JPH0929546A - Electrical discharge machining method of low consumption electrode type - Google Patents

Electrical discharge machining method of low consumption electrode type

Info

Publication number
JPH0929546A
JPH0929546A JP20538995A JP20538995A JPH0929546A JP H0929546 A JPH0929546 A JP H0929546A JP 20538995 A JP20538995 A JP 20538995A JP 20538995 A JP20538995 A JP 20538995A JP H0929546 A JPH0929546 A JP H0929546A
Authority
JP
Japan
Prior art keywords
discharge
electrode
machining
workpiece
discharge machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20538995A
Other languages
Japanese (ja)
Inventor
Yasuo Kimoto
保夫 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20538995A priority Critical patent/JPH0929546A/en
Publication of JPH0929546A publication Critical patent/JPH0929546A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To achieve the electrical discharge machining of low consumption electrode type for finishing the hard-cutting material such as cemented carbide and hardened steel. SOLUTION: A copper tool electrode is cathode, and a work 6 made of hard-cutting material such as cemented carbide and hardened steel is anode, and the work 6 is electrical discharge machined in the insulating machining fluid by the electronic impact by the unipolar high current density spark discharge in which the discharge time is so short for the cathodic iron is difficult to reach the tool electrode 8 and the peak value of the discharge current is increased to the discharge time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超硬合金,焼入れ
鋼等の難削材料の工作物を、電極の消耗を極めて少なく
して放電加工する電極低消耗放電加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-consumer electric discharge machining method for electric discharge machining of a workpiece made of a hard-to-cut material such as cemented carbide or hardened steel with extremely low electrode consumption.

【0002】[0002]

【従来の技術】従来、電極低消耗放電加工においては、
工具電極を陽極性,工作物を陰極性とし、絶縁性の加工
液中で単極性の過度アーク放電をくり返し、陽イオンの
衝撃を利用して工作物を放電加工している。
2. Description of the Related Art Conventionally, in low electric discharge machining of electrodes,
The tool electrode is anodic and the workpiece is cathodic, and unipolar transient arc discharge is repeated in an insulating machining fluid, and the workpiece is electro-discharge machined by using the impact of cations.

【0003】このとき、電極の消耗を極力抑えるため、
放電電流ピーク値ip (A)に比して各1回の放電時間
Tdをほぼip /Td<0.2(A/μs )になるよう
に伸長し、例えばip =20AのときにTd=100〜
200μs にしている。
At this time, in order to suppress the consumption of the electrodes as much as possible,
Than the discharge current peak value i p (A) to extend the discharge time Td of each one to be substantially i p /Td<0.2(A/μs), for example, when i p = 20A Td = 100 ~
It is set to 200 μs.

【0004】[0004]

【発明が解決しようとする課題】前記従来の電極低消耗
放電加工方法の場合、超硬合金,焼入れ鋼等の難削材料
の工作物については、陰極電流密度が一般的な放電加工
と同様104 〜106 A/cm2 程度であり、しかも、放
電時間Tdが長くなるため、表面あらさが10μm R
max 以下の仕上げの放電加工は行えず、また、電極消耗
率が重量消耗率で12%,体積消耗率で20%にもな
り、低消耗放電加工の一応の目処としている1%には程
遠く、仕上げの低消耗放電加工が行えない問題点があ
る。
In the case of the conventional low-consumable electric discharge machining method for electrodes, for a workpiece made of a difficult-to-cut material such as cemented carbide or hardened steel, the cathode current density is the same as that of general electric discharge machining. 4 to 10 6 A / cm 2 and the discharge time Td is long, so the surface roughness is 10 μm R
It is not possible to perform electric discharge machining with a finish of max or less, and the electrode wear rate is 12% in weight consumption rate and 20% in volume consumption rate, which is far from 1% which is a target for low consumption electric discharge machining. There is a problem that low consumption electrical discharge machining for finishing cannot be performed.

