adverse effect on the physical or chemical treatment of subsequent purification steps.

【0003】例えば南方原油として知られるミナス産原
油、デュリ産原油の場合、未処理油の貯槽から送出され
る原油には、概ね珪酸質からなるマッドが含まれてい
る。この原油を、石油精製における典型的なプロセスス
キームにより、まず、水洗・電気脱塩処理をした後、常
圧蒸留装置に供給し、LPG、ガソリン、灯油、ガスオ
イル等の留出油及び塔底油(AR)を得ると共に、各成
分はそれぞれの精製工程に付せられる。本発明者らの経
験によると、この場合、前記マッド粒子は殆ど蒸留塔の
塔底の重質油中に集まることが観察され、この重質油を
次工程、例えば脱金属反応装置に供給する際には、反応
装置内でのマッド粒子の沈積を防止するため、予め粒径
25μm以上の粒子を除去することが望ましく、そのた
め、重質油の瀘過処理を行う。
For example, in the case of Minas crude oil and Duri crude oil known as Southern crude oil, the crude oil delivered from the untreated oil storage tank contains mud, which is generally siliceous. According to a typical process scheme in petroleum refining, this crude oil is first washed with water and subjected to electrical desalination, and then supplied to an atmospheric distillation unit to distill distillates such as LPG, gasoline, kerosene, and gas oil, and a column bottom. While obtaining the oil (AR), each component is subjected to a respective refining step. According to the experience of the present inventors, in this case, it was observed that the mud particles were mostly collected in the heavy oil at the bottom of the distillation column, and this heavy oil was supplied to the next step, for example, a demetallization reactor. At this time, in order to prevent the mud particles from depositing in the reactor, it is desirable to remove particles having a particle size of 25 μm or more in advance. Therefore, the heavy oil is filtered.

【0004】ミナス産原油、デュリ産原油に含まれるマ
ッド粒子は、その最大粒径が10μmであると測定され
ており、目開き25μmの濾過器を容易に通過するはず
である。そこで通油と逆洗を差圧プログラムに従って実
施すべく設計した目開き25μmのスリット型瀘過器を
採用して定常運転に入ったところ、予想に反して逆洗頻
度が極端に高くなり、切換装置の消耗が増し交換が頻繁
となった。かかる状態に陥った原因を究明したところ、
蒸留操作におけるある過程、例えば蒸留工程等において
マッド粒子が性状変化し、瀘過器通路内に定着すること
によって逆洗が所定の状態まで回復できない非定常の状
態になっていることが認められた。性状変化したマッド
粒子の状態については必ずしも明瞭ではないが、本発明
による方法によって実質的解決を得たことから、蒸留操
作中にマッドと水分が密接に関与しているものと判断さ
れる。同様に、本発明者らは前記常圧蒸留のの塔底油
(AR)を減圧蒸留装置に供給して留出油と塔底油に分
け、スチームストリッピングした塔底油について観察し
たところ、類似の現象が認められた。
The mud particles contained in Minas crude oil and Duri crude oil have been measured to have a maximum particle size of 10 μm, and should easily pass through a filter having an opening of 25 μm. Therefore, when we started the steady operation by adopting a slit type filter with an opening of 25 μm, which was designed to carry out oil supply and backwash according to the differential pressure program, unexpectedly the backwash frequency became extremely high and unexpected The equipment has become worn out and has to be replaced frequently. After investigating the cause of this situation,
It was confirmed that the mud particles changed their properties in a certain process in the distillation operation, for example, in the distillation process, etc., and the backwash was in an unsteady state in which the backwash could not be recovered to a predetermined state by being fixed in the filter passage. . Although the state of the mud particles whose properties have changed is not always clear, it is considered that the mud and water are closely related to each other during the distillation operation because the method of the present invention has substantially solved the problem. Similarly, the inventors of the present invention observed the steam stripped bottom oil by supplying the bottom oil (AR) from the atmospheric distillation to a vacuum distillation apparatus to separate it into a distillate oil and a bottom oil, A similar phenomenon was observed.

