JPH09292395A - Measuring method for microregion and microcarrier using it - Google Patents

Measuring method for microregion and microcarrier using it

Info

Publication number
JPH09292395A
JPH09292395A JP12933096A JP12933096A JPH09292395A JP H09292395 A JPH09292395 A JP H09292395A JP 12933096 A JP12933096 A JP 12933096A JP 12933096 A JP12933096 A JP 12933096A JP H09292395 A JPH09292395 A JP H09292395A
Authority
JP
Japan
Prior art keywords
microcarrier
antibody
modified
spheres
modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12933096A
Other languages
Japanese (ja)
Other versions
JP3539069B2 (en
Inventor
Hiroyuki Takei
弘之 竹井
Maaku Ratobitsuchi
ラトビッチ・マーク
Norio Shimizu
範夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12933096A priority Critical patent/JP3539069B2/en
Publication of JPH09292395A publication Critical patent/JPH09292395A/en
Application granted granted Critical
Publication of JP3539069B2 publication Critical patent/JP3539069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a measuring method in which a plurality of pieces of physicochemical information on a microregion can be made visible simultaneously and easily by a method, wherein molecules are endowed with different functions and the respective molecules are bonded to the surface of a microcarrier. SOLUTION: Polystyrene spheres 20 which contain fluorochrome and whose diameter is at 0.02 to 100μm are dispersed on a substrate 21 such as a glass or the like whose flatness is high, the substrate is installed in a vapor deposition apparatus, gold 22 is vapor-deposited in a vacuum, and a gold thin film in about 10 to 100nm is formed on one face of the spheres. After their vapor deposition, the polystyrene spheres are added to a mixed solution of dithiol which is dissolved in a solvent such as ethanol or the like, and a dithiol molecular layer 24 is formed only on the surface of the gold thin film 23. Then, an antibody 25 which is bonded to a sulfhydryl group modified by colloidal gold or the like is added, the surface of the gold thin film of the spheres is modified, and the spheres in which only one face is modified by an antibody are obtained. When the spheres are used to detect protein on the surface of a cell, fluorescence is observed only from a face opposite to the bonded face of a microcarrier to the surface of a phospholipid double film 31. Thereby, it is possible to obtain not only an antigen-antibody reaction but also orientation information on an antigen- antibody bonded face.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、微小領域の物理化
学的情報を光学的に検出する技術に関するものである。
TECHNICAL FIELD The present invention relates to a technique for optically detecting physicochemical information in a minute region.

【0002】[0002]

【従来の技術】微小体の配向により物理的情報を検出す
る従来の技術として、液晶を利用した電場の検出、常磁
性体粉末を利用した磁場の検出が挙げられる。前者を半
導体集積回路に応用することにより、接続配線間の電磁
気的干渉に関する情報が得られ、回路の設計向上に役立
つ。また後者の技術を、磁気記録媒体に応用することに
より、記録密度の高度化に必要な磁区に関する情報が得
られる。それぞれ、微小領域の物理量を二次元的に可視
化することに特徴がある。
2. Description of the Related Art Conventional techniques for detecting physical information based on the orientation of microscopic bodies include detection of an electric field using liquid crystals and detection of a magnetic field using paramagnetic powder. By applying the former to a semiconductor integrated circuit, information on electromagnetic interference between connection wirings can be obtained, which is useful for improving the circuit design. Further, by applying the latter technique to a magnetic recording medium, it is possible to obtain information on magnetic domains necessary for increasing the recording density. Each is characterized by two-dimensionally visualizing the physical quantity of a minute area.

【0003】一方、微小体の配向による化学的情報の検
出技術として、蛍光色素で修飾された抗体の利用が挙げ
られる。抗原抗体反応に伴い蛍光色素の回転速度が変化
するため、蛍光偏向解消法により反応を検出、すなわち
抗原の有無を判断できる。細胞の測定に応用すれば、細
胞内の抗原分布の情報が得られ、細胞に基づく健康診断
が可能になる。
On the other hand, as a technique for detecting chemical information based on the orientation of microscopic bodies, use of an antibody modified with a fluorescent dye can be mentioned. Since the rotation speed of the fluorescent dye changes with the antigen-antibody reaction, the reaction can be detected, that is, the presence or absence of the antigen can be determined by the fluorescence polarization elimination method. When applied to the measurement of cells, information on the distribution of antigens in cells can be obtained, and cell-based medical examinations can be performed.

【0004】[0004]

【発明が解決しようとする課題】微小体の配向による物
理化学的情報の光学的測定においては、環境に反応して
微小体が配向し、しかも配向を光学的に検出することが
必要である。この二つの機能を一つの微小体に持たせる
ことはしばし困難である。
In the optical measurement of physicochemical information based on the orientation of fine particles, it is necessary to orient the fine particles in response to the environment and to detect the orientation optically. It is often difficult to give these two functions to one micro body.

【0005】本発明は、機能性微小体の設計、製造を容
易にし、しかも複数の物理化学的情報を同時に計測する
のに必要な多機能化さえも容易に実現するのが目的であ
る。
It is an object of the present invention to facilitate the design and manufacture of functional microparticles, and also to easily realize the multi-functionalization necessary for simultaneously measuring a plurality of physicochemical information.

【0006】[0006]

【課題を解決するための手段】環境に反応する機能と配
向の検出に必要な標識といった異なった機能を別々な分
子に持たせ、それぞれの分子を微小担体の表面に結合さ
せる。この際、分子を機能別に限定された領域、しかも
相対位置が明確な領域に選択的に結合する必要が生じ
る。その手段として、微小担体表面に蒸着による結合の
下地造りを行う。蒸着により、担体の片面のみに形成さ
れる薄膜を分子結合の下地として用いると、微小担体の
限定領域における結合が可能となる。また、蒸着薄膜が
施されていない表面に対して、別な分子を選択的に結合
することにより、二種類の分子をそれぞれ、異なった限
定領域に結合することができる。さらに、微小担体の蒸
着を異なった方向から異なった材料で行うことにより、
3つ以上の分子も選択的に結合できる。
[Means for Solving the Problems] Different molecules have different functions such as a function of reacting to the environment and a label necessary for detecting orientation, and each molecule is bound to the surface of a microcarrier. In this case, it becomes necessary to selectively bind the molecule to a region defined by function and a region having a clear relative position. As a means therefor, a bonding underlayer is formed on the surface of the microcarrier by vapor deposition. When a thin film formed on only one side of the carrier by vapor deposition is used as a base for molecular bonding, bonding in a limited area of the microcarrier becomes possible. Further, by selectively binding different molecules to the surface on which the vapor-deposited thin film is not applied, it is possible to bind two kinds of molecules to different restricted regions. Furthermore, by depositing microcarriers from different directions and with different materials,
More than two molecules can also be selectively bound.