【0005】本発明は、従来は不可能とされていた超硬
合金,焼入れ鋼等の難削材料の仕上げの電極低消耗放電
加工を実現することを目的とする。
An object of the present invention is to realize an electrode low consumption electric discharge machining for finishing a difficult-to-cut material such as cemented carbide or hardened steel, which has been impossible in the past.

【0006】[0006]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明の電極低消耗放電加工方法においては、銅
電極の工具電極を陰極性とし、超硬合金,焼入れ鋼等の
難削材料の工作物を陽極性とし、絶縁性の加工液中にお
いて、放電時間を陽イオンが工具電極に到達し難い短時
間にして放電時間に対する放電電流ピーク値を大きくし
た単極性の高電流密度火花放電により、電子衝撃で工作
物を放電加工する。
In order to achieve the above-mentioned object, in the electrode low-consumption electric discharge machining method of the present invention, the tool electrode of the copper electrode is made cathodic, and hard-to-cut materials such as cemented carbide and hardened steel are difficult to cut. A unipolar high current density spark whose material work piece is made anodically and the discharge time is short in the insulating working fluid to make it difficult for cations to reach the tool electrode and the discharge current peak value is increased with respect to the discharge time. The electric discharge causes the electric discharge to machine the work piece by electron impact.

【0007】したがって、本発明の電極低消耗放電加工
方法の場合、工具電極と工作物の極性が従来方法と逆に
なり、絶縁性の加工液中での単極性の火花放電により、
電子の衝撃を利用して工作物が放電加工される。
Therefore, in the case of the low-consumption electric discharge machining method of the present invention, the polarities of the tool electrode and the workpiece are opposite to those of the conventional method, and the unipolar spark discharge in the insulating machining liquid causes
The workpiece is electro-discharge machined using the impact of electrons.

【0008】このとき、放電時間が短くなる程陰極電流
密度が大きくなり、しかも、放電電流のほとんどが電子
流になり、放電のパワーが工作物に局所的に集中する。
At this time, the shorter the discharge time is, the larger the cathode current density becomes, and most of the discharge current becomes an electron current, and the power of the discharge is locally concentrated on the workpiece.

【0009】そして、放電時間を陽イオンが工具電極に
到達し難い極めて短い時間に設定することにより、陰極
電流密度が107 A/cm2 オーダー以上の強大な放電電
力密度のパワーが半径方向の膨張を抑えて瞬時工作物に
加えられ、このくり返しにより、工具電極の消耗なく超
硬合金,焼入れ鋼等の難削材料の仕上げの放電加工が行
え、従来は不可能であった難削材料の電極低消耗放電加
工が実現する。
Then, by setting the discharge time to an extremely short time in which cations hardly reach the tool electrode, the power of the discharge current density of a strong discharge current density of the order of 10 7 A / cm 2 or more is changed in the radial direction. It is added to an instant work piece while suppressing expansion, and by repeating this, it is possible to perform electrical discharge machining of difficult-to-cut materials such as cemented carbide and hardened steel without the consumption of tool electrodes. Achieves low electrode consumption EDM.

【0010】そして、放電時間Tdを1μs 以下にして
放電電流ピーク値ip (A)/Td(μs )を10以上
にすることが、現実に即して最も好適である。
[0010] Then, to the discharge time Td below the dischargeable current peak value i p (A) / Td to (.mu.s) 10 above 1μs are most suitably realistic.

【0011】[0011]

【発明の実施の形態】つぎに、本発明の実施の1形態に
ついて、図1を参照して説明する。図1は本発明が適用
される放電加工回路を示し、正,負の電源端子1p,1
n間に100〜400Vの直流電源が印加され、FET
等の電子スイッチ2がオンすると、電源端子1pから電
子スイッチ2,加工用コンデンサ3,充電抵抗4を介し
て電源端子1nに電流が流れ、加工用コンデンサ3が一
端3pを正,他端3nを負とする極性に充電される。
BEST MODE FOR CARRYING OUT THE INVENTION Next, one embodiment of the present invention will be described with reference to FIG. FIG. 1 shows an electric discharge machining circuit to which the present invention is applied. Positive and negative power supply terminals 1p, 1
A DC power supply of 100 to 400 V is applied between n and
When the electronic switch 2 such as is turned on, a current flows from the power supply terminal 1p to the power supply terminal 1n via the electronic switch 2, the processing capacitor 3 and the charging resistor 4, and the processing capacitor 3 has one end 3p positive and the other end 3n positive. It is charged to the negative polarity.

