JPH09293516A - All solid lithium battery - Google Patents

All solid lithium battery

Info

Publication number
JPH09293516A
JPH09293516A JP8105068A JP10506896A JPH09293516A JP H09293516 A JPH09293516 A JP H09293516A JP 8105068 A JP8105068 A JP 8105068A JP 10506896 A JP10506896 A JP 10506896A JP H09293516 A JPH09293516 A JP H09293516A
Authority
JP
Japan
Prior art keywords
current collector
electrolyte
positive electrode
lithium battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8105068A
Other languages
Japanese (ja)
Inventor
Makoto Fujino
信 藤野
Kazuya Iwamoto
和也 岩本
Kazunori Takada
和典 高田
Shigeo Kondo
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8105068A priority Critical patent/JPH09293516A/en
Publication of JPH09293516A publication Critical patent/JPH09293516A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an all solid lithium battery in which the corrosion of a current collector is prevented and storage characteristics are enhanced by using lithium sulfide-silicon sulfide as the main component of a solid electrolyte and an alloy mainly comprising iron and containing a small amount of molybdenum in a positive current collector. SOLUTION: In a lithium battery using a lithium conductive electrolyte, a solid electrolyte mainly comprising lithium sulfide-silicon sulfide, for example 0.6Li2 S-0.4SiS is used as the electrolyte. The solid electrolyte can contain an oxygen atom bonded to a silicon atom by adding Li2 O if necessary, and is preferable to contain no corrosive halogen. As a positive current collector, an iron alloy mainly comprising iron and containing 0-1% Mo, which is low cost and easy to obtain is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、全固体リチウム電
池に関するものである。
TECHNICAL FIELD The present invention relates to an all-solid-state lithium battery.

【0002】[0002]

【従来の技術】リチウム電池は水溶液系電解質に比べ分
解電圧の高い有機溶媒系電解質を用いているため、より
高電位の正極活物質の使用が可能となる。このため、正
極活物質と電気的に接続された集電体はより強い酸化環
境にさらされることになり、集電体金属の腐食が生じや
すく、電池の保存による特性劣化が生じる問題があっ
た。
2. Description of the Related Art Since a lithium battery uses an organic solvent type electrolyte having a higher decomposition voltage than an aqueous solution type electrolyte, it is possible to use a positive electrode active material having a higher potential. For this reason, the current collector electrically connected to the positive electrode active material is exposed to a stronger oxidizing environment, and the metal of the current collector is likely to corrode, resulting in a problem that characteristics are deteriorated due to storage of the battery. .

【0003】このため、有機電解質を用いたリチウム電
池の正極集電体として普通鋼や耐食性の低いステンレス
鋼を使用した場合、腐食の発生は著しく、保存による特
性劣化が激しいため、実用電池の集電体としては、チタ
ンやMoが含まれたハイクロムステンレス鋼などの高い
耐食性を持った金属を用いる必要がある。
Therefore, when ordinary steel or stainless steel having low corrosion resistance is used as a positive electrode current collector of a lithium battery using an organic electrolyte, corrosion occurs remarkably, and the characteristics deteriorate drastically upon storage. As the electric body, it is necessary to use a metal having high corrosion resistance such as high chromium stainless steel containing titanium or Mo.

【0004】例えば正極活物質として二酸化マンガン、
正極集電体としてSUS304、負極としてLi、電解
質としてプロピレンカーボネイトおよび1,2−ジメト
キシエタンの2:1の混合有機溶媒に1mol・dm-3
のLiClO4を溶解させたものから構成されたリチウ
ム電池を80℃で1ヶ月間保存した場合、SUS304
では腐食が生じるため正極集電体としては適さない。そ
れに対し、チタン(Ti)もしくはフェライト系ステン
レス鋼SUS434などのクロム(Cr)含有率16〜
18%以上、モリブデン(Mo)含有率1〜4%を含ん
だステンレス鋼では腐食が生じないものもあることが報
告されている。以上のようにリチウム電池の集電体とし
ては腐食の問題を避けるためチタンやMoを含んだハイク
ロムステンレス鋼を用いる必要がある。
For example, manganese dioxide as a positive electrode active material,
SUS304 as a positive electrode current collector, Li as a negative electrode, 1 mol · dm −3 in a 2: 1 mixed organic solvent of propylene carbonate and 1,2-dimethoxyethane as an electrolyte.
Lithium battery composed of dissolved LiClO 4 of SUS304
Is not suitable as a positive electrode current collector because it causes corrosion. On the other hand, the content of chromium (Cr) in titanium (Ti) or ferritic stainless steel SUS434 is 16 to 16
It has been reported that some stainless steel containing 18% or more and a molybdenum (Mo) content of 1 to 4% does not cause corrosion. As described above, it is necessary to use high chromium stainless steel containing titanium or Mo as the current collector of the lithium battery in order to avoid the problem of corrosion.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来のTiやMoを含んだハイクロムステンレス鋼を用い
た場合、これらには加工性が悪い、また高価である等の
課題がある。
However, when the above-mentioned conventional high chromium stainless steel containing Ti or Mo is used, these have problems such as poor workability and high cost.

【0006】本発明はこのような従来の課題を解決する
ものであり、リチウム電池の集電体の腐食を防止するこ
とにより、安価で容易に入手できる集電体材料を用い
て、保存特性に優れたリチウム電池を提供することを目
的とする。
The present invention solves the above-mentioned conventional problems, and prevents the current collector of a lithium battery from corroding, thereby using a current collector material that is inexpensive and easily available, and has excellent storage characteristics. It is intended to provide an excellent lithium battery.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明ではリチウム電池を構成する電解質として
硫化リチウム−硫化珪素を主体としてなる固体電解質を
用い、その正極集電体にモリブデン含有率が1%以下の
鉄を主体とする合金を用いるものである。本発明によれ
ば、硫化リチウム−硫化ケイ素を主体としてなる固体電
解質中では、硫黄はアニオン性を有するガラス骨格を構
成しているため、単独のイオンは存在せず、また錯イオ
ンを形成することもないため、正極集電体に鉄を用いて
も腐食を生じることはなく、保存特性の優れたリチウム
電池を提供することができる。
In order to solve the above problems, in the present invention, a solid electrolyte composed mainly of lithium sulfide-silicon sulfide is used as an electrolyte constituting a lithium battery, and the positive electrode current collector contains molybdenum. An alloy mainly composed of iron having a rate of 1% or less is used. According to the present invention, in the solid electrolyte mainly composed of lithium sulfide-silicon sulfide, since sulfur constitutes a glass skeleton having an anionic property, no single ion exists and a complex ion is formed. Therefore, even if iron is used for the positive electrode current collector, corrosion does not occur, and a lithium battery having excellent storage characteristics can be provided.

