JPH09293516A - All solid lithium battery - Google Patents

All solid lithium battery

Info

Publication number
JPH09293516A
JPH09293516A JP8105068A JP10506896A JPH09293516A JP H09293516 A JPH09293516 A JP H09293516A JP 8105068 A JP8105068 A JP 8105068A JP 10506896 A JP10506896 A JP 10506896A JP H09293516 A JPH09293516 A JP H09293516A
Authority
JP
Japan
Prior art keywords
lithium
current collector
electrolyte
sulfide
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8105068A
Other languages
Japanese (ja)
Inventor
Makoto Fujino
Kazuya Iwamoto
Shigeo Kondo
Kazunori Takada
和也 岩本
信 藤野
繁雄 近藤
和典 高田
Original Assignee
Matsushita Electric Ind Co Ltd
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Ind Co Ltd, 松下電器産業株式会社 filed Critical Matsushita Electric Ind Co Ltd
Priority to JP8105068A priority Critical patent/JPH09293516A/en
Publication of JPH09293516A publication Critical patent/JPH09293516A/en
Application status is Pending legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation
    • Y02E60/122Lithium-ion batteries

Abstract

PROBLEM TO BE SOLVED: To provide an all solid lithium battery in which the corrosion of a current collector is prevented and storage characteristics are enhanced by using lithium sulfide-silicon sulfide as the main component of a solid electrolyte and an alloy mainly comprising iron and containing a small amount of molybdenum in a positive current collector.
SOLUTION: In a lithium battery using a lithium conductive electrolyte, a solid electrolyte mainly comprising lithium sulfide-silicon sulfide, for example 0.6Li2S-0.4SiS is used as the electrolyte. The solid electrolyte can contain an oxygen atom bonded to a silicon atom by adding Li2O if necessary, and is preferable to contain no corrosive halogen. As a positive current collector, an iron alloy mainly comprising iron and containing 0-1% Mo, which is low cost and easy to obtain is used.
COPYRIGHT: (C)1997,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、全固体リチウム電池に関するものである。 BACKGROUND OF THE INVENTION The present invention relates to an all-solid-state lithium batteries.

【0002】 [0002]

【従来の技術】リチウム電池は水溶液系電解質に比べ分解電圧の高い有機溶媒系電解質を用いているため、より高電位の正極活物質の使用が可能となる。 BACKGROUND OF THE INVENTION Lithium batteries due to the use of high organic solvent based electrolyte decomposition voltage compared with the aqueous electrolyte, it is possible to use a positive electrode active material of higher potential. このため、正極活物質と電気的に接続された集電体はより強い酸化環境にさらされることになり、集電体金属の腐食が生じやすく、電池の保存による特性劣化が生じる問題があった。 Thus, positive electrode active material and electrically connected to the current collector will be exposed to a stronger oxidizing environment, prone corrosion of the current collector metal, there is a problem that characteristic deterioration due to storage of the battery occurs .

【0003】このため、有機電解質を用いたリチウム電池の正極集電体として普通鋼や耐食性の低いステンレス鋼を使用した場合、腐食の発生は著しく、保存による特性劣化が激しいため、実用電池の集電体としては、チタンやMoが含まれたハイクロムステンレス鋼などの高い耐食性を持った金属を用いる必要がある。 [0003] Therefore, when using carbon steel and corrosion-resistant low stainless steel as the positive electrode current collector of a lithium battery using the organic electrolyte, notably the occurrence of corrosion, for characteristic degradation due to storage is severe, collecting practical battery the collector, it is necessary to use a metal having high corrosion resistance such as high chromium stainless steel that contains titanium or Mo.

【0004】例えば正極活物質として二酸化マンガン、 [0004] For example, manganese dioxide as a positive electrode active material,
正極集電体としてSUS304、負極としてLi、電解質としてプロピレンカーボネイトおよび1,2−ジメトキシエタンの2:1の混合有機溶媒に1mol・dm -3 SUS304 as a positive electrode current collector, Li as a negative electrode, propylene carbonate and 1,2-dimethoxyethane as the electrolyte 2: 1mol · dm -3 in a mixed organic solvent of 1
のLiClO 4を溶解させたものから構成されたリチウム電池を80℃で1ヶ月間保存した場合、SUS304 If for one month stored at 80 ° C. The lithium batteries made up of those dissolved in LiClO 4, SUS304
では腐食が生じるため正極集電体としては適さない。 Not suitable as a positive electrode current collector for corroded in. それに対し、チタン(Ti)もしくはフェライト系ステンレス鋼SUS434などのクロム(Cr)含有率16〜 In contrast, chromium (Cr) content 16, such as titanium (Ti) or ferritic stainless steel SUS434
18%以上、モリブデン(Mo)含有率1〜4%を含んだステンレス鋼では腐食が生じないものもあることが報告されている。 18% or more, the molybdenum (Mo) containing 1-4% factor-containing stainless steel has been reported that some of which corrosion does not occur. 以上のようにリチウム電池の集電体としては腐食の問題を避けるためチタンやMoを含んだハイクロムステンレス鋼を用いる必要がある。 Above as a current collector of a lithium battery as it is necessary to use a high-chromium stainless steel containing titanium and Mo in order to avoid corrosion problems.

【0005】 [0005]

【発明が解決しようとする課題】しかしながら、上記従来のTiやMoを含んだハイクロムステンレス鋼を用いた場合、これらには加工性が悪い、また高価である等の課題がある。 [SUMMARY OF THE INVENTION However, in the case of using the inclusive high chromium stainless steel of the above conventional Ti and Mo, these include poor workability, also there are problems like is expensive.

【0006】本発明はこのような従来の課題を解決するものであり、リチウム電池の集電体の腐食を防止することにより、安価で容易に入手できる集電体材料を用いて、保存特性に優れたリチウム電池を提供することを目的とする。 [0006] The present invention has been made to solve such conventional problems, by preventing corrosion of the current collector of a lithium battery, using cheap and readily collector material available, the storage characteristics an object of the present invention is to provide an excellent lithium battery.