【0012】この加工用コンデンサ3の一端3pに振動
抑制抵抗5を介して超硬合金,焼入れ鋼等の難削材料の
工作物6が接続され、加工用コンデンサ3の他端3nに
回路インダクタンス(自己インダクタンス)7を介して
銅電極の工具電極8が接続され、白灯油,純水等の絶縁
性の加工液中に、5μm程度の所定ギャップ長離して工
作物6と工具電極8とが従来と逆の極性,すなわち工作
物6を陽極性,工具電極8を陰極性にして設けられる。
A workpiece 6 made of a hard-to-cut material such as cemented carbide or hardened steel is connected to one end 3p of the processing capacitor 3 via a vibration suppressing resistor 5, and a circuit inductance ( A tool electrode 8 of a copper electrode is connected via a self-inductance 7 and the work 6 and the tool electrode 8 are conventionally separated by a predetermined gap length of about 5 μm in an insulating machining liquid such as white kerosene or pure water. The opposite polarity, that is, the work piece 6 is made anodic and the tool electrode 8 is made cathodic.

【0013】そして、加工用コンデンサ3が充電される
と、その端子間電圧により、工具電極8,工作物6の間
に火花放電が生じ、工具電極8からの電子の衝撃が工作
物6に加えられる。
When the machining capacitor 3 is charged, a spark discharge is generated between the tool electrode 8 and the workpiece 6 due to the voltage between the terminals, and an electron impact from the tool electrode 8 is applied to the workpiece 6. To be

【0014】このとき、加工用コンデンサ3は一端3p
から振動抑制抵抗5,工作物6,工具電極8,回路イン
ダクタンス7を介して他端3nに放電し、端子間電圧が
低下する。
At this time, the processing capacitor 3 has one end 3p.
Is discharged to the other end 3n through the vibration suppressing resistor 5, the workpiece 6, the tool electrode 8, and the circuit inductance 7, and the voltage between the terminals decreases.

【0015】そして、加工用コンデンサ3の端子間電圧
の変化が微分回路等からなる放電検出回路9により検出
され、この検出回路9の検出出力により、放電加工中は
電子スイッチ2がオフし、直流電源からの後述の不要な
持続電流の工具電極8,工作物6間の放電ギャップへの
流入が遮断されて阻止される。
Then, a change in the voltage between the terminals of the machining capacitor 3 is detected by a discharge detection circuit 9 composed of a differentiating circuit or the like, and the detection output of this detection circuit 9 turns off the electronic switch 2 during the electric discharge machining. Inflow of an unnecessary continuous current, which will be described later, from the power supply into the discharge gap between the tool electrode 8 and the workpiece 6 is blocked and blocked.

【0016】また、回路インダクタンス7に応じた10
Ω程度の振動抑制抵抗5により加工用コンデンサ3,回
路インダクタンス7による振動が阻止され、工具電極
8,工作物6の火花放電は、工具電極8を陰極性,工作
物6を陽極性とする単極性の放電になる。
In addition, according to the circuit inductance 7, 10
Vibration caused by the machining capacitor 3 and the circuit inductance 7 is blocked by the vibration suppressing resistance 5 of about Ω, and spark discharge of the tool electrode 8 and the workpiece 6 is performed by using the tool electrode 8 as the cathode and the workpiece 6 as the anode. It becomes a polar discharge.

【0017】そして、直流電源による加工用コンデンサ
3の充電と,このコンデンサ3の放電とのくり返しによ
り、工具電極8,工作物6間に単極性の火花放電がくり
返し発生し、工作物6の所要の放電加工が行われる。
By repeating the charging of the machining capacitor 3 by the DC power source and the discharging of this capacitor 3, a unipolar spark discharge is repeatedly generated between the tool electrode 8 and the workpiece 6, and the workpiece 6 is required. Electrical discharge machining is performed.