【0008】[0008]

【発明の実施の形態】本発明の全固体リチウム電池で
は、電解質として硫化リチウム−硫化珪素を主体として
なる固体電解質を用い、その正極集電体にモリブデン含
有率が1%以下の鉄を主体とする合金を用いるものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the all-solid-state lithium battery of the present invention, a solid electrolyte mainly composed of lithium sulfide-silicon sulfide is used as an electrolyte, and the positive electrode current collector mainly contains iron having a molybdenum content of 1% or less. The alloy is used.

【0009】従来の有機溶媒系電解質を用いたリチウム
電池において、正極集電体に鉄を用いた場合、強い酸化
環境におかれた鉄合金は、その表面で電荷移動が生じる
とともに電解質中の陰イオンと錯イオンを形成し、その
錯イオンが電解質中に拡散していくことで腐食が生じ
る。
In a conventional lithium battery using an organic solvent-based electrolyte, when iron is used for the positive electrode current collector, an iron alloy that is exposed to a strong oxidizing environment causes charge transfer on the surface of the iron alloy and causes a negative charge in the electrolyte. Corrosion occurs due to the formation of complex ions with the ions, and the complex ions diffusing into the electrolyte.

【0010】しかしながら、本発明の全固体リチウム電
池においては、硫化リチウム−硫化珪素を主体としてな
る固体電解質中では、硫黄はアニオン性を有するガラス
骨格を構成しているため、単独の陰イオンは存在しな
い。そのため、鉄合金の集電体金属表面で電荷移動反応
が起きたとしても錯イオンを形成することができないた
め腐食は生じない。またこの電解質中ではLiイオンの
み拡散が可能であるため、仮に集電体金属表面で電荷移
動反応が生じ、錯イオンが形成されたとしても、この錯
イオンは電解質中を拡散していかないため、反応は集電
体金属表面にとどまり腐食は進行しない。このため、正
極集電体にモリブデンの含有率が1%以下の鉄を主体と
する合金を用いても腐食することなく、保存特性に優れ
たリチウム電池となる。
However, in the all-solid-state lithium battery of the present invention, in the solid electrolyte composed mainly of lithium sulfide-silicon sulfide, since sulfur constitutes a glass skeleton having an anionic property, a single anion is present. do not do. Therefore, even if a charge transfer reaction occurs on the current collector metal surface of the iron alloy, complex ions cannot be formed, so corrosion does not occur. Further, since only Li ions can diffuse in this electrolyte, even if a charge transfer reaction occurs on the surface of the current collector metal and a complex ion is formed, this complex ion does not diffuse in the electrolyte, The reaction remains on the metal surface of the current collector and corrosion does not proceed. Therefore, even if an alloy mainly composed of iron with a molybdenum content of 1% or less is used for the positive electrode current collector, it does not corrode, and the lithium battery has excellent storage characteristics.

【0011】またリチウム電池を構成する電解質とし
て、硫化リチウム−硫化珪素を主体と原子に結合した酸
素原子を有する固体電解質を用いることにより、より安
定なガラス骨格構造を形成するため、単独の陰イオンは
さらに生じにくくなり腐食もより起き難くなる。また
Liイオンのみ拡散が可能であるという特徴は変わらな
いため、腐食の進行も起きない。
In order to form a more stable glass skeleton structure, a single anion is used to form a more stable glass skeleton by using a lithium sulfide-silicon sulfide-based solid electrolyte having oxygen atoms bonded to atoms as an electrolyte constituting the lithium battery. Is less likely to occur and corrosion is less likely to occur. Also
Since the characteristic that only Li ions can be diffused does not change, corrosion does not proceed.

【0012】また本発明の硫化リチウム−硫化珪素を主
体としてなる固体電解質中にハロゲンイオンを含まない
ものを用いることにより、集電体金属表面での電荷移動
反応がさらに抑えられ腐食を生じることを抑制する。こ
れは、ハロゲンイオンを添加した場合、より高いイオン
伝導度が観測されており、固体電解質電池への応用が期
待されており、電解質中において、ハロゲンイオンは孤
立イオンとして固体電解質を構成するガラス骨格の間に
存在することが報告されている。すなわち、ハロゲンイ
オンは電解質のガラス骨格に結合されておらず、電気化
学的な酸化を受けやすく、その結果生じたハロゲン分子
は、鉄と反応して腐食を生じる可能性がある。この場合
も腐食による生成物の拡散は生じず、反応は表面にとど
まるが、集電体金属表面で若干腐食が生じる原因とな
る。
Further, by using a solid electrolyte containing lithium sulfide-silicon sulfide of the present invention that does not contain halogen ions, the charge transfer reaction on the surface of the current collector metal is further suppressed and corrosion is caused. Suppress. This is because, when halogen ions are added, higher ionic conductivity is observed, and it is expected to be applied to a solid electrolyte battery.In the electrolyte, halogen ions are glass skeletons that constitute the solid electrolyte as isolated ions. It has been reported to exist between. That is, the halogen ions are not bound to the glass skeleton of the electrolyte and are susceptible to electrochemical oxidation, and the resulting halogen molecules can react with iron to cause corrosion. Also in this case, the diffusion of the product due to corrosion does not occur and the reaction remains on the surface, but this causes a slight corrosion on the metal surface of the current collector.

【0013】[0013]

【実施例】以下、本発明の効果について実施例を用いて
説明する。ここでいう鉄とは不純物として一般にC,S
i,Mn,PあるいはSなどを含むものである。
EXAMPLES The effects of the present invention will be described below with reference to examples. Iron as used herein is generally C, S as an impurity.
It contains i, Mn, P or S.