【0005】[0005]

【発明が解決しようとする課題】本発明は、重質油中の
固体粒子が瀘過器通路内に定着して濾過抵抗を急速に増
加させ、瀘過器の運転効率が低下するのを防止できる重
質油の前処理方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention prevents solid particles in heavy oil from settling in the filter passage to rapidly increase the filtration resistance and to reduce the operating efficiency of the filter. An object of the present invention is to provide a pretreatment method for heavy oil that can be used.

【0006】[0006]

【課題を解決するための手段】本発明にかかわる重質油
の前処理方法は、固体粒子と水分とを含有する重質油を
濾過器に導入するに際して、予め脱水処理を行うことか
らなる。
The method for pretreatment of heavy oil according to the present invention comprises performing dehydration treatment in advance when introducing heavy oil containing solid particles and water into a filter.

【0007】[0007]

【発明の実施の形態】本発明の重質油の前処理方法は、
固体粒子を含有し、しかも水分を含有する重質油に適用
される。例えば、固体粒子と吹き込まれたスチームが凝
縮した水分とを含有する重質油に適用される。このよう
な重質油としては、石油系、石炭系など特に制限はない
が、石油系に好ましく適用される。例えば、原油のよう
な固体粒子を含有する重質分を含む油を蒸留塔中で底部
にスチームを吹き込みながら蒸留して得られる蒸留残油
が挙げられる。このような蒸留残油としては、原油等の
原料油を蒸留塔に導入してスチームを吹き込みながら常
圧蒸留して得られる常圧残油や、スチームと接触するこ
となく或は接触して得られる常圧残油を蒸留塔に導入し
て減圧下でスチームを吹き込みながら蒸留して得られる
減圧残油が例示される。蒸留塔に導入される原油として
は、予め水洗・電気脱塩処理したものが好ましい。原油
のこのようなスチーム吹き込み方式による常圧蒸留によ
り、固体粒子と水分とを含有する、通常、沸点範囲が約
350℃以上の成分からなる常圧残油が得られる。また
常圧残油を減圧下、例えば絶対圧10〜100mmHg
程度の減圧下にてスチームを吹き込みながら蒸留する場
合も同様に固体粒子と水分とを含有する減圧残油が得ら
れる。
BEST MODE FOR CARRYING OUT THE INVENTION The heavy oil pretreatment method of the present invention comprises:
It is applied to heavy oils containing solid particles and also containing water. For example, it is applied to a heavy oil containing solid particles and condensed steam-condensed water. The heavy oil is not particularly limited, such as petroleum-based oil and coal-based heavy oil, but is preferably applied to petroleum-based oil. For example, a distillation residual oil obtained by distilling an oil containing a heavy component containing solid particles such as crude oil in a distillation column while blowing steam into the bottom is mentioned. Examples of such distillation residual oil include atmospheric residual oil obtained by introducing raw oil such as crude oil into a distillation column and performing atmospheric distillation while blowing steam, or obtained without contact with steam or with contact with steam. An example is a vacuum residual oil obtained by introducing the atmospheric residual oil into a distillation column and distilling it while blowing steam under reduced pressure. The crude oil introduced into the distillation column is preferably one that has been washed with water and subjected to electric desalination treatment in advance. Atmospheric pressure distillation of crude oil by such a steam blowing method gives an atmospheric residual oil containing solid particles and water and usually having a boiling point of about 350 ° C. or higher. Further, the atmospheric residual oil is decompressed, for example, an absolute pressure of 10 to 100 mmHg.
When distillation is carried out while blowing steam under a reduced pressure of a certain degree, a reduced pressure residual oil containing solid particles and water is similarly obtained.

【0008】重質油としては、上記のような蒸留残油以
外に、上記常圧残油や減圧残油と同様な沸点範囲の少な
くとも一成分を含み固体粒子が含有されている油であっ
て、しかも水分を含有するものも対象とすることができ
る。例えば、石油精製プラントにおける後段の工程、例
えば蒸留残油の接触分解工程等で得られる重質分を含む
油を上記と同様にスチーム処理して得られる重質油が挙
げられる。
The heavy oil is an oil containing solid particles containing at least one component having the same boiling point range as that of the atmospheric residual oil or the vacuum residual oil, in addition to the above-mentioned distillation residual oil. In addition, those containing water can also be targeted. For example, a heavy oil obtained by steam-treating an oil containing a heavy component obtained in a subsequent step in a petroleum refining plant, for example, a catalytic cracking step of a distillation residual oil, in the same manner as above.