【0018】ところで、放電による陽、陰極パワー配分
の理論計算によると、工具電極8を陰極性,工作物6を
陽極性とした場合、各1回の火花放電の放電時間Tdを
1μs 以下にできるだけ短くして工具電極8,工作物6
間の放電路の半径方向の膨張(拡散)を抑制し、放電時
間Tdに対する放電電流ピーク値ip を大きくして陰極
電流密度を107 〜108 A/cm2 のオーダーにすれ
ば、放電電流のほとんどが電子電流になり、この瞬時の
単極性の火花放電のくり返しにより、超硬合金,焼入れ
鋼等の難削材料の表面あらさ10μm Rmax 以下の仕
上げの放電加工が行える。
By the way, according to the theoretical calculation of the positive and negative power distribution by discharge, when the tool electrode 8 is cathodic and the workpiece 6 is anodic, the discharge time Td of each spark discharge can be kept to 1 μs or less. Shorten tool electrode 8, work piece 6
Suppressing radial expansion of the discharge path between (diffusion), the discharge current peak value i p for the discharge time Td is increased to be a cathode current density in the order of 10 7 ~10 8 A / cm 2 , discharge Most of the electric current becomes an electron current, and by repeating this instantaneous unipolar spark discharge, it is possible to perform electric discharge machining with a surface roughness of 10 μm Rmax or less of difficult-to-cut materials such as cemented carbide and hardened steel.

【0019】すなわち、10-6〜10-7秒の瞬時に工具
電極8,工作物6間に発生する放電は、その放電ギャッ
プ電圧波形から過渡アークに近いものとして扱えるた
め、電子放出に対するT−F理論及びマッケオン(Mack
eown)の式を適用することができる。
That is, the electric discharge generated between the tool electrode 8 and the workpiece 6 at an instant of 10 -6 to 10 -7 seconds can be treated as something close to a transient arc from the waveform of the discharge gap voltage. F Theory and McKeon (Mack
eown) formula can be applied.

【0020】この理論及び式に基づき、陰極性電極の仕
事関数4eV,陰極温度3000Kとして扱える工具電極
8等の電極材料につき、陰極電流密度が5×106 A/
cm2,1×107 A/cm2 ,5×107 A/cm2 ,5×
108 A/cm2 のときの電子電流密度(A/cm2 )/陰
極電流密度(A/cm2 )を求めると、つぎの表1に示す
ようになる。
Based on this theory and formula, the cathode current density is 5 × 10 6 A / with respect to the electrode material such as the tool electrode 8 which can be treated with the work function of the cathode electrode of 4 eV and the cathode temperature of 3000K.
cm 2 , 1 × 10 7 A / cm 2 , 5 × 10 7 A / cm 2 , 5 ×
The electron current density (A / cm 2 ) / cathode current density (A / cm 2 ) at 10 8 A / cm 2 is obtained as shown in Table 1 below.

【0021】[0021]

【表1】 [Table 1]

【0022】この表1からも明らかなように、陰極電流
密度を107 〜108 A/cm2 のオーダー,好ましくは
5×107 A/cm2 以上にすると、工具電極8,工作物
6間の放電電流のほとんどが電子電流になる。
As is clear from Table 1, when the cathode current density is on the order of 10 7 to 10 8 A / cm 2 , preferably 5 × 10 7 A / cm 2 or more, the tool electrode 8 and the workpiece 6 Most of the discharge current during this period becomes an electron current.

【0023】このとき、放電時間が10-6〜10-7μs
の瞬時であり、工具電極8,工作物6間の放電が半径方
向に広がらないため、陽極性の工作物6は超硬合金,焼
入れ鋼等の難削材料であっても、高電子電流密度の高温
電子の局所的な衝撃を受けて加工される。
At this time, the discharge time is 10 −6 to 10 −7 μs
Since the electric discharge between the tool electrode 8 and the workpiece 6 does not spread in the radial direction, the workpiece 6 of anodism has a high electron current density even if it is a difficult-to-cut material such as cemented carbide or hardened steel. It is processed by the local impact of high temperature electrons.