【0007】[0007]

【発明の実施の形態】異なった形状の修飾化微小担体を
図1に示す。同図(a)は片面のみ修飾された球状担体
1、(b)はディスク状担体2、また(c)は面ごとに
異なる修飾面(A、B、C)3、4、5を有する立方体
状担体6、(d)は両端に異なる修飾領域(A、B)
7、8を有する棒状担体9である。図11の写真は、球
状担体1の実例を示す。
DETAILED DESCRIPTION OF THE INVENTION Different shapes of modified microcarriers are shown in FIG. In the figure, (a) is a spherical carrier 1 modified on only one side, (b) is a disk-shaped carrier 2, and (c) is a cube having modified surfaces (A, B, C) 3, 4, 5 which are different for each surface. Shaped carrier 6, (d) has different modified regions (A, B) at both ends
It is a rod-shaped carrier 9 having 7 and 8. The photograph in FIG. 11 shows an example of the spherical carrier 1.

【0008】球状担体を用いた際における、不均一修飾
方法の概念を図2に示す。同図(a)に示すように、ま
ず基板10上に置かれた未修飾微小担体11に金、銀、
銅、プラチナなどの金属またはシリコンなどの蒸着材料
12を蒸着することにより、担体の片面のみ薄膜13を
形成し、カップリング処理により薄膜13上に結合基を
有する微小担体を調製した。次に同図(b)のように、
抗体、抗原、アビジン、ビオチン、プロティンA、プロ
ティンG、ペプチド、磁性体、エレクトレット、色素、
蛍光色素、放射性同位元素など14を結合基にカップリ
ングすることにより、片面のみ修飾された微小担体15
を得た。
FIG. 2 shows the concept of the method of heterogeneous modification when a spherical carrier is used. As shown in FIG. 3A, first, gold, silver,
A thin film 13 was formed on only one surface of the carrier by depositing a deposition material 12 such as a metal such as copper or platinum or silicon, and a microcarrier having a bonding group on the thin film 13 was prepared by a coupling treatment. Next, as shown in FIG.
Antibody, antigen, avidin, biotin, protein A, protein G, peptide, magnetic substance, electret, dye,
A microcarrier 15 modified on only one side by coupling 14 such as a fluorescent dye or a radioisotope to a binding group.
I got

【0009】一方、同図(c)のように、あらかじめ抗
体、抗原、アビジン、ビオチン、プロティンA、プロテ
ィンG、ペプチド、磁性体、エレクトレット、色素、蛍
光色素などで表面を全面修飾された微小担体16を基板
10上に置き、同図(d)のように、蒸着または電子、
中性子などのビ−ム、X線、紫外線などの照射17によ
り微小担体上に修飾機能損失面18を片面のみ形成する
こともできた。
On the other hand, as shown in FIG. 1C, a microcarrier whose surface is preliminarily modified with an antibody, an antigen, avidin, biotin, protein A, protein G, peptide, magnetic substance, electret, dye, fluorescent dye, etc. 16 is placed on the substrate 10 and, as shown in FIG.
It was also possible to form only one modified functional loss surface 18 on the microcarrier by irradiation 17 with beams such as neutrons, X-rays, and ultraviolet rays.

【0010】(実施例1)実施例1における微小担体製
造方法を図3に示す。同図(a)に示すように、蛍光色
素を含有する直径 0.02〜100 ミクロメ−トルのポリス
チレン球20をガラス、シリコンなどの平坦度の高い基
板21上に重ならない様に分散した。同図(b)のよう
に、基板を蒸着装置の中に設置し、真空中で金22を基
板上の球に蒸着し、球の片面に 10〜100 ナノメ-トルの
金薄膜23を形成した。蒸着後、エタノ−ル、テトラヒ
ドロフラン、シクロヘキサンなどの溶媒に溶かしたジチ
オ−ルの混合液にポリスチレン球を添加し、同図(c)
のように金薄膜23表面のみにジチオ−ル分子層24を
形成した。次に、同図(d)のようにコロイド金、アル
キルハライド、マレイミド、アジリヂンなどで修飾され
たスルフヒドリル基と結合する抗体25を添加し、球の
金薄膜表面を修飾した。その結果、片面のみが抗体で修
飾された球が得られた。
(Example 1) FIG. 3 shows a method for producing a microcarrier in Example 1. As shown in FIG. 3A, polystyrene spheres 20 containing a fluorescent dye and having a diameter of 0.02 to 100 micrometer were dispersed on a substrate 21 having high flatness such as glass or silicon so as not to overlap. As shown in FIG. 6B, the substrate was placed in a vapor deposition apparatus, and gold 22 was vapor-deposited on a sphere on the substrate in vacuum to form a gold thin film 23 of 10 to 100 nanometer on one side of the sphere. . After vapor deposition, polystyrene spheres were added to a mixed solution of dithiol dissolved in a solvent such as ethanol, tetrahydrofuran or cyclohexane, and the same figure (c).
As described above, the dithiol molecular layer 24 was formed only on the surface of the gold thin film 23. Next, as shown in FIG. 3D, an antibody 25 that binds to a sulfhydryl group modified with colloidal gold, alkyl halide, maleimide, aziridin, etc. was added to modify the gold thin film surface of the sphere. As a result, spheres having only one surface modified with the antibody were obtained.