【0009】本発明が適用される重質油に含まれる固体
粒子については特に制限はなく、例えば、マッド粒子、
金属粒子、金属化合物粒子等の如く原油等の原料油に由
来する各種の固体粒子や、配管等に起因する錆粒子、触
媒反応工程からの触媒粒子等が挙げられる。また、固体
粒子の含有量や粒子サイズにも特に制限はない。例え
ば、原油の産地、採油条件等にもよるが、原油を蒸留し
て得られる蒸留残油中には、固体粒子が10〜500重
量ppm程度含まれており、最大粒径は100μm程度
であり、本発明においてはいずれにも適用することがで
きる。脱水処理に付される重質油の水分含有量として
は、上記のようなスチームストリッピング方式による蒸
留で得られる蒸留残油では、通常500〜700重量p
pm程度である。
There are no particular restrictions on the solid particles contained in the heavy oil to which the present invention is applied. For example, mud particles,
Examples include various solid particles derived from raw material oil such as crude oil such as metal particles and metal compound particles, rust particles derived from piping and the like, catalyst particles from a catalytic reaction step, and the like. Further, there is no particular limitation on the content or particle size of the solid particles. For example, depending on the origin of crude oil, oil collecting conditions, etc., the distillation residual oil obtained by distilling crude oil contains solid particles in an amount of about 10 to 500 ppm by weight, and the maximum particle diameter is about 100 μm. The present invention can be applied to any of them. The water content of the heavy oil to be subjected to the dehydration treatment is usually 500 to 700 p by weight in the distillation residual oil obtained by the distillation by the steam stripping method as described above.
It is about pm.

【0010】上記のような、水分と固体粒子とを含有す
る重質油を脱水処理する方法としては、加熱操作による
方法、減圧操作による方法、窒素、水素、リファイナリ
ーオフガス等のような不活性ガスとの接触操作による方
法、或は吸着操作による方法など、任意の手段を使用す
ることができる。これらの操作のうち一つの操作を採用
しても良いし、2種類以上の操作を一工程で同時に採用
したり、又は種類の異なる或は同じ操作による複数の工
程を設けて、直列的に或は並列的に組み合わせて用いる
ことができる。例えば、2種類以上の操作を同時に採用
する場合としては、重質油を所定の温度に加熱して不活
性ガスと接触させたり、減圧下で重質油を不活性ガスと
接触させる等の操作が挙げられる。
As a method for dehydrating the heavy oil containing water and solid particles as described above, a heating operation method, a depressurization operation method, an inert gas such as nitrogen, hydrogen, refinery off gas, etc. Any means such as a method by a contact operation with or a method by an adsorption operation can be used. One of these operations may be adopted, or two or more kinds of operations may be simultaneously adopted in one step, or a plurality of steps of different kinds or the same operation may be provided to connect in series or Can be used in combination in parallel. For example, when adopting two or more operations at the same time, operations such as heating the heavy oil to a predetermined temperature to bring it into contact with an inert gas, or bringing the heavy oil into contact with an inert gas under reduced pressure, etc. Is mentioned.