【0024】そして、工作物6の1回の火花放電による
加工範囲が微小であるため、工作物6の加工後の表面あ
らさが10μm Rmax 以下になり、仕上げの放電加工
が行える。
Since the machining range of the workpiece 6 by one spark discharge is very small, the surface roughness of the workpiece 6 after machining becomes 10 μm Rmax or less, and the electric discharge machining for finishing can be performed.

【0025】さらに、放電ギャップ電力のほとんどが陽
極側の工作物6で消費され、このとき、陽イオン電流密
度が非常に小さく、工具電極8に対する陽イオンの衝撃
が非常に小さくなって放電ギャップ電力の陰極側での配
分消費は非常に少なくなる。
Further, most of the discharge gap power is consumed by the work piece 6 on the anode side. At this time, the cation current density is very small, the impact of the cations on the tool electrode 8 is very small, and the discharge gap power is very small. The distributed consumption on the cathode side of is very low.

【0026】しかも、放電時間が1μs (1×10-6s
)以下,すなわち陽イオンが陰極の工具電極8に到達
し難い瞬時であれば、工具電極8は陽イオンの衝撃を受
けることがなく、消耗しない。
Moreover, the discharge time is 1 μs (1 × 10 −6 s
) The following, that is, at the moment when cations hardly reach the cathode tool electrode 8, the tool electrode 8 is not impacted by cations and is not consumed.

【0027】したがって、図1の放電加工回路において
は、工具電極8,工作物6間のギャップ長,回路インダ
クタンス7等の回路条件を考慮して加工用コンデンサ
3,振動抑制抵抗5等の放電回路定数を調整し、放電時
間Tdを1μs 以下(好ましくは0.5μs 以下)と
し、放電電流ピーク値ip (A)/放電時間Td(μs
)を10以上に大きくして陰極電流密度を5×107
A/cm2 以上に高くし、超硬合金,焼入れ鋼等の難削材
料の低消耗放電加工を実現する。
Therefore, in the electric discharge machining circuit of FIG. 1, the electric discharge circuit of the machining capacitor 3, the vibration suppressing resistor 5, etc. is considered in consideration of the circuit conditions such as the gap length between the tool electrode 8 and the workpiece 6, the circuit inductance 7, etc. adjust the constant, the discharge time Td and 1μs or less (preferably 0.5μs or less), the discharge current peak value i p (a) / discharge time Td (.mu.s
) To 10 or more to increase the cathode current density to 5 × 10 7
A / cm 2 or higher to realize low electrical discharge machining of difficult-to-cut materials such as cemented carbide and hardened steel.

【0028】つぎに、図1のいわゆるラザレコン回路
(RC回路)構成の放電加工回路においては、直流電源
からの電流も電極消耗の重要な因子の1つであり、放電
時間中は直流電源から工具電極8,工作物6間の放電ギ
ャップへの持続電流の流入を阻止する必要がある。
Next, in the electric discharge machining circuit of the so-called laser circuit configuration (RC circuit) shown in FIG. 1, the current from the DC power source is one of the important factors for electrode consumption, and during the discharge time, the DC power source changes the tool. It is necessary to prevent the continuous current from flowing into the discharge gap between the electrode 8 and the workpiece 6.