【0014】(実施例1)本実施例においては、電解質
が硫化リチウム−硫化珪素を主体としてなる固体電解質
の一つである0.6Li2S−0.4SiS2の組成式を
もつ固体電解質を用い、正極集電体として極軟鋼を用い
たコイン型全固体リチウム電池(直径20mm,厚さ
1.6mm)を作成し、その特性を評価した。以下にこ
の実施例で評価したコイン型電池の構成を示す。
Example 1 In this example, a solid electrolyte having a composition formula of 0.6Li 2 S-0.4SiS 2 , which is one of solid electrolytes whose main component is lithium sulfide-silicon sulfide, is used. A coin-type all-solid-state lithium battery (diameter 20 mm, thickness 1.6 mm) using extremely soft steel as a positive electrode current collector was prepared and its characteristics were evaluated. The structure of the coin type battery evaluated in this example is shown below.

【0015】コバルト酸リチウムと固体電解質を混合し
た正極合剤を円盤状(直径15.5mm)に加圧成型
し、これにメッシュ状の極軟鋼を円盤状(直径15m
m)に打ち抜き、正極集電体として圧着し正極とした。
電解質も同様に円盤状(直径15.5mm)に加圧成型
し、インジウム箔も同様に円盤状(直径15.5mm)
に加工して負極としてコイン型全固体リチウム電池Aを
構成した。
A positive electrode mixture obtained by mixing lithium cobalt oxide and a solid electrolyte was pressure-molded into a disc shape (diameter 15.5 mm), and a mesh-shaped extra soft steel was disc-shaped (diameter 15 m).
m) was punched out and pressure-bonded as a positive electrode current collector to obtain a positive electrode.
The electrolyte is also pressure-molded into a disk shape (diameter 15.5 mm), and the indium foil is also disk-shaped (diameter 15.5 mm).
Was processed into a coin-type all-solid-state lithium battery A as a negative electrode.

【0016】試作した本発明のコイン型電池Aを100
μA/cm2の定電流で電圧が3.80Vになるまで充
電し、該コイン型電池Aを保存試験として80℃の恒温
槽中で一ヶ月間保存を行い、開放電圧の変化を測定し
た。その結果、保存前後とも開放電圧は3.71Vと開
放電圧の低下は認められなかった。また電池を分解した
ところ正極集電体の腐食は見られなかった。
100 prototype coin-type battery A of the present invention
The coin type battery A was charged at a constant current of μA / cm 2 until the voltage reached 3.80 V, and the coin-type battery A was stored as a storage test in a thermostat at 80 ° C. for one month, and the change in open circuit voltage was measured. As a result, the open circuit voltage was 3.71 V before and after the storage, showing no decrease in open circuit voltage. When the battery was disassembled, no corrosion of the positive electrode current collector was found.

【0017】以上の結果より、本発明によると電解質と
して硫化リチウム−硫化珪素を主体としてなる固体電解
質を用いることで、 モリブデンの含有率が1%以下の
鉄を主体としてなる合金を正極集電体として、保存特性
に優れたリチウム電池が得られることがわかった。
From the above results, according to the present invention, by using a solid electrolyte composed mainly of lithium sulfide-silicon sulfide as an electrolyte, an alloy composed mainly of iron having a molybdenum content of 1% or less is used as a positive electrode current collector. As a result, it was found that a lithium battery having excellent storage characteristics can be obtained.

【0018】(実施例2)本実施例では実施例1におい
て電解質として用いた0.6Li2S−0.4SiS2
組成式をもつ固体電解質に代えて0.64Li2S−
0.36SiS2の組成式をもつ固体電解質を用い、実
施例1と同様の保存試験を行った。その結果、保存前後
とも開放電圧が3.72Vと開放電圧の低下は認められ
なかった。また電池を分解したところ正極集電体の腐食
は見られなかった。
Example 2 In this example, 0.64Li 2 S- was used instead of the solid electrolyte having the composition formula of 0.6Li 2 S-0.4SiS 2 used as the electrolyte in Example 1.
The same storage test as in Example 1 was conducted using a solid electrolyte having a composition formula of 0.36SiS 2 . As a result, the open circuit voltage was 3.72 V before and after the storage, showing no decrease in the open circuit voltage. When the battery was disassembled, no corrosion of the positive electrode current collector was found.

【0019】以上の結果より、本発明によると電解質と
して硫化リチウム−硫化珪素を主体としてなる固体電解
質を用いることで、 モリブデンの含有率が1%以下の
鉄を主体としてなる合金を正極集電体として、保存特性
に優れたリチウム電池が得られることがわかった。
From the above results, according to the present invention, by using a solid electrolyte composed mainly of lithium sulfide-silicon sulfide as an electrolyte, an alloy composed mainly of iron having a molybdenum content of 1% or less is used as a positive electrode current collector. As a result, it was found that a lithium battery having excellent storage characteristics can be obtained.

【0020】(実施例3)本実施例では実施例1におい
て電解質として用いた0.6Li2S−0.4SiS2
組成式をもつ固体電解質に代えて0.6Li2S−0.
3SiS2−0.1B23の組成式をもつ固体電解質を
用い、実施例1と同様の保存試験を行った。その結果、
保存前後とも開放電圧が3.71Vと開放電圧の低下は
認められなかった。また電池を分解したところ正極集電
体の腐食は見られなかった。
Example 3 In this example, instead of the solid electrolyte having the composition formula of 0.6Li 2 S-0.4SiS 2 used as the electrolyte in Example 1, 0.6Li 2 S-0.
Using a solid electrolyte having a composition formula of 3SiS 2 -0.1B 2 S 3 , the same storage test as in Example 1 was performed. as a result,
Before and after storage, the open circuit voltage was 3.71 V, showing no decrease in open circuit voltage. When the battery was disassembled, no corrosion of the positive electrode current collector was found.

【0021】以上の結果より、本発明によると電解質と
して硫化リチウム-硫化珪素を主体としてなる固体電解
質を用いることで、 モリブデンの含有率が1%以下の
鉄を主体としてなる合金を正極集電体として、保存特性
に優れたリチウム電池が得られることがわかった。
From the above results, according to the present invention, by using a solid electrolyte composed mainly of lithium sulfide-silicon sulfide as an electrolyte, an alloy composed mainly of iron having a molybdenum content of 1% or less is used as a positive electrode current collector. As a result, it was found that a lithium battery having excellent storage characteristics can be obtained.

【0022】(実施例4)本実施例では実施例1におい
て正極活物質に用いたコバルト酸リチウムに代えてニッ
ケル酸リチウムを用い、実施例1と同様の保存試験を行
った。その結果、保存前後とも開放電圧が3.69Vと
開放電圧の低下は認められなかった。また電池を分解し
たところ正極集電体の腐食は見られなかった。
Example 4 In this example, the same storage test as in Example 1 was conducted using lithium nickel oxide instead of lithium cobalt oxide used in the positive electrode active material in Example 1. As a result, the open circuit voltage was 3.69 V before and after the storage, showing no decrease in open circuit voltage. When the battery was disassembled, no corrosion of the positive electrode current collector was found.