【0007】 [0007]

【課題を解決するための手段】上記の課題を解決するために、本発明ではリチウム電池を構成する電解質として硫化リチウム−硫化珪素を主体としてなる固体電解質を用い、その正極集電体にモリブデン含有率が1%以下の鉄を主体とする合金を用いるものである。 In order to solve the above problems BRIEF SUMMARY OF THE INVENTION, lithium sulfide as an electrolyte constituting the lithium battery in the present invention - using a solid electrolyte made mainly of silicon sulfide, molybdenum contained in the positive electrode current collector the rate is of an alloy consisting mainly of less than 1% iron. 本発明によれば、硫化リチウム−硫化ケイ素を主体としてなる固体電解質中では、硫黄はアニオン性を有するガラス骨格を構成しているため、単独のイオンは存在せず、また錯イオンを形成することもないため、正極集電体に鉄を用いても腐食を生じることはなく、保存特性の優れたリチウム電池を提供することができる。 According to the present invention, lithium sulfide - a solid electrolyte composed mainly of silicon sulfide, sulfur because it constitutes a glass skeleton having an anionic, alone ion is absent, also possible to form the complex ion since there is also not to cause corrosion with iron on the cathode current collector, it is possible to provide an excellent lithium battery storage characteristics.

【0008】 [0008]

【発明の実施の形態】本発明の全固体リチウム電池では、電解質として硫化リチウム−硫化珪素を主体としてなる固体電解質を用い、その正極集電体にモリブデン含有率が1%以下の鉄を主体とする合金を用いるものである。 The all-solid-state lithium battery of the embodiment of the present invention, lithium sulfide as the electrolyte - a solid electrolyte consisting mainly of silicon sulfide, molybdenum content in the positive electrode current collector and composed mainly of less than 1% iron it is to use an alloy.

【0009】従来の有機溶媒系電解質を用いたリチウム電池において、正極集電体に鉄を用いた場合、強い酸化環境におかれた鉄合金は、その表面で電荷移動が生じるとともに電解質中の陰イオンと錯イオンを形成し、その錯イオンが電解質中に拡散していくことで腐食が生じる。 [0009] In the lithium battery using the conventional organic solvent-based electrolytes, the use of iron on the cathode current collector, a strong iron alloy placed in an oxidizing environment, the shade of the electrolyte with the charge transfer at the surface occurs to form an ion complex ions, corrosion caused by the complex ion diffuses in the electrolyte.

【0010】しかしながら、本発明の全固体リチウム電池においては、硫化リチウム−硫化珪素を主体としてなる固体電解質中では、硫黄はアニオン性を有するガラス骨格を構成しているため、単独の陰イオンは存在しない。 [0010] However, in the all-solid-state lithium battery of the present invention, lithium sulfide - a solid electrolyte composed mainly of silicon sulfide, sulfur because it constitutes a glass skeleton having an anionic, alone anions present do not do. そのため、鉄合金の集電体金属表面で電荷移動反応が起きたとしても錯イオンを形成することができないため腐食は生じない。 Therefore, no corrosion can not be formed complex ions as charge-transfer reaction at the collector metal surface of the iron alloy occurs. またこの電解質中ではLiイオンのみ拡散が可能であるため、仮に集電体金属表面で電荷移動反応が生じ、錯イオンが形成されたとしても、この錯イオンは電解質中を拡散していかないため、反応は集電体金属表面にとどまり腐食は進行しない。 Since this order in the electrolyte are possible diffusion only Li ions, if the charge transfer reaction occurring at the collector metal surface, even complex ion is formed, this complex ion is not Ika diffuse through the electrolyte, the reaction corrosion remains current collector metal surface does not proceed. このため、正極集電体にモリブデンの含有率が1%以下の鉄を主体とする合金を用いても腐食することなく、保存特性に優れたリチウム電池となる。 Therefore, without the content of molybdenum in the positive electrode current collector is also corrode an alloy consisting mainly of 1% or less of iron, an excellent lithium battery storage characteristics.

【0011】またリチウム電池を構成する電解質として、硫化リチウム−硫化珪素を主体と原子に結合した酸素原子を有する固体電解質を用いることにより、より安定なガラス骨格構造を形成するため、単独の陰イオンはさらに生じにくくなり腐食もより起き難くなる。 [0011] As an electrolyte constituting the lithium battery, lithium sulfide - by the use of a solid electrolyte having an oxygen atom bonded to silicon sulfide mainly the atom, to form a more stable glass skeleton structure, a single anion hardly it occurs more even corrosion hardly occurs even more. また Also
Liイオンのみ拡散が可能であるという特徴は変わらないため、腐食の進行も起きない。 Since the feature is not changed that only Li ions can diffuse, not occur even progress of corrosion.

【0012】また本発明の硫化リチウム−硫化珪素を主体としてなる固体電解質中にハロゲンイオンを含まないものを用いることにより、集電体金属表面での電荷移動反応がさらに抑えられ腐食を生じることを抑制する。 Further lithium sulfide of the present invention - by using those containing no halogen ion in the solid electrolyte composed mainly of silicon sulfide, giving rise to further suppressed and corrosion charge transfer reaction at the collector metal surface suppress. これは、ハロゲンイオンを添加した場合、より高いイオン伝導度が観測されており、固体電解質電池への応用が期待されており、電解質中において、ハロゲンイオンは孤立イオンとして固体電解質を構成するガラス骨格の間に存在することが報告されている。 This is the case of adding halide ions, higher ion conductivity and are observed, application to the solid electrolyte battery has been expected, in the electrolyte, a glass skeleton halogen ions constituting the solid electrolyte as an isolated ion It has been reported to be present in between. すなわち、ハロゲンイオンは電解質のガラス骨格に結合されておらず、電気化学的な酸化を受けやすく、その結果生じたハロゲン分子は、鉄と反応して腐食を生じる可能性がある。 That is, the halogen ion is not bound to the glass skeleton of the electrolyte susceptible to electrochemical oxidation, the resulting halogen molecules, can cause reactions to corrode iron. この場合も腐食による生成物の拡散は生じず、反応は表面にとどまるが、集電体金属表面で若干腐食が生じる原因となる。 Again not occur diffusion of the product due to corrosion, the reaction is remains on the surface, causing a slight corrosion in the collector the metal surface occurs.