【0011】細胞表面の膜蛋白質の検出に用いた測定例
を図4に示す。膜蛋白質30を抗原とする抗体26を有
する微小担体が、抗原抗体反応によりリン脂質二重膜3
1表面に結合した。蛍光は金薄膜23に妨げられるた
め、結合されてない微小担体を洗い流すと、蛍光32は
結合面とは逆の面のみより観察された。したがって、蛍
光観察により抗原抗体反応だけではなく、抗原抗体結合
面の配向情報を得ることができた。
FIG. 4 shows a measurement example used for detecting a membrane protein on the cell surface. A microcarrier having an antibody 26 having a membrane protein 30 as an antigen is converted into a phospholipid bilayer membrane 3 by an antigen-antibody reaction.
Bound to one surface. Since the fluorescence is blocked by the gold thin film 23, when the unbound microcarriers were washed away, the fluorescence 32 was observed only from the surface opposite to the bonding surface. Therefore, not only the antigen-antibody reaction but also the orientation information of the antigen-antibody binding surface could be obtained by the fluorescence observation.

【0012】(実施例2)実施例2におけるポリスチレ
ン球の修飾方法を図5に示す。同図(a)に示すよう
に、まずアミン40で修飾された表面を有する直径 0.0
2〜100 ミクロメ−トルのポリスチレン球41をガラ
ス、シリコンなどの平坦度の高い基板上42に重ならな
い様に分散した。次に同図(b)のように、基板を蒸着
装置の中に設置し、真空中で銀43を基板上の球41に
蒸着し、球の片面に 1〜100 ナノメ−トルの銀薄膜44
を形成した。銀薄膜44の酸化後、同図(c)のように
スクシンイミドエステル、イソチオシアン酸塩、塩化ス
ルホン、NBDハライド、ジクロロトリアジンなどを有
しアミンと結合する抗体45で、蒸着されていない表面
46のみを修飾した。さらに、同図(d)のようにカル
ボキシル基を有する蛍光色素47を微小担体に添加する
ことにより、酸化銀48の表面を蛍光色素47で修飾し
た。これにより同図(e)のように、片面は抗体45、
もう片面は蛍光色素47というように二種類の物質で修
飾されたポリスチレン球49が得られた。ポリスチレン
球49は電荷50を帯びており、抗体45で修飾された
表面と蛍光色素47で修飾された表面は異なる電荷51
を帯びる結果、担体全体として電気双極子モ−メント5
2を有する。
Example 2 A method for modifying polystyrene spheres in Example 2 is shown in FIG. As shown in FIG. 3A, a diameter of 0.0 having a surface modified with amine 40 is first obtained.
Polystyrene spheres 41 of 2 to 100 micrometer were dispersed on a substrate 42 having high flatness such as glass or silicon so as not to overlap. Next, as shown in FIG. 2B, the substrate is placed in a vapor deposition apparatus, silver 43 is vapor-deposited on the sphere 41 on the substrate in a vacuum, and a silver thin film 44 of 1 to 100 nanometer is formed on one side of the sphere.
Was formed. After the oxidation of the silver thin film 44, as shown in FIG. 7C, the antibody 45 having succinimide ester, isothiocyanate, sulfone chloride, NBD halide, dichlorotriazine, etc., which binds to the amine, is used to expose only the surface 46 which is not deposited Qualified. Further, the surface of silver oxide 48 was modified with fluorescent dye 47 by adding fluorescent dye 47 having a carboxyl group to the microcarrier as shown in FIG. As a result, as shown in (e) of FIG.
Polystyrene spheres 49 modified with two kinds of substances such as fluorescent dye 47 on the other side were obtained. The polystyrene sphere 49 has a charge 50, and the surface modified with the antibody 45 and the surface modified with the fluorescent dye 47 have different charges 51.
As a result, the carrier as a whole has an electric dipole moment 5.
2

【0013】電場下におけるポリスチレン球49の配向
を図6に示す。電場60により電気双極子モ−メントを
有する球49を配向させることができた。担体表面上の
抗体45が抗原61と反応すると、抗原の電荷62によ
り担体全体の電気双極子モ−メントが変化した。したが
って、電場下での担体の配向速度に変化が生じ、球49
の片面のみから観察される蛍光63により配向を検出で
きた。
The orientation of polystyrene spheres 49 under an electric field is shown in FIG. The electric field 60 was able to orient the sphere 49 with the electric dipole moment. When the antibody 45 on the surface of the carrier reacts with the antigen 61, the electric charge 62 of the antigen changes the electric dipole moment of the entire carrier. Therefore, a change occurs in the orientation speed of the carrier under the electric field, and the sphere 49
The orientation could be detected by the fluorescence 63 observed from only one surface of the.

【0014】免疫計測方法を図7に示す。同図(a)の
ように、一対の電極70を有するセル71中の被検体液
72にポリスチレン球49を加えた。電極70に変調電
位73を印加することにより、球49を周期的に再配向
できる。配向を検出するためには、光源74で球49の
蛍光色素を励起し、励起光をカットオフする光学フィル
タ−75を有する光センサ−76にて蛍光信号のみを検
出した。球49の向きに依存して蛍光信号77が振幅7
8で変化した。変調電位73の周波数に依存して、蛍光
信号77の振幅78が変化する様子を同図(b)の特性
曲線79で示す。低周波領域では球49は電場変調に追
従できるが、カットオフ周波数80より高周波領域では
追従できなくなり、蛍光信号77の振幅78が特性曲線
79で示される様に低下した。カットオフ周波数は球4
9の電気双極子モ−メントに依存するため、球49表面
の抗体45と反応する抗原61が被検体液72中に含ま
れる際、カットオフ周波数が変わった。例えば、抗原抗
体反応の結果、特性曲線81が示す様にカットオフ周波
数が高周波側82に移動した。また場合に依っては低周
波側に移動した。したがって、球49からの蛍光信号7
7の振幅78の変調電位周波数依存性を測定することに
より、抗原抗体反応を検出できた。
The immunoassay method is shown in FIG. As shown in FIG. 6A, polystyrene spheres 49 were added to the sample liquid 72 in the cell 71 having the pair of electrodes 70. By applying a modulation potential 73 to the electrode 70, the sphere 49 can be periodically reoriented. In order to detect the orientation, the fluorescent dye of the sphere 49 was excited by the light source 74, and only the fluorescent signal was detected by the optical sensor-76 having the optical filter-75 for cutting off the excitation light. The fluorescence signal 77 has an amplitude of 7 depending on the direction of the sphere 49.
Changed by 8. A characteristic curve 79 in FIG. 7B shows how the amplitude 78 of the fluorescence signal 77 changes depending on the frequency of the modulation potential 73. Although the sphere 49 can follow the electric field modulation in the low frequency region, it cannot follow the high frequency region beyond the cutoff frequency 80, and the amplitude 78 of the fluorescence signal 77 is lowered as shown by the characteristic curve 79. Cutoff frequency is sphere 4
Since it depends on the electric dipole moment of 9, the cutoff frequency was changed when the antigen 61 that reacts with the antibody 45 on the surface of the sphere 49 was contained in the sample liquid 72. For example, as a result of the antigen-antibody reaction, the cutoff frequency moved to the high frequency side 82 as shown by the characteristic curve 81. In some cases, it moved to the low frequency side. Therefore, the fluorescence signal 7 from the sphere 49
The antigen-antibody reaction could be detected by measuring the modulation potential frequency dependence of the amplitude 78 of 7.