【0023】以上の結果より、本発明によると電解質と
して硫化リチウム-硫化珪素を主体としてなる固体電解
質を用いることで、 モリブデンの含有率が1%以下の
鉄を主体としてなる合金を正極集電体として、保存特性
に優れたリチウム電池が得られることがわかった。
From the above results, according to the present invention, by using a solid electrolyte composed mainly of lithium sulfide-silicon sulfide as an electrolyte, an alloy composed mainly of iron having a molybdenum content of 1% or less is used as a positive electrode current collector. As a result, it was found that a lithium battery having excellent storage characteristics can be obtained.

【0024】(実施例5)本実施例では実施例1におい
て正極活物質に用いたコバルト酸リチウムに代えてスピ
ネル型構造を持つマンガン酸リチウムを用い、充電終止
電圧を3.1Vとした以外は実施例1と同様の保存試験
を行った。その結果、保存前後とも開放電圧が2.98
Vと開放電圧の低下は認められなかった。また電池を分
解したところ正極集電体の腐食は見られなかった。
Example 5 In this example, lithium manganate having a spinel type structure was used in place of the lithium cobalt oxide used as the positive electrode active material in Example 1, and the end-of-charge voltage was set to 3.1V. The same storage test as in Example 1 was performed. As a result, the open circuit voltage before and after storage was 2.98.
No decrease in V and open circuit voltage was observed. When the battery was disassembled, no corrosion of the positive electrode current collector was found.

【0025】以上の結果より、本発明によると電解質と
して硫化リチウム-硫化珪素を主体としてなる固体電解
質を用いることで、 モリブデンの含有率が1%以下の
鉄を主体としてなる合金を正極集電体として、保存特性
に優れたリチウム電池が得られることがわかった。
From the above results, according to the present invention, by using a solid electrolyte composed mainly of lithium sulfide-silicon sulfide as an electrolyte, an alloy composed mainly of iron having a molybdenum content of 1% or less is used as a positive electrode current collector. As a result, it was found that a lithium battery having excellent storage characteristics can be obtained.

【0026】(実施例6)本実施例では実施例1におい
て負極に用いたインジウム箔に代えてリチウム箔を用
い、充電終止電圧を4.40Vとした以外は実施例1と
同様の保存試験を行った。その結果、保存前後とも開放
電圧が4.28Vと開放電圧の低下は認められなかっ
た。また電池を分解したところ正極集電体の腐食は見ら
れなかった。
Example 6 In this example, the same storage test as in Example 1 was carried out except that a lithium foil was used in place of the indium foil used for the negative electrode in Example 1 and the end-of-charge voltage was set to 4.40V. went. As a result, an open circuit voltage of 4.28 V was not observed before and after storage, showing no decrease in open circuit voltage. When the battery was disassembled, no corrosion of the positive electrode current collector was found.

【0027】以上の結果より、本発明によると電解質と
して硫化リチウム-硫化珪素を主体としてなる固体電解
質を用いることで、 モリブデンの含有率が1%以下の
鉄を主体としてなる合金を正極集電体として、保存特性
に優れたリチウム電池が得られることがわかった。
From the above results, according to the present invention, by using a solid electrolyte composed mainly of lithium sulfide-silicon sulfide as an electrolyte, an alloy composed mainly of iron having a molybdenum content of 1% or less is used as a positive electrode current collector. As a result, it was found that a lithium battery having excellent storage characteristics can be obtained.

【0028】(実施例7)本実施例では実施例1におい
て正極集電体に用いた極軟鋼に代えてSUS304を用
い、同様にコイン型電池を作成し同様の保存試験を行っ
た。その結果、保存前後とも開放電圧が3.70Vと開
放電圧の低下は認められなかった。また電池を分解した
ところ正極集電体の腐食は見られなかった。
Example 7 In this example, SUS304 was used instead of the extremely mild steel used for the positive electrode current collector in Example 1, and a coin type battery was similarly prepared and the same storage test was conducted. As a result, the open circuit voltage was 3.70 V before and after storage, showing no decrease in open circuit voltage. When the battery was disassembled, no corrosion of the positive electrode current collector was found.

【0029】以上の結果より、本発明によると電解質と
して硫化リチウム-硫化珪素を主体としてなる固体電解
質を用いることで、 モリブデンの含有率が1%以下の
鉄を主体としてなる合金を正極集電体として、保存特性
に優れたリチウム電池が得られることがわかった。
From the above results, according to the present invention, by using a solid electrolyte composed mainly of lithium sulfide-silicon sulfide as an electrolyte, an alloy composed mainly of iron having a molybdenum content of 1% or less is used as a positive electrode current collector. As a result, it was found that a lithium battery having excellent storage characteristics can be obtained.

【0030】(実施例8)本実施例では実施例1におい
て電解質として用いた0.6Li2S−0.4SiS2
組成式をもつ固体電解質に代えて硫化リチウム−硫化珪
素を主体としてなる固体電解質が珪素原子に結合した酸
素原子を有する電解質の一つである0.60Li2S−
0.39SiS2−0.01Li3PO4の組成式をもつ
固体電解質を用い、実施例1と同様の保存試験を行っ
た。その結果、保存前後とも開放電圧が3.72Vと開
放電圧の低下は認められなかった。また電池を分解した
ところ正極集電体の腐食は見られなかった。
(Embodiment 8) In this embodiment, instead of the solid electrolyte having a composition formula of 0.6Li 2 S-0.4SiS 2 used as the electrolyte in Embodiment 1, a solid mainly composed of lithium sulfide-silicon sulfide is used. 0.60 Li 2 S-, which is one of the electrolytes having an oxygen atom bonded to a silicon atom
The same storage test as in Example 1 was conducted using a solid electrolyte having a composition formula of 0.39SiS 2 -0.01Li 3 PO 4 . As a result, the open circuit voltage was 3.72 V before and after the storage, showing no decrease in the open circuit voltage. When the battery was disassembled, no corrosion of the positive electrode current collector was found.