【0013】 [0013]

【実施例】以下、本発明の効果について実施例を用いて説明する。 BRIEF DESCRIPTION using examples the effect of the present invention. ここでいう鉄とは不純物として一般にC,S Generally C as impurity iron here, S
i,Mn,PあるいはSなどを含むものである。 i, Mn, is intended to include, such as P or S.

【0014】(実施例1)本実施例においては、電解質が硫化リチウム−硫化珪素を主体としてなる固体電解質の一つである0.6Li 2 S−0.4SiS 2の組成式をもつ固体電解質を用い、正極集電体として極軟鋼を用いたコイン型全固体リチウム電池(直径20mm,厚さ1.6mm)を作成し、その特性を評価した。 [0014] Example 1 In this Example, a lithium electrolyte sulfide - a solid electrolyte with 0.6Li 2 S-0.4SiS 2 of formula is one of the solid electrolyte made mainly of silicon sulfide used to create a very mild coin type all-solid lithium cell using as cathode current collector (diameter 20 mm, thickness 1.6 mm), and their characteristics were evaluated. 以下にこの実施例で評価したコイン型電池の構成を示す。 The following shows the configuration of a coin type battery was evaluated in this Example.

【0015】コバルト酸リチウムと固体電解質を混合した正極合剤を円盤状(直径15.5mm)に加圧成型し、これにメッシュ状の極軟鋼を円盤状(直径15m [0015] Lithium cobalt oxide and a solid electrolyte by mixing positive electrode mixture of the disk-shaped pressure-molded (diameter 15.5 mm), this mesh-like electrode mild steel disk-shaped (diameter 15m
m)に打ち抜き、正極集電体として圧着し正極とした。 Punching in m), and the crimp and the positive electrode as a positive electrode current collector.
電解質も同様に円盤状(直径15.5mm)に加圧成型し、インジウム箔も同様に円盤状(直径15.5mm) The electrolyte is similarly disc-shaped pressure-molded (diameter 15.5 mm), indium foil likewise disc-shaped (diameter 15.5 mm)
に加工して負極としてコイン型全固体リチウム電池Aを構成した。 To constitute a coin type all-solid lithium battery A as a processing to negative electrode.

【0016】試作した本発明のコイン型電池Aを100 [0016] A coin-type battery A of the present invention as a prototype 100
μA/cm 2の定電流で電圧が3.80Vになるまで充電し、該コイン型電池Aを保存試験として80℃の恒温槽中で一ヶ月間保存を行い、開放電圧の変化を測定した。 Voltage at a constant current of .mu.A / cm 2 is charged until 3.80V, and save one month in a constant temperature bath of 80 ° C. as a storage test The coin cells A, to measure the change in the open circuit voltage. その結果、保存前後とも開放電圧は3.71Vと開放電圧の低下は認められなかった。 As a result, the open-circuit voltage both before and after storage decrease of 3.71V and the open-circuit voltage was not observed. また電池を分解したところ正極集電体の腐食は見られなかった。 The corrosion of the positive electrode current collector was disassembled the battery was observed.

【0017】以上の結果より、本発明によると電解質として硫化リチウム−硫化珪素を主体としてなる固体電解質を用いることで、 モリブデンの含有率が1%以下の鉄を主体としてなる合金を正極集電体として、保存特性に優れたリチウム電池が得られることがわかった。 [0017] From the above results, the lithium sulfide as an electrolyte According to the present invention - by using a solid electrolyte composed mainly of silicon sulfide, alloy cathode current collector content of molybdenum is mainly 1% iron as it was found that the lithium battery having excellent storage characteristics can be obtained.

【0018】(実施例2)本実施例では実施例1において電解質として用いた0.6Li 2 S−0.4SiS 2の組成式をもつ固体電解質に代えて0.64Li 2 S− [0018] (Example 2) in place of the solid electrolyte having the composition formula of 0.6Li 2 S-0.4SiS 2 used as electrolytes in Example 1 in the present embodiment 0.64Li 2 S-
0.36SiS 2の組成式をもつ固体電解質を用い、実施例1と同様の保存試験を行った。 A solid electrolyte having the composition formula of 0.36SiS 2, was subjected to the same storage test as in Example 1. その結果、保存前後とも開放電圧が3.72Vと開放電圧の低下は認められなかった。 As a result, the open-circuit voltage both before and after the storage decrease of 3.72V and the open-circuit voltage was not observed. また電池を分解したところ正極集電体の腐食は見られなかった。 The corrosion of the positive electrode current collector was disassembled the battery was observed.

【0019】以上の結果より、本発明によると電解質として硫化リチウム−硫化珪素を主体としてなる固体電解質を用いることで、 モリブデンの含有率が1%以下の鉄を主体としてなる合金を正極集電体として、保存特性に優れたリチウム電池が得られることがわかった。 [0019] From the above results, the lithium sulfide as an electrolyte According to the present invention - by using a solid electrolyte composed mainly of silicon sulfide, alloy cathode current collector content of molybdenum is mainly 1% iron as it was found that the lithium battery having excellent storage characteristics can be obtained.