【0011】脱水処理後の重質油の含水率は、対象とす
る重質油の種類にもよるが、300重量ppm以下、好
ましくは200重量ppm以下とするのが良い。加熱温
度、減圧度、不活性ガスの供給量、処理時間等の条件
は、重質油中の含水率が上記範囲になるように適宜選定
すれば良い。例えば、蒸留残油を処理する場合、蒸留塔
の塔底温度320〜370℃にて、絶対圧200〜60
0mmHgの条件で脱水処理すれば、水分含有率50〜
150ppm程度に脱水できる。また320〜370℃
にて、不活性ガスとの接触により脱水処理する場合に
は、重質油のトン当りの処理量に対する不活性ガス供給
量は、0.1〜1.0m3 が好ましい。重質油の脱水処
理を減圧することにより行う場合には、減圧発生装置と
してスチームエジェクターを使用することができる。こ
の場合、エジェクターから排出されたスチームを、重質
油のスチーム処理工程等におけるスチーム源、例えば蒸
留塔に吹き込むスチーム源として用いることができる。
即ち、蒸留塔に吹き込むスチームを減圧発生装置のため
のスチームとしても使用できるので、新たに減圧発生装
置のためのスチーム源を設けなくても良い。本発明の脱
水処理方法によって所定の含水率まで脱水された重質油
は、次いで、濾過器に導入される。濾過器は目的に応じ
て選定される。例えば、蒸留残油を脱金属反応装置に供
給する場合、目開き25μmのスリット型濾過器が使用
される。濾過操作は、通常、230〜270℃の温度、
10〜30kg/cm2 Gの圧力で行われる。
The water content of the heavy oil after the dehydration treatment depends on the kind of the target heavy oil, but is preferably 300 ppm by weight or less, more preferably 200 ppm by weight or less. The conditions such as the heating temperature, the degree of reduced pressure, the amount of inert gas supplied, and the treatment time may be appropriately selected so that the water content in the heavy oil falls within the above range. For example, when processing a distillation residual oil, the bottom temperature of the distillation column is 320 to 370 ° C., and the absolute pressure is 200 to 60.
If dehydration treatment is performed under the condition of 0 mmHg, the water content is 50 to
It can be dehydrated to about 150 ppm. 320-370 ° C
When the dehydration treatment is carried out by contact with an inert gas, the feed amount of the inert gas with respect to the treatment amount of the heavy oil per ton is preferably 0.1 to 1.0 m 3 . When performing the dehydration treatment of heavy oil by reducing the pressure, a steam ejector can be used as the pressure reducing device. In this case, the steam discharged from the ejector can be used as a steam source in a steam treatment process of heavy oil, for example, a steam source blown into a distillation column.
That is, since the steam blown into the distillation column can also be used as the steam for the reduced pressure generator, it is not necessary to newly provide a steam source for the reduced pressure generator. The heavy oil dehydrated to a predetermined water content by the dehydration treatment method of the present invention is then introduced into a filter. The filter is selected according to the purpose. For example, when the distillation residual oil is supplied to the demetallization reactor, a slit type filter having an opening of 25 μm is used. The filtration operation is usually performed at a temperature of 230 to 270 ° C,
It is carried out at a pressure of 10 to 30 kg / cm 2 G.

【0012】[0012]

【実施例1〜4及び比較例1】デュリ原油(80%)と
ミナス原油(20%)を混合した原油を精製処理するプ
ラントより得られる常圧蒸留塔の塔底油(AR)を用い
濾過試験を行った。混合原油中の粒子の主成分はSiO
2 、Al23 及びFe23 で、平均粒径0.5μ
m、最大10μm以下であった。ARは上記混合原油を
水洗による脱塩処理し、スチームストリッピング法によ
る常圧蒸留塔(塔底油温度350℃)で軽質分を塔頂に
カットした塔底油で、約500重量ppmの水分と原油
中の粒子を40〜50重量ppm含むものであった。A
Rの脱水処理は、ARを開放系の容器に採り、投げ込み
型のスチームコイルで昇温、脱水を行った。水分濃度は
スチームコイルの保持時間で管理し、水分濃度の異なる
試料油(実施例1〜4)を作製した。約500重量pp
mの水分を含む常圧蒸留塔の塔底油(AR)そのまま
(比較例1)及び実施例1〜4の試料について濾過試験
を行った。濾過試験は、流量1L/hrの試料をポンプ
で20Kg/cm2 Gに昇圧し、250℃に保持されて
いる目開き17μmで8mmφの金網式濾過器に通油
し、通油時間と濾過器入口−出口の差圧を測定した。入
口−出口の差圧が0.5kg/cm2 となる通油時間を
表1に示す。
Examples 1 to 4 and Comparative Example 1 Filtration using bottom oil (AR) of an atmospheric distillation column obtained from a plant for refining crude oil in which Duri crude oil (80%) and Minas crude oil (20%) are mixed. The test was conducted. The main component of the particles in the mixed crude oil is SiO
2 , Al 2 O 3 and Fe 2 O 3 , average particle size 0.5μ
m, and the maximum was 10 μm or less. AR is a bottom oil obtained by demineralizing the above mixed crude oil by washing with water, and cutting light fractions at the atmospheric pressure distillation column (column bottom oil temperature 350 ° C.) by a steam stripping method to a water content of about 500 ppm by weight. And 40 to 50 ppm by weight of particles in crude oil. A
For the dehydration treatment of R, AR was placed in an open container and heated by a throw-in type steam coil to perform dehydration. The water concentration was controlled by the holding time of the steam coil to prepare sample oils (Examples 1 to 4) having different water concentrations. About 500 weight pp
A filtration test was performed on the bottom oil (AR) of the atmospheric distillation column containing m water as it was (Comparative Example 1) and the samples of Examples 1 to 4. In the filtration test, a sample with a flow rate of 1 L / hr was pressurized to 20 Kg / cm 2 G with a pump, and oil was passed through a wire mesh type filter of 8 mmφ with an opening of 17 μm and kept at 250 ° C. The inlet-outlet differential pressure was measured. Table 1 shows the oil passage time at which the differential pressure between the inlet and the outlet becomes 0.5 kg / cm 2 .