【0029】すなわち、図2に示すように図1の構成か
ら電子スイッチ2,放電検出回路9を省き、電源端子1
pに加工用コンデンサ3の一端を直結したラザレコン回
路構成の放電加工回路を形成し、この回路の加工用コン
デンサ3を500pF,振動抑制抵抗5を10Ωとし、充
電抵抗4を3〜30KΩの範囲で変えながら電源端子1
p,1n間に100〜400Vの直流電源10を印加し
て放電加工をくり返し、電極消耗率を測定した結果、図
3に示すように、充電抵抗4の抵抗値を大きくする程、
電極消耗率が小さくなった。
That is, as shown in FIG. 2, the electronic switch 2 and the discharge detection circuit 9 are omitted from the configuration of FIG.
By forming an electrical discharge machining circuit having a lathe recon circuit configuration in which one end of the machining capacitor 3 is directly connected to p, the machining capacitor 3 of this circuit is 500 pF, the vibration suppressing resistor 5 is 10Ω, and the charging resistor 4 is in the range of 3 to 30 KΩ. Power terminal 1 while changing
As a result of repeating the electric discharge machining by applying the DC power supply 10 of 100 to 400 V between p and 1n and measuring the electrode wear rate, as shown in FIG. 3, the larger the resistance value of the charging resistor 4 is,
The electrode wear rate has decreased.

【0030】これは、図2の放電加工回路の場合、工具
電極8,工作物6間に単極性の火花放電が生じる間(火
花放電中)は、加工用コンデンサ3の一端から工作物
6,工具電極8を介して加工用コンデンサ3の他端にこ
のコンデンサ3の放電電流が流れるとともに、電源端子
1pから工作物6,工具電極8を介して電源端子1nに
直流電源からの直接的な持続電流も流れ、この持続電流
によっても工具電極8の消耗原因である陽イオンの発生
量が変化し、充電抵抗4を大きくする程、持続電流が減
少して陽イオンの発生が少なくなるからである。
In the case of the electric discharge machining circuit shown in FIG. 2, this means that while a unipolar spark discharge is generated between the tool electrode 8 and the workpiece 6 (during spark discharge), the workpiece 6, from one end of the machining capacitor 3 is discharged. A discharge current of the capacitor 3 flows to the other end of the machining capacitor 3 via the tool electrode 8, and the power source terminal 1p directly supplies power to the power source terminal 1n via the tool 6 and the tool electrode 8 from the DC power source. This is because a current also flows, and the amount of cations, which is a cause of wear of the tool electrode 8, also changes due to this sustaining current, and as the charging resistance 4 increases, the sustaining current decreases and the number of cations lessens. .

【0031】したがって、図1の放電加工回路において
は、電子スイッチ2及び放電検出回路9を備え、火花放
電中は電子スイッチ2をオフして前記持続電流の放電ギ
ャップへの流入を阻止し、持続電流による電極消耗を防
止する。
Therefore, the electric discharge machining circuit of FIG. 1 is provided with the electronic switch 2 and the electric discharge detection circuit 9, and during the spark discharge, the electronic switch 2 is turned off to prevent the continuous current from flowing into the discharge gap to maintain the electric current. Prevents electrode consumption due to electric current.

【0032】そして、図1の放電回路において、放電電
流ピーク値ip を5Aに固定し、放電時間Tdを0.5
μs ,1μs に変えて工作物6の放電加工をくり返し、
重量電極消耗率(%)を測定した結果、つぎの表2に示
すように、1%,3%となり、従来は不可能であった超
硬合金,焼入れ鋼等の難削材料の表面あらさ10μmR
max 以下の電極低消耗放電加工が行えた。
In the discharge circuit of FIG. 1, the discharge current peak value i p is fixed at 5 A and the discharge time Td is 0.5.
Repeat the electric discharge machining of the workpiece 6 by changing to μs and 1 μs,
As a result of measuring the weight electrode wear rate (%), as shown in Table 2 below, the values were 1% and 3%, respectively, and the surface roughness of hard-to-cut materials such as cemented carbide and hardened steel, which was impossible in the past, was 10 μmR.
We were able to perform low-consumer electric discharge machining with max.

【0033】[0033]

【表2】 [Table 2]

【0034】この電極低消耗放電加工の場合、この加工
のみで工作物6の仕上げ加工まで行えるため、従来の放
電加工のように荒加工から仕上げ加工まで何工程も加工
をくり返す必要がなく、加工時間や労力の大幅な軽減が
図れ、しかも、加工精度も大幅に向上する。
In the case of this low-consumer electric discharge machining of electrodes, the finishing machining of the workpiece 6 can be performed only by this machining, so that it is not necessary to repeat machining from rough machining to finishing machining unlike the conventional electric discharge machining. The processing time and labor can be greatly reduced, and the processing accuracy is also greatly improved.