【0020】(実施例3)本実施例では実施例1において電解質として用いた0.6Li 2 S−0.4SiS 2の組成式をもつ固体電解質に代えて0.6Li 2 S−0. [0020] (Example 3) in place of the solid electrolyte having the composition formula of 0.6Li 2 S-0.4SiS 2 used as electrolytes in Example 1 in the present embodiment 0.6Li 2 S-0.
3SiS 2 −0.1B 23の組成式をもつ固体電解質を用い、実施例1と同様の保存試験を行った。 A solid electrolyte having 3SiS 2 -0.1B 2 S 3 composition formula, was subjected to the same storage test as in Example 1. その結果、 as a result,
保存前後とも開放電圧が3.71Vと開放電圧の低下は認められなかった。 The open-circuit voltage both before and after the storage decrease of 3.71V and the open-circuit voltage was not observed. また電池を分解したところ正極集電体の腐食は見られなかった。 The corrosion of the positive electrode current collector was disassembled the battery was observed.

【0021】以上の結果より、本発明によると電解質として硫化リチウム-硫化珪素を主体としてなる固体電解質を用いることで、 モリブデンの含有率が1%以下の鉄を主体としてなる合金を正極集電体として、保存特性に優れたリチウム電池が得られることがわかった。 [0021] From the above results, the lithium sulfide as an electrolyte According to the present invention - by using a solid electrolyte composed mainly of silicon sulfide, alloy cathode current collector content of molybdenum is mainly 1% iron as it was found that the lithium battery having excellent storage characteristics can be obtained.

【0022】(実施例4)本実施例では実施例1において正極活物質に用いたコバルト酸リチウムに代えてニッケル酸リチウムを用い、実施例1と同様の保存試験を行った。 [0022] (Example 4) using lithium nickel oxide in place of the lithium cobalt oxide is used in the positive electrode active material in Example 1 in the present embodiment was subjected to the same storage test as in Example 1. その結果、保存前後とも開放電圧が3.69Vと開放電圧の低下は認められなかった。 As a result, the open-circuit voltage both before and after the storage decrease of 3.69V and the open-circuit voltage was not observed. また電池を分解したところ正極集電体の腐食は見られなかった。 The corrosion of the positive electrode current collector was disassembled the battery was observed.

【0023】以上の結果より、本発明によると電解質として硫化リチウム-硫化珪素を主体としてなる固体電解質を用いることで、 モリブデンの含有率が1%以下の鉄を主体としてなる合金を正極集電体として、保存特性に優れたリチウム電池が得られることがわかった。 The above results, the lithium sulfide as an electrolyte According to the present invention - by using a solid electrolyte composed mainly of silicon sulfide, alloy cathode current collector content of molybdenum is mainly 1% iron as it was found that the lithium battery having excellent storage characteristics can be obtained.

【0024】(実施例5)本実施例では実施例1において正極活物質に用いたコバルト酸リチウムに代えてスピネル型構造を持つマンガン酸リチウムを用い、充電終止電圧を3.1Vとした以外は実施例1と同様の保存試験を行った。 [0024] (Example 5) using lithium manganate with a spinel structure in place of the lithium cobalt oxide is used in the positive electrode active material in Example 1 in the present embodiment, except that the charge voltage and 3.1V It was subjected to the same storage test as in example 1. その結果、保存前後とも開放電圧が2.98 As a result, both before and after storage open-circuit voltage 2.98
Vと開放電圧の低下は認められなかった。 Decrease of V and the open-circuit voltage was not observed. また電池を分解したところ正極集電体の腐食は見られなかった。 The corrosion of the positive electrode current collector was disassembled the battery was observed.

【0025】以上の結果より、本発明によると電解質として硫化リチウム-硫化珪素を主体としてなる固体電解質を用いることで、 モリブデンの含有率が1%以下の鉄を主体としてなる合金を正極集電体として、保存特性に優れたリチウム電池が得られることがわかった。 [0025] From the above results, the lithium sulfide as an electrolyte According to the present invention - by using a solid electrolyte composed mainly of silicon sulfide, alloy cathode current collector content of molybdenum is mainly 1% iron as it was found that the lithium battery having excellent storage characteristics can be obtained.

【0026】(実施例6)本実施例では実施例1において負極に用いたインジウム箔に代えてリチウム箔を用い、充電終止電圧を4.40Vとした以外は実施例1と同様の保存試験を行った。 [0026] Using lithium foil instead (Example 6) Example 1 In this example indium foil used as a negative electrode, the same storage test, except that the charge voltage was set to 4.40V Example 1 went. その結果、保存前後とも開放電圧が4.28Vと開放電圧の低下は認められなかった。 As a result, the open-circuit voltage both before and after the storage decrease of 4.28V and the open-circuit voltage was not observed. また電池を分解したところ正極集電体の腐食は見られなかった。 The corrosion of the positive electrode current collector was disassembled the battery was observed.

【0027】以上の結果より、本発明によると電解質として硫化リチウム-硫化珪素を主体としてなる固体電解質を用いることで、 モリブデンの含有率が1%以下の鉄を主体としてなる合金を正極集電体として、保存特性に優れたリチウム電池が得られることがわかった。 [0027] From the above results, the lithium sulfide as an electrolyte According to the present invention - by using a solid electrolyte composed mainly of silicon sulfide, alloy cathode current collector content of molybdenum is mainly 1% iron as it was found that the lithium battery having excellent storage characteristics can be obtained.

【0028】(実施例7)本実施例では実施例1において正極集電体に用いた極軟鋼に代えてSUS304を用い、同様にコイン型電池を作成し同様の保存試験を行った。 [0028] (Example 7) the SUS304 in place of the electrode mild steel used in the positive electrode current collector in Example 1 is used in this example were prepared by similar storage test similarly coin-type battery. その結果、保存前後とも開放電圧が3.70Vと開放電圧の低下は認められなかった。 As a result, the open-circuit voltage both before and after the storage decrease of 3.70V and the open-circuit voltage was not observed. また電池を分解したところ正極集電体の腐食は見られなかった。 The corrosion of the positive electrode current collector was disassembled the battery was observed.