【0015】(実施例3)フォトリトグラフィ−の技術
を用いた酸化シリコン微小担体の製造方法を図8に示し
た。まず同図(a)に示すように、シリコン基板90の
上に酸化シリコン91とポジ型フォトレジスト92の薄
膜を形成した。光マスク93によりディスク形状のパタ
−ンをポジ型フォトレジスト92に投影し、同図(b)
のように照射領域94のフォトレジストを現像により溶
解除去した。次に同図(c)のようにCHF3ガス95
を用いたプラズマエッチングにより酸化シリコン薄膜9
6を加工した。未現像のポジ型フォトレジスト97を取
り除き、シリコン基板90のKOH湿式エッチングによ
り、同図(d)のように酸化シリコン微小担体98をエ
ッチングされたシリコン基板99から剥離、回収した。
(Embodiment 3) FIG. 8 shows a method for producing silicon oxide microcarriers using the photolithography technique. First, as shown in FIG. 9A, a thin film of silicon oxide 91 and a positive photoresist 92 was formed on a silicon substrate 90. A disk-shaped pattern is projected on the positive photoresist 92 by the optical mask 93, and the same figure (b) is shown.
As described above, the photoresist in the irradiation region 94 was dissolved and removed by development. Next, as shown in FIG.
Silicon oxide thin film 9 by plasma etching using
6 was processed. The undeveloped positive photoresist 97 was removed, and the silicon oxide microcarriers 98 were peeled and collected from the etched silicon substrate 99 by KOH wet etching of the silicon substrate 90 as shown in FIG.

【0016】酸化シリコン微小担体の修飾方法を図9に
示す。まず同図(a)のように、酸化シリコン微小担体
98を重ならない様に基板100上に置き、アルミニウ
ム101を蒸着した。蒸着後、同図(b)のようにアル
ミニウムの酸化によりOH基層102を形成し、シリコ
ン面にはシランカップリング処理によりスルフヒドリル
基層103を形成した。次に、同図(c)のようにCO
OH基を有するフルオレセイン、イオシン、エリトロシ
ン系の蛍光色素(A)104のエステル化反応によりO
H基層102を修飾し、スルフヒドリル基層103をマ
レイミド基を有するフルオレセイン、イオシン、エリト
ロシン系の蛍光色素(B)105で修飾した結果、二種
類の蛍光色素で修飾された酸化シリコン微小担体106
が得られた。蛍光色素(A)104と蛍光色素(B)1
05の蛍光スペクトルはそれぞれ同図(d)に示す10
7と108であり、しかも異なったpH依存性を有す
る。例えば、蛍光色素(A)104のpK(A)は蛍光
色素(B)105のpK(B)より大きくなる様に選択
した。
A method for modifying the silicon oxide microcarriers is shown in FIG. First, as shown in FIG. 3A, the silicon oxide microcarriers 98 were placed on the substrate 100 so as not to overlap each other, and aluminum 101 was vapor-deposited. After vapor deposition, an OH base layer 102 was formed by oxidizing aluminum as shown in FIG. 2B, and a sulfhydryl base layer 103 was formed on the silicon surface by a silane coupling treatment. Next, as shown in FIG.
O by the esterification reaction of the fluorescein, iocin, and erythrosine-based fluorescent dye (A) 104 having an OH group
As a result of modifying the H base layer 102 and modifying the sulfhydryl base layer 103 with a fluorescent dye (B) 105 of a maleimide group-containing fluorescein, iocin, or erythrosine group, a silicon oxide microcarrier 106 modified with two types of fluorescent dyes.
was gotten. Fluorescent dye (A) 104 and fluorescent dye (B) 1
The fluorescence spectra of 05 are shown in FIG.
7 and 108, and have different pH dependences. For example, the pK (A) of the fluorescent dye (A) 104 was selected to be larger than the pK (B) of the fluorescent dye (B) 105.

【0017】図10(a)〜(f)に微小担体の光学、
電気特性のpH依存性を示す。溶液中では微小担体がラ
ンダムに配向しているため、pH<pK(B)では蛍光
スペクトルは110、pK(B)<pH<pK(A)で
は111となり、またpK(A)<pHでは112の様
に蛍光が検出されなかった。また、pHによって蛍光色
素の電荷が変化するので、上の三つpH領域によって微
小担体106の電気双極子モ−メントが異なった。例え
ば、pK(B)<pH<pK(A)の時に電気双極子モ
−メント113が最大値を取る様になる。したがって、
ある特定pHでのみ微小担体が電場に反応して配向し
た。また、微小担体の蛍光スペクトルは面の方向に依存
するので、蛍光スペクトルを観測することにより、電場
下の担体の配向が判る。したがって、蛍光スペクトルか
らpHと電場に関する情報が同時に得られる。
FIGS. 10 (a) to 10 (f) show the optics of microcarriers,
The pH dependence of electrical properties is shown. Since the microcarriers are randomly oriented in the solution, the fluorescence spectrum is 110 at pH <pK (B), 111 at pK (B) <pH <pK (A), and 112 at pK (A) <pH. No fluorescence was detected as in. Moreover, since the electric charge of the fluorescent dye changes depending on the pH, the electric dipole moment of the microcarrier 106 differs depending on the above three pH regions. For example, when pK (B) <pH <pK (A), the electric dipole moment 113 takes the maximum value. Therefore,
The microcarriers were oriented in response to an electric field only at a certain pH. Moreover, since the fluorescence spectrum of the microcarriers depends on the direction of the plane, the orientation of the carrier under the electric field can be known by observing the fluorescence spectrum. Therefore, information on pH and electric field can be obtained simultaneously from the fluorescence spectrum.