【0031】さらに、該コイン型電池を用いて150℃
での保存試験を一ヶ月間行ったところ、保存後の開放電
圧も3.72Vと開放電圧の低下は認められなかった。
また電池を分解したところ正極集電体の腐食は見られな
かった。
Further, using the coin-type battery, 150 ° C.
When a storage test was carried out for 1 month, the open circuit voltage after storage was 3.72 V, showing no decrease in open circuit voltage.
When the battery was disassembled, no corrosion of the positive electrode current collector was found.

【0032】比較のため、実施例1で評価したものと同
構成のコイン型電池Aで同様に150℃での保存試験を
一ヶ月間行った。その結果、保存前の開放電圧が3.7
1Vであったのに対し、保存後には3.68Vと1%程
度の開放電圧の低下が認められた。しかし、電池を分解
したところ正極集電体の腐食は見られなかった。
For comparison, a coin type battery A having the same structure as that evaluated in Example 1 was similarly subjected to a storage test at 150 ° C. for one month. As a result, the open circuit voltage before storage was 3.7.
While it was 1 V, a decrease in open circuit voltage of 3.68 V, which was about 1%, was observed after storage. However, when the battery was disassembled, no corrosion of the positive electrode current collector was observed.

【0033】以上の結果より、本発明によると電解質と
して硫化リチウム−硫化珪素を主体としてなる固体電解
質が珪素原子に結合した酸素原子を有する電解質を用い
ることで、 モリブデンの含有率が1%以下の鉄を主体
としてなる合金を正極集電体として、保存特性に優れた
リチウム電池が得られることがわかった。
From the above results, according to the present invention, the solid electrolyte mainly composed of lithium sulfide-silicon sulfide having an oxygen atom bonded to silicon atom is used as the electrolyte, so that the molybdenum content is 1% or less. It has been found that a lithium battery having excellent storage characteristics can be obtained by using an iron-based alloy as a positive electrode current collector.

【0034】(実施例9)本実施例では実施例8におい
て電解質として用いた0.6Li2S−0.4SiS2
組成式をもつ固体電解質に代えて硫化リチウム−硫化珪
素を主体としてなる固体電解質が珪素原子に結合した酸
素原子を有する電解質の一つである0.55Li2S−
0.40SiS2−0.05Li2Oの組成式をもつ固体
電解質を用い、実施例1と同様の保存試験を行った。そ
の結果、保存前後とも開放電圧が3.68Vと開放電圧
の低下は認められなかった。また電池を分解したところ
正極集電体の腐食は見られなかった。
(Embodiment 9) In this embodiment, instead of the solid electrolyte having the composition formula of 0.6Li 2 S-0.4SiS 2 used as the electrolyte in Embodiment 8, a solid mainly composed of lithium sulfide-silicon sulfide. 0.55 Li 2 S-, which is one of the electrolytes having an oxygen atom bonded to a silicon atom
The same storage test as in Example 1 was conducted using a solid electrolyte having a composition formula of 0.40SiS 2 -0.05Li 2 O. As a result, the open circuit voltage was 3.68 V before and after the storage, showing no decrease in open circuit voltage. When the battery was disassembled, no corrosion of the positive electrode current collector was found.

【0035】さらに、該コイン型電池を用いて150で
の℃保存試験を一ヶ月間行ったところ、保存後の開放電
圧は3.68Vと開放電圧の低下は認められなかった。
また電池を分解したところ正極集電体の腐食は見られな
かった。
Furthermore, when a storage test at 150 ° C. was carried out for one month using the coin-type battery, the open circuit voltage after storage was 3.68 V, showing no decrease in open circuit voltage.
When the battery was disassembled, no corrosion of the positive electrode current collector was found.

【0036】以上の結果より、本発明によると電解質と
して硫化リチウム−硫化珪素を主体としてなる固体電解
質が珪素原子に結合した酸素原子を有することで、 モ
リブデンの含有率が1%以下の鉄を主体としてなる合金
を正極集電体として、保存特性に優れたリチウム電池が
得られることがわかった。
From the above results, according to the present invention, since the solid electrolyte mainly composed of lithium sulfide-silicon sulfide as an electrolyte has oxygen atoms bonded to silicon atoms, the main component is iron having a molybdenum content of 1% or less. It was found that a lithium battery having excellent storage characteristics can be obtained by using the alloy of as a positive electrode current collector.

【0037】(実施例10)本実施例においては、電解
質として硫化リチウム−硫化珪素を主体としてなる固体
電解質がハロゲンイオンを含む電解質として0.3Li
I−0.35Li2S−0.35SiS2を用い、負極と
してインジウム箔に代えてリチウム箔を用い、充電終止
電圧を4.40Vとした以外は実施例1と同様にリチウ
ム電池を作成し、80℃での保存特性を評価した。その
結果、保存前後とも開放電圧が4.28Vと開放電圧の
低下は認められなかった。また電池を分解したところ正
極集電体の腐食は見られなかった。
(Embodiment 10) In this embodiment, a solid electrolyte mainly composed of lithium sulfide-silicon sulfide as an electrolyte is 0.3 Li as an electrolyte containing halogen ions.
A lithium battery was prepared in the same manner as in Example 1 except that I-0.35Li 2 S-0.35SiS 2 was used, a lithium foil was used instead of the indium foil as the negative electrode, and the end-of-charge voltage was 4.40V. The storage characteristics at 80 ° C were evaluated. As a result, an open circuit voltage of 4.28 V was not observed before and after storage, showing no decrease in open circuit voltage. When the battery was disassembled, no corrosion of the positive electrode current collector was found.

【0038】しかし、このコイン型電池を用いて150
℃での保存試験を一ヶ月間行ったところ、保存後の開放
電圧が4.17Vと2%程度の開放電圧の低下が認めら
れた。また電池を分解したところ正極集電体表面の一部
に腐食が見られた。
However, using this coin type battery,
When a storage test was performed at ℃ for 1 month, the open circuit voltage after storage was 4.17 V, which was a decrease of about 2%. Further, when the battery was disassembled, corrosion was found on a part of the surface of the positive electrode current collector.

【0039】比較のために、実施例6で評価したものと
同構成のコイン型電池で同様に150℃の保存試験を一
ヶ月間行った。その結果、保存前後とも開放電圧は4.
28Vと開放電圧の低下は認められなかった。また電池
を分解したところ正極集電体の腐食は見られなかった。
For comparison, a coin-type battery having the same structure as that evaluated in Example 6 was similarly subjected to a storage test at 150 ° C. for one month. As a result, the open circuit voltage before and after storage is 4.
No reduction in open circuit voltage of 28 V was observed. When the battery was disassembled, no corrosion of the positive electrode current collector was found.