【0029】以上の結果より、本発明によると電解質として硫化リチウム-硫化珪素を主体としてなる固体電解質を用いることで、 モリブデンの含有率が1%以下の鉄を主体としてなる合金を正極集電体として、保存特性に優れたリチウム電池が得られることがわかった。 [0029] From the above results, the lithium sulfide as an electrolyte According to the present invention - by using a solid electrolyte composed mainly of silicon sulfide, alloy cathode current collector content of molybdenum is mainly 1% iron as it was found that the lithium battery having excellent storage characteristics can be obtained.

【0030】(実施例8)本実施例では実施例1において電解質として用いた0.6Li 2 S−0.4SiS 2の組成式をもつ固体電解質に代えて硫化リチウム−硫化珪素を主体としてなる固体電解質が珪素原子に結合した酸素原子を有する電解質の一つである0.60Li 2 S− [0030] (Example 8) Lithium sulfide in place of the solid electrolyte having the composition formula of 0.6Li 2 S-0.4SiS 2 used as electrolytes in Example 1 in the present embodiment - solid consisting mainly of silicon sulfide 0.60Li 2 electrolyte is one of the electrolyte having an oxygen atom bonded to a silicon atom S-
0.39SiS 2 −0.01Li 3 PO 4の組成式をもつ固体電解質を用い、実施例1と同様の保存試験を行った。 A solid electrolyte having 0.39SiS 2 -0.01Li 3 PO 4 composition formula, was subjected to the same storage test as in Example 1. その結果、保存前後とも開放電圧が3.72Vと開放電圧の低下は認められなかった。 As a result, the open-circuit voltage both before and after the storage decrease of 3.72V and the open-circuit voltage was not observed. また電池を分解したところ正極集電体の腐食は見られなかった。 The corrosion of the positive electrode current collector was disassembled the battery was observed.

【0031】さらに、該コイン型電池を用いて150℃ [0031] In addition, 150 ℃ by using the coin-cell battery
での保存試験を一ヶ月間行ったところ、保存後の開放電圧も3.72Vと開放電圧の低下は認められなかった。 Was carried out between the storage test one month in a decrease in the open-circuit voltage after storage is also a 3.72V open circuit voltage was observed.
また電池を分解したところ正極集電体の腐食は見られなかった。 The corrosion of the positive electrode current collector was disassembled the battery was observed.

【0032】比較のため、実施例1で評価したものと同構成のコイン型電池Aで同様に150℃での保存試験を一ヶ月間行った。 [0032] For comparison, it was performed a month storage tests at similarly 0.99 ° C. in a coin type battery A of the same configuration as evaluated in Example 1. その結果、保存前の開放電圧が3.7 As a result, the open-circuit voltage before the storage is 3.7
1Vであったのに対し、保存後には3.68Vと1%程度の開放電圧の低下が認められた。 While there was a 1V, reduction of 3.68V and the open-circuit voltage of about 1% after storage was observed. しかし、電池を分解したところ正極集電体の腐食は見られなかった。 However, corrosion of the positive electrode current collector was disassembled the battery was observed.

【0033】以上の結果より、本発明によると電解質として硫化リチウム−硫化珪素を主体としてなる固体電解質が珪素原子に結合した酸素原子を有する電解質を用いることで、 モリブデンの含有率が1%以下の鉄を主体としてなる合金を正極集電体として、保存特性に優れたリチウム電池が得られることがわかった。 [0033] From the above results, the present invention in accordance with lithium sulfide as an electrolyte - by using an electrolyte having an oxygen atom solid electrolyte composed mainly of silicon sulfide is bonded to a silicon atom, the content of molybdenum below 1% the alloy of iron mainly as a positive electrode current collector, it was found that excellent lithium battery storage characteristics are obtained.

【0034】(実施例9)本実施例では実施例8において電解質として用いた0.6Li 2 S−0.4SiS 2の組成式をもつ固体電解質に代えて硫化リチウム−硫化珪素を主体としてなる固体電解質が珪素原子に結合した酸素原子を有する電解質の一つである0.55Li 2 S− [0034] (Example 9) This example with lithium sulfide in place of the solid electrolyte having the composition formula of 0.6Li 2 S-0.4SiS 2 used as electrolytes in Example 8 - Solid composed mainly of silicon sulfide 0.55Li 2 electrolyte is one of the electrolyte having an oxygen atom bonded to a silicon atom S-
0.40SiS 2 −0.05Li 2 Oの組成式をもつ固体電解質を用い、実施例1と同様の保存試験を行った。 A solid electrolyte having 0.40SiS 2 -0.05Li 2 O in the composition formula, was subjected to the same storage test as in Example 1. その結果、保存前後とも開放電圧が3.68Vと開放電圧の低下は認められなかった。 As a result, the open-circuit voltage both before and after the storage decrease of 3.68V and the open-circuit voltage was not observed. また電池を分解したところ正極集電体の腐食は見られなかった。 The corrosion of the positive electrode current collector was disassembled the battery was observed.

【0035】さらに、該コイン型電池を用いて150での℃保存試験を一ヶ月間行ったところ、保存後の開放電圧は3.68Vと開放電圧の低下は認められなかった。 Furthermore, it was carried out between ℃ Storage test one month at 150 by using the coin-type battery, the open circuit voltage after storage reduction of 3.68V and the open-circuit voltage was observed.
また電池を分解したところ正極集電体の腐食は見られなかった。 The corrosion of the positive electrode current collector was disassembled the battery was observed.

【0036】以上の結果より、本発明によると電解質として硫化リチウム−硫化珪素を主体としてなる固体電解質が珪素原子に結合した酸素原子を有することで、 モリブデンの含有率が1%以下の鉄を主体としてなる合金を正極集電体として、保存特性に優れたリチウム電池が得られることがわかった。 The above results, the lithium sulfide as an electrolyte According to the present invention - by having an oxygen atom solid electrolyte composed mainly of silicon sulfide is bonded to a silicon atom, mainly less than 1% iron content of molybdenum the made as an alloy as the cathode current collector, it was found that excellent lithium battery storage characteristics are obtained.