【0013】[0013]

【実施例5,6及び比較例2】中東系のアラビアンヘビ
ー原油を減圧蒸留処理した約700重量ppmの水分を
含む塔底油(VR)そのもの(比較例2)及びそれを実
施例1〜4と同様の方法で脱水した試料(実施例5,
6)について濾過試験を行った。このAR中の粒子の主
成分はFeSとNaClで、濃度は35ppmであっ
た。結果を表1に示す。
[Examples 5 and 6 and Comparative Example 2] Middle bottom Arabian heavy crude oil was subjected to vacuum distillation, and the bottom oil (VR) itself containing about 700 ppm by weight of water (Comparative Example 2) and Examples 1 to 4 thereof were used. A sample dehydrated in the same manner as in Example 5 (Example 5,
A filtration test was conducted on 6). The main components of the particles in this AR were FeS and NaCl, and the concentration was 35 ppm. The results are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】表1から明らかなように、重質油中の水分
含有量が低下するにつれて濾過器の入口と出口における
一定の差圧条件下での通油時間が増加し数倍にもなる。
As is clear from Table 1, as the water content in the heavy oil decreases, the oil passage time under a constant differential pressure condition at the inlet and outlet of the filter increases and becomes several times.

【0016】[0016]

【発明の効果】本発明によれば、固体粒子を含有しスチ
ームで処理された重質油の如く、固体粒子と水分とを含
有する重質油を濾過器に導入するに際して、予め脱水処
理を行うことにより、濾過器への通油時間が増加するの
で、濾過器の逆洗頻度が軽減され、通油/逆洗の切替装
置の交換が著しく低減される。
According to the present invention, when a heavy oil containing solid particles and water, such as a heavy oil containing solid particles and treated with steam, is introduced into a filter, dehydration treatment is performed beforehand. By doing so, the oil passage time to the filter is increased, so the frequency of backwashing the filter is reduced, and the replacement of the oil passage / backwash switching device is significantly reduced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野崎 真司 神奈川県横浜市南区別所1−14−1 日揮 株式会社横浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinji Nozaki 1-1-14, Minami Sanrokusho, Yokohama-shi, Kanagawa JGC Corporation Yokohama Office