【0040】以上の結果より、本発明によると電解質と
して硫化リチウム−硫化珪素を主体としてなる固体電解
質がハロゲンイオンを含まない電解質を用いることで、
モリブデンの含有率が1%以下の鉄を主体としてなる
合金を正極集電体として、保存特性に優れたリチウム電
池が得られることがわかった。
From the above results, according to the present invention, the solid electrolyte composed mainly of lithium sulfide-silicon sulfide does not contain halogen ions as the electrolyte.
It has been found that a lithium battery having excellent storage characteristics can be obtained by using an alloy mainly containing iron having a molybdenum content of 1% or less as a positive electrode current collector.

【0041】(比較例1)比較例として、有機電解液を
用い正極集電体としてSUS304(Mo含有率0
%)、極軟鋼(Mo含有率0%)およびフェライト系ス
テンレス鋼SUS434(Mo含有率1.2%)を用い
たコイン型リチウム電池(直径20mm、厚さ1.6
m)を作成し、その特性を評価した。以下にこの比較例
のリチウム電池の構成を示す。
(Comparative Example 1) As a comparative example, SUS304 (Mo content 0
%), Ultra-soft steel (Mo content 0%) and ferritic stainless steel SUS434 (Mo content 1.2%), coin-type lithium battery (diameter 20 mm, thickness 1.6).
m) was prepared and its characteristics were evaluated. The structure of the lithium battery of this comparative example is shown below.

【0042】正極としては、二酸化マンガンを活物質と
し、これに導電剤としてカーボンブラックおよび結着剤
としてフッ素樹脂粉末を混合した合剤を円盤状(直径1
5mm)に加圧成型し、これをメッシュ状のSUS30
4、極軟鋼およびSUS434を円盤状(直径15m
m)に打ち抜き正極集電体として圧着し使用した。負極
としてはリチウム箔を同様に円盤状(直径15mm)に
加工し使用した。
As the positive electrode, a mixture of manganese dioxide as an active material, carbon black as a conductive agent, and fluororesin powder as a binder was mixed into a disk shape (diameter: 1).
5 mm) and press-molded to form a mesh-shaped SUS30
4, extra soft steel and SUS434 disc shape (diameter 15m
m) was punched out and used as a positive electrode current collector by pressure bonding. As the negative electrode, a lithium foil was similarly processed into a disk shape (diameter 15 mm) and used.

【0043】電解液としてはプロピレンカーボネートと
1,2−ジメトキシエタンの2:1混合溶媒に溶質とし
て過塩素酸リチウムを1モル/lの割合で溶解したもの
を用いた。
The electrolyte used was a 2: 1 mixed solvent of propylene carbonate and 1,2-dimethoxyethane in which lithium perchlorate was dissolved as a solute at a ratio of 1 mol / l.

【0044】これら正極と負極、電解液およびポリプロ
ピレン製の微孔性セパレータを用いコイン型リチウム電
池の構成を行い、実施例6と同様に80℃での保存特性
を評価した。
A coin-type lithium battery was constructed using these positive and negative electrodes, an electrolytic solution and a polypropylene microporous separator, and the storage characteristics at 80 ° C. were evaluated in the same manner as in Example 6.

【0045】その結果、正極集電体にSUS434を用
いた電池は保存前後とも開放電圧が3.26Vと開放電
圧の低下は認められなかった。また電池を分解したとこ
ろ正極集電体の腐食は見られなかった。
As a result, the battery using SUS434 as the positive electrode current collector had an open circuit voltage of 3.26 V before and after storage, showing no decrease in open circuit voltage. When the battery was disassembled, no corrosion of the positive electrode current collector was found.

【0046】しかし、正極集電体としてSUS304を
用いたものは保存前の開放電圧が3.26Vであったの
に対し、保存後には2.95Vと10%もの開放電圧の
低下が認められた。さらに電池を分解したところ正極集
電体は腐食していた。
However, the open-circuit voltage before storage of the positive electrode current collector using SUS304 was 3.26 V, whereas the open-circuit voltage after storage was 2.95 V, which was as low as 10%. . Further, when the battery was disassembled, the positive electrode current collector was corroded.

【0047】また、正極集電体として極軟鋼を用いたも
のは保存前の開放電圧が3.26Vであったのに対し、
保存後には1.58Vと52%もの開放電圧の低下が認
められた。さらに電池を分解したところ正極集電体はS
US304以上に腐食していた。
Further, the open-circuit voltage before storage was 3.26 V in the case of using extremely mild steel as the positive electrode current collector,
After storage, a decrease in open circuit voltage of 1.58 V and 52% was observed. When the battery was disassembled, the positive electrode current collector was S
It corroded more than US304.

【0048】なお、本発明の実施例においては、硫化リ
チウム−硫化珪素を主体としてなる固体電解質として、
0.60Li2S−0.40SiS2,0.64Li2
−0.36SiS2あるいは0.60Li2S−0.3S
iS2−0.1B23を用いたものについて説明を行っ
たが、その他実施例では説明しなかった組成比のもの、
例えばB23に代えてP25、Al23などを用いた固
体電解質を用いても同様の結果が得られ、本発明はこれ
ら実施例に挙げた化合物に限定されるものではない。
In the examples of the present invention, as the solid electrolyte mainly composed of lithium sulfide-silicon sulfide,
0.60Li 2 S-0.40SiS 2, 0.64Li 2 S
-0.36SiS 2 or 0.60Li 2 S-0.3S
Although the one using iS 2 -0.1B 2 S 3 is explained, the composition ratio not explained in the other examples,
For example, similar results can be obtained by using a solid electrolyte using P 2 S 5 , Al 2 S 3 or the like instead of B 2 S 3 , and the present invention is not limited to the compounds described in these examples. Absent.