【0037】(実施例10)本実施例においては、電解質として硫化リチウム−硫化珪素を主体としてなる固体電解質がハロゲンイオンを含む電解質として0.3Li [0037] In Example 10 This example, lithium sulfide as the electrolyte - 0.3Li solid electrolyte composed mainly of silicon sulfide as the electrolyte containing halide ions
I−0.35Li 2 S−0.35SiS 2を用い、負極としてインジウム箔に代えてリチウム箔を用い、充電終止電圧を4.40Vとした以外は実施例1と同様にリチウム電池を作成し、80℃での保存特性を評価した。 Using I-0.35Li 2 S-0.35SiS 2 , instead of the indium foil using a lithium foil, except that the charge voltage was set to 4.40V create a similar lithium batteries of Example 1 as a negative electrode, It was to evaluate the storage characteristics at 80 ℃. その結果、保存前後とも開放電圧が4.28Vと開放電圧の低下は認められなかった。 As a result, the open-circuit voltage both before and after the storage decrease of 4.28V and the open-circuit voltage was not observed. また電池を分解したところ正極集電体の腐食は見られなかった。 The corrosion of the positive electrode current collector was disassembled the battery was observed.

【0038】しかし、このコイン型電池を用いて150 [0038] However, by using the coin-type battery 150
℃での保存試験を一ヶ月間行ったところ、保存後の開放電圧が4.17Vと2%程度の開放電圧の低下が認められた。 ℃ Storage When testing was carried out for one month of, the open circuit voltage after storage reduction of 4.17V and open voltage of about 2% was observed. また電池を分解したところ正極集電体表面の一部に腐食が見られた。 The corrosion in a part of the positive electrode current collector surface was disassembled batteries was observed.

【0039】比較のために、実施例6で評価したものと同構成のコイン型電池で同様に150℃の保存試験を一ヶ月間行った。 [0039] For comparison, it was performed a month the storage test similarly 0.99 ° C. in a coin-type battery of the same configuration as evaluated in Example 6. その結果、保存前後とも開放電圧は4. As a result, the open-circuit voltage both before and after storage is 4.
28Vと開放電圧の低下は認められなかった。 Lowering of 28V and the open-circuit voltage was not observed. また電池を分解したところ正極集電体の腐食は見られなかった。 The corrosion of the positive electrode current collector was disassembled the battery was observed.

【0040】以上の結果より、本発明によると電解質として硫化リチウム−硫化珪素を主体としてなる固体電解質がハロゲンイオンを含まない電解質を用いることで、 Become mainly of silicon sulfide solid electrolyte be used an electrolyte containing no halogen ion, - [0040] above results, the lithium sulfide as an electrolyte According to the present invention
モリブデンの含有率が1%以下の鉄を主体としてなる合金を正極集電体として、保存特性に優れたリチウム電池が得られることがわかった。 The alloy content of molybdenum is mainly 1% iron as a positive electrode current collector, it was found that excellent lithium battery storage characteristics are obtained.

【0041】(比較例1)比較例として、有機電解液を用い正極集電体としてSUS304(Mo含有率0 [0041] (Comparative Example 1) As a comparative example, a positive electrode collector using an organic electrolytic solution SUS304 (Mo content 0
%)、極軟鋼(Mo含有率0%)およびフェライト系ステンレス鋼SUS434(Mo含有率1.2%)を用いたコイン型リチウム電池(直径20mm、厚さ1.6 %), Very mild (Mo content of 0%) and ferritic stainless steel SUS434 (Mo content 1.2%) lithium coin battery (diameter 20 mm, with a thickness of 1.6
m)を作成し、その特性を評価した。 m) to create a, and its characteristics were evaluated. 以下にこの比較例のリチウム電池の構成を示す。 The following shows the configuration of a lithium battery of this comparative example.

【0042】正極としては、二酸化マンガンを活物質とし、これに導電剤としてカーボンブラックおよび結着剤としてフッ素樹脂粉末を混合した合剤を円盤状(直径1 [0042] As the positive electrode, manganese dioxide as the active material, which conductive material as carbon black and a binder were mixed fluororesin powder as a mixture of discotic (diameter 1
5mm)に加圧成型し、これをメッシュ状のSUS30 Pressure-molded into 5 mm), which mesh-like SUS30
4、極軟鋼およびSUS434を円盤状(直径15m 4, very mild and SUS434 disk-shaped (diameter 15m
m)に打ち抜き正極集電体として圧着し使用した。 Crimped used as a positive electrode current collector punching m). 負極としてはリチウム箔を同様に円盤状(直径15mm)に加工し使用した。 As the negative electrode was used and processed in the same manner as disc-shaped lithium foil (diameter 15 mm).

【0043】電解液としてはプロピレンカーボネートと1,2−ジメトキシエタンの2:1混合溶媒に溶質として過塩素酸リチウムを1モル/lの割合で溶解したものを用いた。 The electrolytic solution as the second propylene carbonate and 1,2-dimethoxyethane: was prepared by dissolving lithium perchlorate in a ratio of 1 mol / l as a solute in 1 mixed solvent.

【0044】これら正極と負極、電解液およびポリプロピレン製の微孔性セパレータを用いコイン型リチウム電池の構成を行い、実施例6と同様に80℃での保存特性を評価した。 [0044] through the configuration of a coin-type lithium batteries using these positive and negative electrodes, a microporous separator electrolyte and polypropylene were evaluated storage characteristics similar to 80 ° C. Example 6.

【0045】その結果、正極集電体にSUS434を用いた電池は保存前後とも開放電圧が3.26Vと開放電圧の低下は認められなかった。 [0045] As a result, the cell using the SUS434 to the cathode current collector open-circuit voltage both before and after the storage decrease of 3.26V and the open-circuit voltage was not observed. また電池を分解したところ正極集電体の腐食は見られなかった。 The corrosion of the positive electrode current collector was disassembled the battery was observed.