【0018】[0018]

【発明の効果】本発明により、微小領域の物理化学的情
報を同時に複数、しかも容易に可視化できる。
According to the present invention, it is possible to easily visualize a plurality of physicochemical information in a minute area simultaneously.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明により製造、使用される不均一的修飾ま
たは異方性形状微小担体の例を示す図。
FIG. 1 is a diagram showing an example of a heterogeneous modified or anisotropic shaped microcarrier produced and used according to the present invention.

【図2】蒸着による微小担体の不均一的修飾方法の概念
図。
FIG. 2 is a conceptual diagram of a method of nonuniformly modifying a microcarrier by vapor deposition.

【図3】片面のみに金蒸着されたポリスチレン球に、ジ
チオ−ルを介して抗体を結合させる方法を示す図。
FIG. 3 is a view showing a method of binding an antibody to polystyrene spheres having gold vapor-deposited on only one surface via dithiol.

【図4】図3の球を用いることによって、細胞膜中の特
定膜蛋白質と膜面方向の検出方法を示す図。
FIG. 4 is a diagram showing a method for detecting a specific membrane protein in a cell membrane and a membrane surface direction by using the sphere of FIG.

【図5】アルミニウム蒸着により、アミノ基とヒドロキ
シル基修飾面を片面づづ形成させ、抗体と蛍光色素をそ
れぞれの面に結合させる方法を示す図。
FIG. 5 is a diagram showing a method of forming an amino group- and hydroxyl group-modified surface on each side by aluminum vapor deposition, and bonding an antibody and a fluorescent dye to each surface.

【図6】電気双極子モ−メントに由来する、電場下にお
けるポリスチレン球の配向を示す図。
FIG. 6 is a view showing the orientation of polystyrene spheres under an electric field, which is derived from an electric dipole moment.

【図7】抗原抗体反応の伴って変化するポリスチレン球
の応答特性を利用した免疫診断の原理図。
FIG. 7 is a principle diagram of immunodiagnosis using the response characteristics of polystyrene spheres that change with an antigen-antibody reaction.

【図8】フォトリトグラフィ−による酸化シリコン微小
担体の製造する方法を示す図。
FIG. 8 is a diagram showing a method for producing a silicon oxide microcarrier by photolithography.

【図9】酸化シリコン微小担体の両面に、異なる特性の
蛍光色素を結合する方法を示す図。
FIG. 9 is a view showing a method of binding fluorescent dyes having different characteristics to both surfaces of a silicon oxide microcarrier.

【図10】図9にある微小担体が有する光学、電気特性
のpH依存性を示す図。
10 is a diagram showing pH dependence of optical and electrical characteristics of the microcarrier shown in FIG.

【図11】片面が修飾された球状担体の実例を示す写
真。
FIG. 11 is a photograph showing an example of a spherical carrier having one surface modified.

【符号の説明】[Explanation of symbols]