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固体粒子と水分とを含有する重質油を濾
過器に導入するに際して、予め脱水処理を行うことから
なる重質油の前処理方法。
1. A pretreatment method for a heavy oil, which comprises performing a dehydration treatment in advance when introducing the heavy oil containing solid particles and water into a filter.
【請求項2】 重質油が、固体粒子を含有する原料油を
蒸留塔に導入して常圧下でスチームを吹き込みながら蒸
留して得られる常圧残油、又は常圧残油を蒸留塔に導入
して減圧下でスチームを吹き込みながら蒸留して得られ
る減圧残油である請求項1に記載の重質油の前処理方
法。
2. A heavy oil is obtained by introducing a raw material oil containing solid particles into a distillation column and distilling it while blowing steam under atmospheric pressure, or an atmospheric residue is obtained in the distillation column. The pretreatment method for a heavy oil according to claim 1, which is a vacuum residue obtained by introducing and distilling while blowing steam under a reduced pressure.
【請求項3】 脱水処理後の重質油の含水率を300重
量ppm以下とする請求項1、又は請求項2に記載の重
質油の前処理方法。
3. The method for pretreatment of heavy oil according to claim 1, wherein the water content of the heavy oil after dehydration treatment is 300 ppm by weight or less.
【請求項4】 重質油の脱水処理を、加熱操作、減圧操
作、不活性ガスとの接触操作、又は前記操作を2以上組
み合わせることにより行う請求項1、請求項2、又は請
求項3に記載の重質油の前処理方法。
4. The dehydration treatment of heavy oil is performed by heating operation, depressurizing operation, contacting operation with an inert gas, or a combination of two or more of the operations, claim 1, claim 2 or claim 3. Pretreatment method for the heavy oil described.
【請求項5】 重質油の脱水処理を減圧操作により行う
に際して、減圧発生装置としてスチームエジェクターを
使用し、エジェクターから排出されたスチームを蒸留塔
に吹き込むスチーム源として用いる請求項4に記載の重
質油の前処理方法。
5. The heavy-weight dewatering process according to claim 4, wherein a steam ejector is used as a depressurizing device when the heavy oil is dehydrated by depressurization, and steam discharged from the ejector is used as a steam source for blowing into a distillation column. Pretreatment method for quality oil.
JP10937196A 1996-04-30 1996-04-30 Pretreatment of heavy oil Withdrawn JPH09296183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10937196A JPH09296183A (en) 1996-04-30 1996-04-30 Pretreatment of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10937196A JPH09296183A (en) 1996-04-30 1996-04-30 Pretreatment of heavy oil

Publications (1)

Publication Number Publication Date
JPH09296183A true JPH09296183A (en) 1997-11-18

Family

ID=14508547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10937196A Withdrawn JPH09296183A (en) 1996-04-30 1996-04-30 Pretreatment of heavy oil

Country Status (1)

Country Link
JP (1) JPH09296183A (en)

Similar Documents

Publication Publication Date Title
JP4570685B2 (en) Enhanced solvent deasphalting process for heavy hydrocarbon feedstock using solid adsorbent
CN109628136B (en) Solid content removing device and catalytic cracking slurry oil solid content removing method
US5236577A (en) Process for separation of hydrocarbon from tar sands froth
KR20110020827A (en) Selectively heavy gas oil recycle for optimal integration of heavy oil conversion and vaccum gas oil treating
ZA200807265B (en) Vibrating membrane micro-filtration of used oil
JP2014518901A (en) How to remove water from pyrolysis gasoline
US6806398B2 (en) Process for removing mercury from liquid hydrocarbon
CA2021185C (en) Process for separation of hydrocarbon from tar sands froth
US2689825A (en) Removal of metals from petroleum hydrocarbons followed by fluidized cracking
CN111991905A (en) Method and device for solid-liquid separation of slurry discharged from slurry bed
US4159241A (en) Process for removing arsenic and/or antimony from oil shale distillate or coal oil
CN111484872A (en) Residual oil demetalization method
JPH06500354A (en) Hydrogenolysis method with removal of polycyclic aromatic dimers
JPH10505364A (en) How to improve the quality of residual hydrocarbon oils
JPH09296183A (en) Pretreatment of heavy oil
US2996442A (en) Process for electrically treating a metallic contaminated residual petroleum fraction
NO163906B (en) PROCEDURES FOR REFINING USED OILS.
US5855768A (en) Process for removing contaminants from thermally cracked waste oils
US4022675A (en) Filtering process
GB2458670A (en) Method for removing ammonia from fluid streams
US2891005A (en) Removal of metal contaminants from high boiling oils
CN105802657A (en) Catalytic cracking slurry oil solid content removal method
US3373102A (en) Pretreatment of catalytic cracking feed stocks
US3119762A (en) Method of improving microwax quality
KR102359852B1 (en) Method for removing sulfur-containing contaminants from a thermally cracked waste oil

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030701