【0049】また、本発明の実施例において、硫化リチ
ウム−硫化珪素を主体としてなる固体電解質が珪素原子
に結合した酸素原子を有する電解質として、硫化リチウ
ム−硫化珪素にLi2O,LiSPO4を添加したものに
ついて説明を行ったが、その他LiBO2,Li2SiO
3あるいはLi4SiO4などを用いても同様の結果が得
られ、本発明はこれら実施例に挙げた化合物に限定され
るものではない。
In the embodiment of the present invention, lithium sulfide-silicon sulfide is added with Li 2 O, LiSPO 4 as an electrolyte having a solid electrolyte mainly composed of lithium sulfide-silicon sulfide and having oxygen atoms bonded to silicon atoms. The description was made for other materials such as LiBO 2 , Li 2 SiO.
Similar results can be obtained by using 3 or Li 4 SiO 4 , and the present invention is not limited to the compounds described in these examples.

【0050】また、本発明の実施例において、モリブデ
ンの含有率が1%以下の鉄を主体としてなる合金の正極
集電体として極軟鋼あるいはSUS304を用いたもの
について説明を行ったが、SUS430、SUS30
1、炭素鋼などMo含有率1%以下の他のものを用いて
も同様の結果が得られ本発明はこれら実施例に挙げた合
金に限定されるものではない。
Further, in the embodiment of the present invention, the description has been made of the case where the extremely mild steel or SUS304 is used as the positive electrode current collector of the alloy containing iron as the main component with the molybdenum content of 1% or less. SUS30
1. Similar results can be obtained even if other Mo contents such as carbon steel and 1% or less are used, and the present invention is not limited to the alloys described in these examples.

【0051】[0051]

【発明の効果】以上のように、本発明はリチウム電池を
構成する電解質として硫化リチウム−硫化珪素を主体と
してなる固体電解質を用いるとともに、正極集電体にモ
リブデンの含有率が1%以下の鉄を主体としてなる合金
を用いることで、正極集電体の腐食を防止し保存特性に
優れたリチウム電池が得られた。
As described above, according to the present invention, a solid electrolyte composed mainly of lithium sulfide-silicon sulfide is used as an electrolyte constituting a lithium battery, and the positive electrode current collector contains iron containing 1% or less of molybdenum. By using the alloy mainly composed of, a lithium battery having excellent storage characteristics by preventing corrosion of the positive electrode current collector was obtained.

【0052】また、固体電解質として珪素原子に結合し
た酸素原子を有する電解質を用いたり、ハロゲンイオン
を含まない電解質を用いることにより、より正極集電体
の腐食を防止し保存特性に優れたリチウム電池が得られ
た。
Further, by using an electrolyte having an oxygen atom bonded to a silicon atom as the solid electrolyte or using an electrolyte containing no halogen ion, the lithium battery which is more excellent in storage characteristics and prevents corrosion of the positive electrode current collector. was gotten.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 繁雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shigeo Kondo 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】リチウムイオン伝導性の電解質を使用した
リチウム電池において、電解質が硫化リチウム−硫化珪
素を主体としてなる固体電解質でありかつ正極集電体に
モリブデン含有率が1%以下である鉄を主体とする合金
を用いた全固体リチウム電池。
1. A lithium battery using a lithium ion conductive electrolyte, wherein the electrolyte is a solid electrolyte composed mainly of lithium sulfide-silicon sulfide, and the positive electrode collector contains iron having a molybdenum content of 1% or less. An all-solid-state lithium battery that uses an alloy as the main component.
【請求項2】モリブデンの含有率が0である鉄を主体と
する合金を用いた請求項1記載の全固体リチウム電池。
2. The all-solid-state lithium battery according to claim 1, wherein an alloy mainly composed of iron having a molybdenum content of 0 is used.
【請求項3】固体電解質は珪素原子に結合した酸素原子
を有する請求項1あるいは2記載の全固体リチウム電
池。
3. The all-solid-state lithium battery according to claim 1, wherein the solid electrolyte has an oxygen atom bonded to a silicon atom.
【請求項4】固体電解質がハロゲンイオンを含まない請
求項1あるいは2記載の全固体リチウム電池。
4. The all-solid-state lithium battery according to claim 1, wherein the solid electrolyte does not contain halogen ions.
JP8105068A 1996-04-25 1996-04-25 All solid lithium battery Pending JPH09293516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8105068A JPH09293516A (en) 1996-04-25 1996-04-25 All solid lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8105068A JPH09293516A (en) 1996-04-25 1996-04-25 All solid lithium battery

Publications (1)

Publication Number Publication Date
JPH09293516A true JPH09293516A (en) 1997-11-11

Family

ID=14397644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8105068A Pending JPH09293516A (en) 1996-04-25 1996-04-25 All solid lithium battery

Country Status (1)

Country Link
JP (1) JPH09293516A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933827A1 (en) * 1998-02-03 1999-08-04 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
JP2000251898A (en) * 1999-02-25 2000-09-14 Wilson Greatbatch Ltd Cobalt-based alloy as positive electrode current collector in nonaqueous electrochemical battery
US6692543B1 (en) 1997-12-18 2004-02-17 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing lithium ion secondary battery
JP2009217934A (en) * 2008-03-06 2009-09-24 Sumitomo Electric Ind Ltd Lithium battery
WO2013149084A1 (en) * 2012-03-29 2013-10-03 Front Edge Technology, Inc. Thin film battery and localized heat treatment
CN104584291A (en) * 2012-07-26 2015-04-29 丽视股份有限公司 Sustainable current collectors for lithium batteries
US20150311508A1 (en) * 2012-11-07 2015-10-29 The Regents Of The University Of California Core-shell structured nanoparticles for lithium-sulfur cells
US9257695B2 (en) 2012-03-29 2016-02-09 Front Edge Technology, Inc. Localized heat treatment of battery component films
US9905895B2 (en) 2012-09-25 2018-02-27 Front Edge Technology, Inc. Pulsed mode apparatus with mismatched battery
US10008739B2 (en) 2015-02-23 2018-06-26 Front Edge Technology, Inc. Solid-state lithium battery with electrolyte
US10128532B2 (en) * 2013-01-11 2018-11-13 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
WO2019135346A1 (en) * 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 Positive electrode material and battery
JP2019200911A (en) * 2018-05-16 2019-11-21 トヨタ自動車株式会社 All-solid battery
US11411247B2 (en) 2018-01-05 2022-08-09 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11427477B2 (en) 2018-01-05 2022-08-30 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US20220278354A1 (en) * 2014-02-19 2022-09-01 Sion Power Corporation Electrode protection using a composite comprising an electrolyte-inhibiting ion conductor
US11498849B2 (en) 2018-01-05 2022-11-15 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11498850B2 (en) 2018-01-05 2022-11-15 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11515565B2 (en) 2018-01-05 2022-11-29 Panasonic Intellectual Property Management Co., Ltd. Battery
US11560320B2 (en) 2018-01-05 2023-01-24 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11591236B2 (en) 2018-01-05 2023-02-28 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11637287B2 (en) 2018-01-26 2023-04-25 Panasonic Intellectual Property Management Co., Ltd. Positive electrode material and battery using same
US11652235B2 (en) 2018-01-26 2023-05-16 Panasonic Intellectual Property Management Co., Ltd. Battery
US11682764B2 (en) 2018-01-26 2023-06-20 Panasonic Intellectual Property Management Co., Ltd. Cathode material and battery using same
US11760649B2 (en) 2018-01-05 2023-09-19 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11784345B2 (en) 2018-01-05 2023-10-10 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11949064B2 (en) 2018-11-29 2024-04-02 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material, battery, and method for producing battery
US11955599B2 (en) 2018-11-29 2024-04-09 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material and battery