【0046】しかし、正極集電体としてSUS304を用いたものは保存前の開放電圧が3.26Vであったのに対し、保存後には2.95Vと10%もの開放電圧の低下が認められた。 [0046] However, those using SUS304 as the positive electrode current collector whereas the open-circuit voltage before storage was 3.26V, reduction of 2.95V, 10% of the open circuit voltage after storage was observed . さらに電池を分解したところ正極集電体は腐食していた。 Furthermore, the positive electrode current collector was disassembled the battery had corroded.

【0047】また、正極集電体として極軟鋼を用いたものは保存前の開放電圧が3.26Vであったのに対し、 Further, those using very mild as a positive electrode current collector while the open circuit voltage before storage was 3.26V,
保存後には1.58Vと52%もの開放電圧の低下が認められた。 Reduction of 1.58V and 52% ones open circuit voltage after storage was observed. さらに電池を分解したところ正極集電体はS Furthermore, the positive electrode current collector was disassembled the battery is S
US304以上に腐食していた。 US304 had corroded or more.

【0048】なお、本発明の実施例においては、硫化リチウム−硫化珪素を主体としてなる固体電解質として、 [0048] In the embodiment of the present invention, lithium sulfide - as a solid electrolyte composed mainly of silicon sulfide,
0.60Li 2 S−0.40SiS 2 ,0.64Li 2 0.60Li 2 S-0.40SiS 2, 0.64Li 2 S
−0.36SiS 2あるいは0.60Li 2 S−0.3S -0.36SiS 2 or 0.60Li 2 S-0.3S
iS 2 −0.1B 23を用いたものについて説明を行ったが、その他実施例では説明しなかった組成比のもの、 iS 2 -0.1B 2 S but 3 were explanation those using, as the composition ratio was not described in other embodiments,
例えばB 23に代えてP 25 、Al 23などを用いた固体電解質を用いても同様の結果が得られ、本発明はこれら実施例に挙げた化合物に限定されるものではない。 For example B 2 in place of the S 3 P 2 S 5, Al 2 S Similar results using a solid electrolyte using 3 and is obtained, the present invention is limited to the compounds listed in these examples Absent.

【0049】また、本発明の実施例において、硫化リチウム−硫化珪素を主体としてなる固体電解質が珪素原子に結合した酸素原子を有する電解質として、硫化リチウム−硫化珪素にLi 2 O,LiSPO 4を添加したものについて説明を行ったが、その他LiBO 2 ,Li 2 SiO [0049] Further, in the embodiment of the present invention, lithium sulfide - adding Li 2 O, LiSPO 4 sulfide silicon - as an electrolyte having an oxygen atom solid electrolyte composed mainly of silicon sulfide is bonded to a silicon atom, lithium sulfide and has been described about what was, other LiBO 2, Li 2 SiO
3あるいはLi 4 SiO 4などを用いても同様の結果が得られ、本発明はこれら実施例に挙げた化合物に限定されるものではない。 3 or Li 4 SiO 4 similar results by using a can be obtained, the present invention is not limited to the compounds listed in these examples.

【0050】また、本発明の実施例において、モリブデンの含有率が1%以下の鉄を主体としてなる合金の正極集電体として極軟鋼あるいはSUS304を用いたものについて説明を行ったが、SUS430、SUS30 [0050] Further, in the embodiment of the present invention, although the content of molybdenum has been described that using very mild steel or SUS304 as a positive electrode current collector of an alloy consisting mainly of 1% or less of iron, SUS430, SUS30
1、炭素鋼などMo含有率1%以下の他のものを用いても同様の結果が得られ本発明はこれら実施例に挙げた合金に限定されるものではない。 1, the present invention Similar results were obtained with those of other less Mo content of 1% as carbon steel is not limited to the alloys listed in these examples.

【0051】 [0051]

【発明の効果】以上のように、本発明はリチウム電池を構成する電解質として硫化リチウム−硫化珪素を主体としてなる固体電解質を用いるとともに、正極集電体にモリブデンの含有率が1%以下の鉄を主体としてなる合金を用いることで、正極集電体の腐食を防止し保存特性に優れたリチウム電池が得られた。 As is evident from the foregoing description, the present invention is lithium sulfide as an electrolyte constituting the lithium battery - with using a solid electrolyte composed mainly of silicon sulfide, iron content of molybdenum in the cathode current collector below 1% the by using an alloy composed mainly of lithium battery having excellent storage characteristics to prevent corrosion of the positive current collector was obtained.

【0052】また、固体電解質として珪素原子に結合した酸素原子を有する電解質を用いたり、ハロゲンイオンを含まない電解質を用いることにより、より正極集電体の腐食を防止し保存特性に優れたリチウム電池が得られた。 [0052] In addition, or using an electrolyte having an oxygen atom bonded to a silicon atom as a solid electrolyte, by using the electrolyte containing no halogen ion, a lithium battery having excellent to prevent corrosion of more positive electrode current collector storage characteristics was gotten.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 繁雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Shigeo Kondo Osaka Prefecture Kadoma Oaza Kadoma 1006 address Matsushita Electric industrial Co., Ltd. in

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】リチウムイオン伝導性の電解質を使用したリチウム電池において、電解質が硫化リチウム−硫化珪素を主体としてなる固体電解質でありかつ正極集電体にモリブデン含有率が1%以下である鉄を主体とする合金を用いた全固体リチウム電池。 1. A lithium battery using a lithium ion conductive electrolyte, a lithium electrolyte sulfide - iron molybdenum content is less than 1% is and the positive electrode current collector and a solid electrolyte composed mainly of silicon sulfide solid lithium battery using an alloy mainly.
  2. 【請求項2】モリブデンの含有率が0である鉄を主体とする合金を用いた請求項1記載の全固体リチウム電池。 Wherein all solid state lithium battery of claim 1, wherein using the alloy content of molybdenum mainly of iron is zero.
  3. 【請求項3】固体電解質は珪素原子に結合した酸素原子を有する請求項1あるいは2記載の全固体リチウム電池。 Wherein all solid state lithium battery of claim 1 or 2, wherein the solid electrolyte having an oxygen atom bonded to a silicon atom.
  4. 【請求項4】固体電解質がハロゲンイオンを含まない請求項1あるいは2記載の全固体リチウム電池。 4. The all-solid-state lithium battery of claim 1 or 2, wherein the solid electrolyte does not contain halogen ions.
JP8105068A 1996-04-25 1996-04-25 All solid lithium battery Pending JPH09293516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8105068A JPH09293516A (en) 1996-04-25 1996-04-25 All solid lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8105068A JPH09293516A (en) 1996-04-25 1996-04-25 All solid lithium battery