【0035】そして、回路構成等は図1のものに限定さ
れるものではなく、例えば加工用コンデンサ3及び充電
抵抗4,振動抑制抵抗5の大きさは、工作物6等に応じ
て設定すればよい。
The circuit configuration and the like are not limited to those shown in FIG. 1. For example, the sizes of the processing capacitor 3, the charging resistor 4 and the vibration suppressing resistor 5 can be set according to the workpiece 6 or the like. Good.

【0036】[0036]

【発明の効果】本発明は、以下に記載する効果を奏す
る。工具電極8と工作物6の極性が従来方法と逆にな
り、絶縁性の加工液中での単極性の火花放電により、電
子の衝撃を利用して工作物6が放電加工され、このと
き、放電時間は陽イオンが工具電極8に到達し難い極め
て短い時間に設定され、陰極電流密度が大きくなって強
大な放電電力密度のパワーが半径方向の膨張を抑えて瞬
時工作物6に加えられ、このくり返しにより、陽イオン
による工具電極8の消耗なく、従来は不可能であった超
硬合金,焼入れ鋼等の難削材料の仕上げの放電加工を行
うことができ、難削材料の電極低消耗放電加工が実現で
きる。
The present invention has the following effects. The polarities of the tool electrode 8 and the work piece 6 are opposite to those of the conventional method, and the work piece 6 is electro-discharge machined by utilizing the impact of electrons by the unipolar spark discharge in the insulating working liquid. The discharge time is set to an extremely short time in which cations are unlikely to reach the tool electrode 8, and the cathode current density is increased so that a powerful discharge power density power is applied to the instantaneous workpiece 6 while suppressing radial expansion. By this repetition, it is possible to perform the electric discharge machining for finishing difficult-to-cut materials such as cemented carbide and hardened steel, which was not possible in the past, without the tool electrodes 8 being consumed by cations, and the electrode wear of the hard-to-cut materials is low. Electric discharge machining can be realized.

【0037】そして、放電時間Tdを1μs 以下にして
放電電流ピーク値ip (A)/Td(μs )を10以上
にすることにより、最も現実に即した好ましい電極低消
耗放電加工が行える。
[0037] A discharge by time Td to in the 1μs or less discharge current peak value i p (A) / Td to (.mu.s) to 10 or more, can be performed most practical preferred electrode low consumable discharge machining in line.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の1形態の回路ブロック図であ
る。
FIG. 1 is a circuit block diagram of one embodiment of the present invention.

【図2】図1の直流電源の電流の影響を説明する回路ブ
ロック図である。
FIG. 2 is a circuit block diagram for explaining the influence of the current of the DC power supply of FIG.

【図3】図2の電極消耗率の特性図である。FIG. 3 is a characteristic diagram of the electrode wear rate of FIG.

【符号の説明】[Explanation of symbols]

6 工作物 8 工具電極 6 Workpiece 8 Tool electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 銅電極の工具電極を陰極性とし、超硬合
金,焼入れ鋼等の難削材料の工作物を陽極性とし、 絶縁性の加工液中において、放電時間を陽イオンが前記
工具電極に到達し難い短時間にして前記放電時間に対す
る放電電流ピーク値を大きくした単極性の高電流密度火
花放電により、電子衝撃で前記工作物を放電加工するこ
とを特徴とする電極低消耗放電加工方法。
1. A tool electrode of a copper electrode has a cathodic property, and a workpiece made of a hard-to-cut material such as cemented carbide or hardened steel has an anodic property, and in an insulating working fluid, a cation has a discharge time of the above-mentioned tool. Electrode low-consumption electrical discharge machining characterized in that the workpiece is subjected to electrical discharge machining by electron impact by unipolar high current density spark discharge in which the discharge current peak value for the discharge time is increased in a short time that is difficult to reach the electrode. Method.
【請求項2】 放電時間を1μs 以下にして放電電流ピ
ーク値ip (A)/放電時間Td(μs )を10以上に
したことを特徴とする請求項1記載の電極低消耗放電加
工方法。
Wherein the discharge time in the 1μs than the discharge current peak value i p (A) / discharge time Td (.mu.s) an electrode low consumable discharge machining method according to claim 1, characterized in that more than 10.
JP20538995A 1995-07-18 1995-07-18 Electrical discharge machining method of low consumption electrode type Pending JPH0929546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20538995A JPH0929546A (en) 1995-07-18 1995-07-18 Electrical discharge machining method of low consumption electrode type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20538995A JPH0929546A (en) 1995-07-18 1995-07-18 Electrical discharge machining method of low consumption electrode type