1…球状担体、2…ディスク状担体、3…修飾面
(A)、4…修飾面(B)、5…修飾面(C)、6…立
方体状担体、7…修飾領域(A)、8…修飾領域
(B)、9…棒状担体、10…基板、11…未修飾微小
担体、12…蒸着材料、13…薄膜、14…修飾材料、
15…片面のみ修飾された微小担体、16…全面修飾さ
れた微小担体、17…照射、18…修飾機能損失面、2
0…蛍光色素を含有するポリスチレン球、21…基板、
22…金、23…金薄膜、24…ジチオ−ル分子層、2
5…スルフヒドリル基と結合する抗体、26…抗体、3
0…膜蛋白質、31…リン脂質二重膜、32…蛍光、4
0…アミン、41…アミンで修飾されたポリスチレン
球、42…基板、43…銀、44…銀薄膜、45…アミ
ンと結合する抗体、46…蒸着されていない表面、47
…カルボキシル基を有する蛍光色素、48…酸化銀、4
9…二種類修飾化ポリスチレン球、50…電荷、51…
表面電荷、52…電気双極子モ−メント、60…電場、
61…抗原、62…抗原の電荷、63…蛍光、70…電
極、71…セル、72…被検体液、73…変調電位、7
4…光源、75…光学フィルタ−、76…光センサ−、
77…蛍光信号、78…振幅、79…特性曲線、80…
カットオフ周波数、81…反応後の特性曲線、82…反
応後に高周波側に移動したカットオフ周波数、90…シ
リコン基板、91…酸化シリコン、92…ポジ型フォト
レジスト、93…光マスク、94…照射領域、95…C
HF3ガス、96…プラズマエッチングで除去された酸
化シリコン、97…未現像のポジ型フォトレジスト、9
8…酸化シリコン微小担体、99…エッチングされたシ
リコン基板、100…基板、101…アルミニウム、1
02…ヒドロキシル基層、103…スルフヒドリル基
層、104…蛍光色素(A)、105…蛍光色素
(B)、106…二種類の蛍光色素で修飾された酸化シ
リコン微小担体、107…蛍光色素(A)の蛍光スペク
トル、108…蛍光色素(B)の蛍光スペクトル、11
0…pH<pK(B)時の蛍光スペクトル、111…p
K(B)<pH<pK(A)時の蛍光スペクトル、11
2…pK(A)<pH時の蛍光スペクトル、113…p
K(B)<pH<pK(A)時の電気双極子モ−メン
ト、114…pH<pK(B)時の電気双極子モ−メン
ト115…pK(A)<pH時の電気双極子モ−メン
ト。
DESCRIPTION OF SYMBOLS 1 ... Spherical carrier, 2 ... Disc-shaped carrier, 3 ... Modification surface (A), 4 ... Modification surface (B), 5 ... Modification surface (C), 6 ... Cubic carrier, 7 ... Modification area (A), 8 ... Modified region (B), 9 ... Rod-shaped carrier, 10 ... Substrate, 11 ... Unmodified microcarrier, 12 ... Deposition material, 13 ... Thin film, 14 ... Modification material,
15 ... Microcarriers modified on only one side, 16 ... Microcarriers modified on the entire surface, 17 ... Irradiation, 18 ... Modification loss surface, 2
0 ... Polystyrene spheres containing fluorescent dye, 21 ... Substrate,
22 ... Gold, 23 ... Gold thin film, 24 ... Dithiol molecular layer, 2
5 ... Antibody that binds to sulfhydryl group, 26 ... Antibody, 3
0 ... Membrane protein, 31 ... Phospholipid bilayer membrane, 32 ... Fluorescence, 4
0 ... Amine, 41 ... Amine-modified polystyrene spheres, 42 ... Substrate, 43 ... Silver, 44 ... Silver thin film, 45 ... Amine-binding antibody, 46 ... Undeposited surface, 47
... Fluorescent dye having a carboxyl group, 48 ... Silver oxide, 4
9 ... Two types of modified polystyrene spheres, 50 ... Electric charge, 51 ...
Surface charge, 52 ... electric dipole moment, 60 ... electric field,
61 ... Antigen, 62 ... Antigen charge, 63 ... Fluorescence, 70 ... Electrode, 71 ... Cell, 72 ... Analyte fluid, 73 ... Modulation potential, 7
4 ... Light source, 75 ... Optical filter, 76 ... Optical sensor,
77 ... Fluorescence signal, 78 ... Amplitude, 79 ... Characteristic curve, 80 ...
Cutoff frequency, 81 ... Characteristic curve after reaction, 82 ... Cutoff frequency moved to the high frequency side after reaction, 90 ... Silicon substrate, 91 ... Silicon oxide, 92 ... Positive photoresist, 93 ... Photomask, 94 ... Irradiation Area, 95 ... C
HF3 gas, 96 ... Silicon oxide removed by plasma etching, 97 ... Undeveloped positive photoresist, 9
8 ... Silicon oxide microcarrier, 99 ... Etched silicon substrate, 100 ... Substrate, 101 ... Aluminum, 1
02 ... Hydroxyl group layer, 103 ... Sulfhydryl base layer, 104 ... Fluorescent dye (A), 105 ... Fluorescent dye (B), 106 ... Silicon oxide microcarrier modified with two kinds of fluorescent dyes, 107 ... Fluorescent dye (A) Fluorescence spectrum, 108 ... Fluorescence spectrum of fluorescent dye (B), 11
Fluorescence spectrum at 0 ... pH <pK (B), 111 ... p
Fluorescence spectrum when K (B) <pH <pK (A), 11
2 ... pK (A) <pH fluorescence spectrum, 113 ... p
Electric dipole moment when K (B) <pH <pK (A), 114 ... Electric dipole moment when pH <pK (B) 115 ... Electric dipole moment when pK (A) <pH -Ment.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年9月20日[Submission date] September 20, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明により製造、使用される不均一的修飾ま
たは異方性形状微小担体の例を示す図。
FIG. 1 is a diagram showing an example of a heterogeneous modified or anisotropic shaped microcarrier produced and used according to the present invention.

【図2】蒸着による微小担体の不均一的修飾方法の概念
図。
FIG. 2 is a conceptual diagram of a method of nonuniformly modifying a microcarrier by vapor deposition.

【図3】片面のみに金蒸着されたポリスチレン球に、ジ
チオールを介して抗体を結合させる方法を示す図。
FIG. 3 is a view showing a method of binding an antibody to polystyrene spheres having gold vapor-deposited on only one surface via dithiol.

【図4】図3の球を用いることによって、細胞膜中の特
定膜蛋白質と膜面方向の検出方法を示す図。
FIG. 4 is a diagram showing a method for detecting a specific membrane protein in a cell membrane and a membrane surface direction by using the sphere of FIG.

【図5】アルミニウム蒸着により、アミノ基とヒドロキ
シル基修飾面を片面づづ形成させ、抗体と蛍光色素をそ
れぞれの面に結合させる方法を示す図。
FIG. 5 is a diagram showing a method of forming an amino group- and hydroxyl group-modified surface on each side by aluminum vapor deposition, and bonding an antibody and a fluorescent dye to each surface.

【図6】電気双極子モーメントに由来する、電場下にお
けるポリスチレン球の配向を示す図。
FIG. 6 is a diagram showing the orientation of polystyrene spheres under an electric field, which is derived from the electric dipole moment.

【図7】抗原抗体反応の伴って変化するポリスチレン球
の応答特性を利用した免疫診断の原理図。
FIG. 7 is a principle diagram of immunodiagnosis using the response characteristics of polystyrene spheres that change with an antigen-antibody reaction.

【図8】フォトリトグラフィーによる酸化シリコン微小
担体の製造する方法を示す図。
FIG. 8 is a diagram showing a method for producing a silicon oxide microcarrier by photolithography.

【図9】酸化シリコン微小担体の両面に、異なる特性の
蛍光色素を結合する方法を示す図。
FIG. 9 is a view showing a method of binding fluorescent dyes having different characteristics to both surfaces of a silicon oxide microcarrier.

【図10】図9にある微小担体が有する光学、電気特性
のpH依存性を示す図。
10 is a diagram showing pH dependence of optical and electrical characteristics of the microcarrier shown in FIG.

【図11】片面が修飾された球状担体の実例を示す顕微
写真。
FIG. 11 is a microscopic view showing an example of a spherical carrier with one surface modified.
Mirror photo.