Publications (1)

Publication Number Publication Date
JPH09293516A true JPH09293516A (en) 1997-11-11

Family

ID=14397644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8105068A Pending JPH09293516A (en) 1996-04-25 1996-04-25 All solid lithium battery

Country Status (1)

Country Link
JP (1) JPH09293516A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933827A1 (en) * 1998-02-03 1999-08-04 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
JP2000251898A (en) * 1999-02-25 2000-09-14 Wilson Greatbatch Ltd Cobalt-based alloy as positive electrode current collector in nonaqueous electrochemical battery
US6692543B1 (en) 1997-12-18 2004-02-17 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing lithium ion secondary battery
JP2009217934A (en) * 2008-03-06 2009-09-24 Sumitomo Electric Ind Ltd Lithium battery
WO2013149084A1 (en) * 2012-03-29 2013-10-03 Front Edge Technology, Inc. Thin film battery and localized heat treatment
CN104584291A (en) * 2012-07-26 2015-04-29 丽视股份有限公司 Sustainable current collectors for lithium batteries
US9257695B2 (en) 2012-03-29 2016-02-09 Front Edge Technology, Inc. Localized heat treatment of battery component films
US9905895B2 (en) 2012-09-25 2018-02-27 Front Edge Technology, Inc. Pulsed mode apparatus with mismatched battery
US10008739B2 (en) 2015-02-23 2018-06-26 Front Edge Technology, Inc. Solid-state lithium battery with electrolyte
US10128532B2 (en) * 2013-01-11 2018-11-13 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692543B1 (en) 1997-12-18 2004-02-17 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing lithium ion secondary battery
EP0933827A1 (en) * 1998-02-03 1999-08-04 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
US6322929B1 (en) 1998-02-03 2001-11-27 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery with a high charge-discharge efficiency and a low self-discharging tendency
JP2000251898A (en) * 1999-02-25 2000-09-14 Wilson Greatbatch Ltd Cobalt-based alloy as positive electrode current collector in nonaqueous electrochemical battery
JP2009217934A (en) * 2008-03-06 2009-09-24 Sumitomo Electric Ind Ltd Lithium battery
WO2013149084A1 (en) * 2012-03-29 2013-10-03 Front Edge Technology, Inc. Thin film battery and localized heat treatment
US9257695B2 (en) 2012-03-29 2016-02-09 Front Edge Technology, Inc. Localized heat treatment of battery component films
US9077000B2 (en) 2012-03-29 2015-07-07 Front Edge Technology, Inc. Thin film battery and localized heat treatment
CN104584291A (en) * 2012-07-26 2015-04-29 丽视股份有限公司 Sustainable current collectors for lithium batteries
EP2878024A4 (en) * 2012-07-26 2016-03-23 Lifesize Ab Sustainable current collectors for lithium batteries
US9905895B2 (en) 2012-09-25 2018-02-27 Front Edge Technology, Inc. Pulsed mode apparatus with mismatched battery
US10128532B2 (en) * 2013-01-11 2018-11-13 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
US10008739B2 (en) 2015-02-23 2018-06-26 Front Edge Technology, Inc. Solid-state lithium battery with electrolyte

Similar Documents

Publication Publication Date Title
Wachtler et al. Tin and tin-based intermetallics as new anode materials for lithium-ion cells
US4002492A (en) Rechargeable lithium-aluminum anode
CA2214186C (en) Negative electrode for a rechargeable lithium battery
KR100423227B1 (en) Shuttle jereul with a non-aqueous electrolyte secondary battery
KR100413816B1 (en) Electrode active materials for lithium secondary batteries, method for preparing the same, and lithium secondary batteries using the same
JP5032773B2 (en) Lithium secondary battery using an ionic liquid
JP3736045B2 (en) All-solid-state lithium battery
Takada et al. Solid-state lithium battery with graphite anode
US8361652B2 (en) Lithium sulphide battery and method of producing the same
JP3067531B2 (en) Nonaqueous positive electrode active material and a battery using the electrolytic solution secondary battery
Murphy et al. Cathodes for nonaqueous lithium batteries based on VS2
CN1320674C (en) Electrolyte additive for non-aqueous electrochemical cells
Ramadass et al. Performance study of commercial LiCoO2 and spinel-based Li-ion cells
CA1290010C (en) Secondary lithium battery
Komaba et al. Influence of manganese (II), cobalt (II), and nickel (II) additives in electrolyte on performance of graphite anode for lithium-ion batteries
Abouimrane et al. Sulfone-based electrolytes for high-voltage Li-ion batteries
Komaba et al. Inorganic electrolyte additives to suppress the degradation of graphite anodes by dissolved Mn (II) for lithium-ion batteries
JP3962806B2 (en) Lithium secondary battery using the ionic liquid and ambient temperature molten salt
Eftekhari Electrochemical behavior of thin-film LiMn2O4 electrode in aqueous media
JP2001516130A (en) Electrolyte for the battery
JPH09511615A (en) Rechargeable positive electrode
JP2001035494A (en) Secondary battery using indole polymer and capacitor
JPH10302794A (en) Lithium secondary battery
JP5399892B2 (en) Lithium rechargeable electrochemical cell
JP2698340B2 (en) Electrochemical cell