Publications (1)

Publication Number Publication Date
JPH0929546A true JPH0929546A (en) 1997-02-04

Family

ID=16506020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20538995A Pending JPH0929546A (en) 1995-07-18 1995-07-18 Electrical discharge machining method of low consumption electrode type

Country Status (1)

Country Link
JP (1) JPH0929546A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8138441B2 (en) * 2006-12-22 2012-03-20 Corning Incorporated Step-down plunge electrodischarge machining
JP2012166323A (en) * 2011-02-16 2012-09-06 Mitsubishi Electric Corp Electric discharge machining device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529196A (en) * 1975-07-11 1977-01-24 Hitachi Zosen Corp Electro-erostion method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529196A (en) * 1975-07-11 1977-01-24 Hitachi Zosen Corp Electro-erostion method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8138441B2 (en) * 2006-12-22 2012-03-20 Corning Incorporated Step-down plunge electrodischarge machining
JP2012166323A (en) * 2011-02-16 2012-09-06 Mitsubishi Electric Corp Electric discharge machining device

Similar Documents

Publication Publication Date Title
Yan et al. Surface quality improvement of wire-EDM using a fine-finish power supply
Tzeng et al. Effects of powder characteristics on electrodischarge machining efficiency
Krötz et al. Experimental investigation and simulation of heat flux into metallic surfaces due to single discharges in micro-electrochemical arc machining (micro-ECAM)
JPS6317569B2 (en)
RU2008145736A (en) METHOD OF ELECTROCHEMICAL PROCESSING
Li et al. Impulse discharge method to investigate the influence of gap width on discharge characteristics in micro-EDM
Crichton et al. Comparative studies of ecm, edm and ecam
Schulze Importance of polarity change in the electrical discharge machining
JPH0716827B2 (en) Power supply for wire cut electrical discharge machining
KR100242402B1 (en) Method and apparatus for impulse generator for electroerosive machining of workpieces
JP3343267B2 (en) Electric discharge machining method and power supply device for electric discharge machining
JPS5926414B2 (en) Electric discharge machining equipment
Gupta et al. Optimization of EDM process parameters: A review of technique, process, and outcome
JPH0929546A (en) Electrical discharge machining method of low consumption electrode type
Ahmad et al. Optimization of Process Parameters in Electric Discharge Machining Process
Karande et al. Effect of EDM process parameters on tool wear using EN 31 tool steel
Silambarasan et al. Optimization of Process Parameters of Wire EDM Using Genetic Algorithm
Singh et al. Influence of input parameters on MRR of AISI-316L using tungsten electrode machined by EDM
Khan et al. Performance of electrical discharge machining (EDM) with nickel added dielectric fluid
Nas et al. Surface roughness optimization of EDM process of Hastelloy C22 super alloy
Taqi et al. Investigation the Effect of Negative Polarity of Surface Roughness and Metal Removal Rate During EDM Process
SU1148737A1 (en) Method of electric-discharge chemical machining
De Bruyn et al. Comparison of Various Erosion Systems with Rectangular and Trapeziodal Pulse Forms
Yamaguchi et al. Investigation of influence of low-level voltage on machining characteristics in pulse wire ECM
Schulze Determining the importance of polarity change in the electrical discharge machining