【符号の説明】 1…球状担体、2…ディスク状担体、3…修飾面
(A)、4…修飾面(B)、5…修飾面(C)、6…立
方体状担体、7…修飾領域(A)、8…修飾領域
(B)、9…棒状担体、10…基板、11…未修飾微小
担体、12…蒸着材料、13…薄膜、14…修飾材料、
15…片面のみ修飾された微小担体、16…全面修飾さ
れた微小担体、17…照射、18…修飾機能損失面、2
0…蛍光色素を含有するポリスチレン球、21…基板、
22…金、23…金薄膜、24…ジチオール分子層、2
5…スルフヒドリル基と結合する抗体、26…抗体、3
0…膜蛋白質、31…リン脂質二重膜、32…蛍光、4
0…アミン、41…アミンで修飾されたポリスチレン
球、42…基板、43…銀、44…銀薄膜、45…アミ
ンと結合する抗体、46…蒸着されていない表面、47
…カルボキシル基を有する蛍光色素、48…酸化銀、4
9…二種類修飾化ポリスチレン球、50…電荷、51…
表面電荷、52…電気双極子モーメント、60…電場、
61…抗原、62…抗原の電荷、63…蛍光、70…電
極、71…セル、72…被検体液、73…変調電位、7
4…光源、75…光学フィルター、76…光センサー、
77…蛍光信号、78…振幅、79…特性曲線、80…
カットオフ周波数、81…反応後の特性曲線、82…反
応後に高周波側に移動したカットオフ周波数、90…シ
リコン基板、91…酸化シリコン、92…ポジ型フォト
レジスト、93…光マスク、94…照射領域、95…C
HF3ガス、96…プラズマエッチングで除去された酸
化シリコン、97…未現像のポジ型フォトレジスト、9
8…酸化シリコン微小担体、99…エッチングされたシ
リコン基板、100…基板、101…アルミニウム、1
02…ヒドロキシル基層、103…スルフヒドリル基
層、104…蛍光色素(A)、105…蛍光色素
(B)、106…二種類の蛍光色素で修飾された酸化シ
リコン微小担体、107…蛍光色素(A)の蛍光スペク
トル、108…蛍光色素(B)の蛍光スペクトル、11
0…pH<pK(B)時の蛍光スペクトル、111…p
K(B)<pH<pK(A)時の蛍光スペクトル、11
2…pK(A)<pH時の蛍光スペクトル、113…p
K(B)<pH<pK(A)時の電気双極子モーメン
ト、114…pH<pK(B)時の電気双極子モーメン
ト115…pK(A)<pH時の電気双極子モーメン
ト。
[Explanation of Codes] 1 ... Spherical carrier, 2 ... Disc-shaped carrier, 3 ... Modified surface (A), 4 ... Modified surface (B), 5 ... Modified surface (C), 6 ... Cubic carrier, 7 ... Modified area (A), 8 ... Modified region (B), 9 ... Rod-shaped carrier, 10 ... Substrate, 11 ... Unmodified microcarrier, 12 ... Deposition material, 13 ... Thin film, 14 ... Modification material,
15 ... Microcarriers modified on only one side, 16 ... Microcarriers modified on the entire surface, 17 ... Irradiation, 18 ... Modification loss surface, 2
0 ... Polystyrene spheres containing fluorescent dye, 21 ... Substrate,
22 ... Gold, 23 ... Gold thin film, 24 ... Dithiol molecular layer, 2
5 ... Antibody that binds to sulfhydryl group, 26 ... Antibody, 3
0 ... Membrane protein, 31 ... Phospholipid bilayer membrane, 32 ... Fluorescence, 4
0 ... amine, 41 ... amine-modified polystyrene spheres, 42 ... substrate, 43 ... silver, 44 ... silver thin film, 45 ... amine-binding antibody, 46 ... non-deposited surface, 47
... Fluorescent dye having a carboxyl group, 48 ... Silver oxide, 4
9 ... Two types of modified polystyrene spheres, 50 ... Electric charge, 51 ...
Surface charge, 52 ... electric dipole moment, 60 ... electric field,
61 ... Antigen, 62 ... Antigen charge, 63 ... Fluorescence, 70 ... Electrode, 71 ... Cell, 72 ... Analyte fluid, 73 ... Modulation potential, 7
4 ... Light source, 75 ... Optical filter, 76 ... Optical sensor,
77 ... Fluorescence signal, 78 ... Amplitude, 79 ... Characteristic curve, 80 ...
Cutoff frequency, 81 ... Characteristic curve after reaction, 82 ... Cutoff frequency moved to high frequency side after reaction, 90 ... Silicon substrate, 91 ... Silicon oxide, 92 ... Positive photoresist, 93 ... Photomask, 94 ... Irradiation Area, 95 ... C
HF3 gas, 96 ... Silicon oxide removed by plasma etching, 97 ... Undeveloped positive photoresist, 9
8 ... Silicon oxide microcarrier, 99 ... Etched silicon substrate, 100 ... Substrate, 101 ... Aluminum, 1
02 ... Hydroxyl group layer, 103 ... Sulfhydryl base layer, 104 ... Fluorescent dye (A), 105 ... Fluorescent dye (B), 106 ... Silicon oxide microcarrier modified with two kinds of fluorescent dyes, 107 ... Fluorescent dye (A) Fluorescence spectrum, 108 ... Fluorescence spectrum of fluorescent dye (B), 11
Fluorescence spectrum at 0 ... pH <pK (B), 111 ... p
Fluorescence spectrum when K (B) <pH <pK (A), 11
2 ... pK (A) <pH fluorescence spectrum, 113 ... p
Electric dipole moment when K (B) <pH <pK (A), 114 ... Electric dipole moment when pH <pK (B) 115 ... Electric dipole moment when pK (A) <pH.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】特定な修飾を施された領域を有する球状ま
たは異方性形状を持つ微小担体が物理化学的環境に応じ
て配向することを利用した微小領域の計測方法。
1. A method for measuring a micro region, which utilizes that a micro carrier having a spherical or anisotropic shape having a region with a specific modification is oriented according to a physicochemical environment.
【請求項2】上記微小担体の修飾に抗体、抗原、ビオチ
ン、アビジン、プロティンA、プロティンG、ペプチ
ド、磁性体、エレクトレットなどの結合性または感受性
物質を用い、さらに不均一的な修飾により、物理化学的
環境に応じて配向する微小担体を利用した請求項1記載
の計測方法。
2. Use of a binding or sensitive substance such as an antibody, an antigen, biotin, avidin, protein A, protein G, a peptide, a magnetic substance or an electret for the modification of the microcarrier, and a physical modification by heterogeneous modification. The measuring method according to claim 1, wherein a microcarrier oriented according to a chemical environment is used.
【請求項3】上記微小担体の修飾に色素、蛍光色素、放
射性同位元素などの標識物質を用い、さらに不均一的な
修飾により配向に応じて標識からの信号が変化する微小
担体を利用した請求項1記載の計測方法。
3. A method in which a labeling substance such as a dye, a fluorescent dye, or a radioisotope is used for modifying the microcarrier, and a microcarrier in which a signal from the label changes depending on orientation due to heterogeneous modification is used. Item 1. The measuring method according to item 1.
【請求項4】部分的に形成された蒸着膜への選択的な物
理的吸着、または化学結合を介し特定な修飾を施された
領域を有する球形または異方性形状を持つ微小担体。
4. A microcarrier having a spherical shape or an anisotropic shape, which has a region which is subjected to a specific modification through selective physical adsorption or a chemical bond to a partially formed vapor-deposited film.
【請求項5】蒸着又は放射線照射により担体表面の修飾
機能を部分的に損失させた球形または異方性形状の微小
担体。
5. A spherical or anisotropic microcarrier in which the function of modifying the surface of the carrier is partially lost by vapor deposition or irradiation with radiation.
【請求項6】フォトリトグラフィ−により製造された異
方性形状の微小担体を利用した請求項1記載の計測方
法。
6. The measuring method according to claim 1, wherein an anisotropic microcarrier produced by photolithography is used.
JP12933096A 1996-04-26 1996-04-26 Microcarrier and measurement method using the same Expired - Fee Related JP3539069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12933096A JP3539069B2 (en) 1996-04-26 1996-04-26 Microcarrier and measurement method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12933096A JP3539069B2 (en) 1996-04-26 1996-04-26 Microcarrier and measurement method using the same