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692543B1 (en) 1997-12-18 2004-02-17 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing lithium ion secondary battery
US6322929B1 (en) 1998-02-03 2001-11-27 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery with a high charge-discharge efficiency and a low self-discharging tendency
EP0933827A1 (en) * 1998-02-03 1999-08-04 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
JP2000251898A (en) * 1999-02-25 2000-09-14 Wilson Greatbatch Ltd Cobalt-based alloy as positive electrode current collector in nonaqueous electrochemical battery
JP2009217934A (en) * 2008-03-06 2009-09-24 Sumitomo Electric Ind Ltd Lithium battery
WO2013149084A1 (en) * 2012-03-29 2013-10-03 Front Edge Technology, Inc. Thin film battery and localized heat treatment
US9077000B2 (en) 2012-03-29 2015-07-07 Front Edge Technology, Inc. Thin film battery and localized heat treatment
US9257695B2 (en) 2012-03-29 2016-02-09 Front Edge Technology, Inc. Localized heat treatment of battery component films
CN104584291A (en) * 2012-07-26 2015-04-29 丽视股份有限公司 Sustainable current collectors for lithium batteries
EP2878024A4 (en) * 2012-07-26 2016-03-23 Lifesize Ab Sustainable current collectors for lithium batteries
US9905895B2 (en) 2012-09-25 2018-02-27 Front Edge Technology, Inc. Pulsed mode apparatus with mismatched battery
US10505180B2 (en) * 2012-11-07 2019-12-10 The Regents Of The University Of California Core-shell structured nanoparticles for lithium-sulfur cells
US11088365B2 (en) 2012-11-07 2021-08-10 The Regents Of The University Of California Core-shell structured nanoparticles for lithium-sulfur cells
US20150311508A1 (en) * 2012-11-07 2015-10-29 The Regents Of The University Of California Core-shell structured nanoparticles for lithium-sulfur cells
US10128532B2 (en) * 2013-01-11 2018-11-13 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
US20220278354A1 (en) * 2014-02-19 2022-09-01 Sion Power Corporation Electrode protection using a composite comprising an electrolyte-inhibiting ion conductor
US10008739B2 (en) 2015-02-23 2018-06-26 Front Edge Technology, Inc. Solid-state lithium battery with electrolyte
US11498850B2 (en) 2018-01-05 2022-11-15 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11591236B2 (en) 2018-01-05 2023-02-28 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11427477B2 (en) 2018-01-05 2022-08-30 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11784345B2 (en) 2018-01-05 2023-10-10 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11498849B2 (en) 2018-01-05 2022-11-15 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
WO2019135346A1 (en) * 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 Positive electrode material and battery
US11515565B2 (en) 2018-01-05 2022-11-29 Panasonic Intellectual Property Management Co., Ltd. Battery
US11524902B2 (en) 2018-01-05 2022-12-13 Panasonic Intellectual Property Management Co., Ltd. Positive electrode material and battery
US11560320B2 (en) 2018-01-05 2023-01-24 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11411247B2 (en) 2018-01-05 2022-08-09 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11760649B2 (en) 2018-01-05 2023-09-19 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11652235B2 (en) 2018-01-26 2023-05-16 Panasonic Intellectual Property Management Co., Ltd. Battery
US11682764B2 (en) 2018-01-26 2023-06-20 Panasonic Intellectual Property Management Co., Ltd. Cathode material and battery using same
US11637287B2 (en) 2018-01-26 2023-04-25 Panasonic Intellectual Property Management Co., Ltd. Positive electrode material and battery using same
JP2019200911A (en) * 2018-05-16 2019-11-21 トヨタ自動車株式会社 All-solid battery
US11949064B2 (en) 2018-11-29 2024-04-02 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material, battery, and method for producing battery
US11955599B2 (en) 2018-11-29 2024-04-09 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material and battery

Similar Documents

Publication Publication Date Title
JPH09293516A (en) All solid lithium battery
JP4578684B2 (en) Lithium secondary battery
JPH11219722A (en) Lithium secondary battery
JP2001052733A (en) Entirely solid lithium secondary battery
GB1559160A (en) Galvanic cell having a high density of energy
JP2003217663A (en) Nonaqueous electrolyte battery
JP2735842B2 (en) Non-aqueous electrolyte secondary battery
JP2012028150A (en) Lithium ion secondary battery
JPH06275315A (en) Lithium secondary battery
JPH09115515A (en) Lithium secondary battery
JP2504428B2 (en) Secondary battery
JPH06267542A (en) Nonaqueous electrolyte battery
JPH06275314A (en) Lithium secondary battery
JPS63152886A (en) Nonaqueous electrolyte secondary battery
JPH02204976A (en) Electrochenical battery and its manufacture
JPH06275322A (en) Lithium battery
JPH0650635B2 (en) Non-aqueous electrolyte secondary battery
JPH04137463A (en) Depolarizer for lithium negative electrode battery and lithium battery
JPH04104468A (en) Nonaqueous electrolyte battery
WO2023026972A1 (en) Electrode for aqueous solution secondary batteries, and aqueous solution secondary battery
US20030170541A1 (en) Positive electrode for lithium ion cells and rocking chair type lithium ion cell using the same
JPH02236972A (en) Polyaniline battery
JP2006179243A (en) Lithium secondary battery
JP2656305B2 (en) Organic electrolyte secondary battery
JPS628449A (en) Solid battery using positive pole of mno2,sb2s3 or mos3