Publications (2)

Publication Number Publication Date
JPH09292395A true JPH09292395A (en) 1997-11-11
JP3539069B2 JP3539069B2 (en) 2004-06-14

Family

ID=15006940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12933096A Expired - Fee Related JP3539069B2 (en) 1996-04-26 1996-04-26 Microcarrier and measurement method using the same

Country Status (1)

Country Link
JP (1) JP3539069B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10100819C2 (en) * 2000-05-12 2003-06-12 Genemaster Lifescience Co Manufacturing process for microcarriers and test methods with the microcarriers
WO2007086189A1 (en) * 2006-01-30 2007-08-02 Konica Minolta Medical & Graphic, Inc. Fluorescent labeling substance of nanoparticle or nanorod
JP2012198058A (en) * 2011-03-18 2012-10-18 Hitachi Ltd Biological molecule measurement system and biological molecule measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10100819C2 (en) * 2000-05-12 2003-06-12 Genemaster Lifescience Co Manufacturing process for microcarriers and test methods with the microcarriers
WO2007086189A1 (en) * 2006-01-30 2007-08-02 Konica Minolta Medical & Graphic, Inc. Fluorescent labeling substance of nanoparticle or nanorod
JP2012198058A (en) * 2011-03-18 2012-10-18 Hitachi Ltd Biological molecule measurement system and biological molecule measurement method

Also Published As

Publication number Publication date
JP3539069B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
US7691648B2 (en) Target substance detecting element, target substance detection apparatus and target substance detection method
US5376556A (en) Surface-enhanced Raman spectroscopy immunoassay
US5445972A (en) Raman label and its conjugate in a ligand-binding assay for a test sample analyte
US3926564A (en) Substrate for immunological tests and method of fabrication thereof
US8105819B2 (en) Plasmon fluorescence augmentation for chemical and biological testing apparatus
Zhou et al. Immunoassay for tumor markers in human serum based on Si nanoparticles and SiC@ Ag SERS-active substrate
EP0529775A1 (en) Arraying process of ultra-small objects and fabrication process of ultra-fine structure by using the arraying process
JP2007526488A (en) Method for detecting molecular binding by surface-sensitized Raman spectroscopy
JPH02504069A (en) Optimal capacitive sensor for chemical analysis and measurement
US7129096B2 (en) Sensor for use in testing biological, biochemical, chemical or environmental samples
Pollap et al. Recent advances in sandwich sers immunosensors for cancer detection
JPH07120470A (en) Visual immunoassay for detecting ligand based on use of opaque plastic carrier
Ozhikandathil et al. Thermally-driven micro-walled nano-composite microfluidic platform for controlled localized surface plasmonic detection of bovine growth hormones
JP4584352B1 (en) Biological component concentration measuring method and measuring apparatus
US20060141486A1 (en) Porous substrates and arrays comprising the same
US20220137037A1 (en) Device and method for detecting protein-based marker, and method for manufacturing chip
JP4497903B2 (en) Protein chip and biosensor using the same
JP3539069B2 (en) Microcarrier and measurement method using the same
Mayer et al. Slide-format proteomic biochips based on surface-enhanced nanocluster-resonance
Zou et al. Fabrication of novel biological substrate based on photolithographic process for surface enhanced Raman spectroscopy
Furuki et al. Surface plasmon resonance sensors utilizing microfabricated channels
Weiss-Wichert et al. A new analytical device based on gated ion channels: a peptide-channel biosensor
Tronin et al. Optimisation of IgG Langmuir film deposition for application as sensing elements
JP2745683B2 (en) Immunoassay
Li et al. SERS detection of protein biochip fabricated by etching polystyrene template

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20040119

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

LAPS Cancellation because of no payment of annual fees