JPH09292339A - Method and device for measuring reflective index without destruction - Google Patents

Method and device for measuring reflective index without destruction

Info

Publication number
JPH09292339A
JPH09292339A JP10502696A JP10502696A JPH09292339A JP H09292339 A JPH09292339 A JP H09292339A JP 10502696 A JP10502696 A JP 10502696A JP 10502696 A JP10502696 A JP 10502696A JP H09292339 A JPH09292339 A JP H09292339A
Authority
JP
Japan
Prior art keywords
refractive index
prism
measured
substance under
under test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10502696A
Other languages
Japanese (ja)
Other versions
JP3269772B2 (en
Inventor
Kenji Kawaguchi
賢治 川口
Hiroshi Tsuda
博司 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP10502696A priority Critical patent/JP3269772B2/en
Publication of JPH09292339A publication Critical patent/JPH09292339A/en
Application granted granted Critical
Publication of JP3269772B2 publication Critical patent/JP3269772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to specify the surface material of a structure non-destructively by providing flexible transparent material between a substance under test and the measuring surface of a prism, compressing the prism to the substance under test and measuring the reflective index of the substance under inspection. SOLUTION: A flexible transparent film 14 is stuck to measuring surface 11a of a prism 11. The measuring surface 11a is compressed to a substance under inspection 30, such as a painted film through the transparent film 14. A state, wherein layer of air is made not to be present between the measuring surface 11a and the substance under test 30, is formed, and the reflective index of the substance under test 30 is measured. In this case, the reflective index of the transparent film 14 is selected as the value between the refractive indexes of, e.g. two materials constituting the substance under test 30. For the reflective index of the prism 11, a value larger than that of the transparent film 14 is selected. Thus, the refractive index can be measured by a light-receiving element (CCD sensor) 17, since the critical angle is generated when the material having the small reflective index is measured. When the material having large refractive index is measured, the critical angle is not generated. Therefore, the reflective index of the material cannot be measured. Therefore, the material in the substance under test 30 when the refractive index can be measured, is the material with the small refractive index.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非破壊で物体の屈折
率を特定する方法と装置に関し、特に、塗装膜の物質を
特定する方法と装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nondestructive method and apparatus for identifying the refractive index of an object, and more particularly to a method and apparatus for identifying the substance of a coating film.

【0002】[0002]

【従来技術】製品の一部をなす物質の種類を特定する必
要があるときには、非破壊による物質特定方法を用いる
必要がある。
2. Description of the Related Art When it is necessary to identify the type of substance that forms a part of a product, it is necessary to use a non-destructive substance identification method.

【0003】例えば、自動車の塗装にはアクリル系の塗
料のみを用いたものと、アクリル系の塗料にフッソ樹脂
を混合した塗料を用いて、脱汚れ性、発水性を向上させ
るようにしたものがあるが、この2種の塗装膜は外観上
の区別がつかないことから、車をユーザに販売するとき
に使用塗料の種類を確認するための方法がない。
[0003] For example, for painting automobiles, there are one that uses only acrylic paint and one that mixes acrylic paint with fluorine resin to improve the stain resistance and water repellency. However, since these two types of coating films are indistinguishable from each other in appearance, there is no method for confirming the type of paint used when a car is sold to users.

【0004】このため、使用されている塗料の種類を特
定する必要があり、この場合、塗装膜の一部を削り取っ
て何らかの方法、例えば化学的な方法で分析することは
可能であるが、塗装膜の一部を削り取ることは現実的で
なく、車に傷を付けずに確認できる方法が求められてい
る。
Therefore, it is necessary to specify the type of paint used, and in this case, it is possible to scrape off a part of the coating film and analyze it by some method, for example, a chemical method. It is not realistic to scrape off a part of the membrane, and there is a need for a method that allows confirmation without damaging the car.

【0005】別の方法として塗装膜を構成する塗料の屈
折率を測定し、該屈折率から塗料の種類を特定すること
が可能である。屈折率を測定する方法として、全反射法
があり、図6は該全反射法による屈折率の測定装置の概
略を示すものである。プリズム1の3面の中の一面1a
に試料を乗せ、他の一側面1inに配置した光源3より拡
散光を入射させると、試料の臨界角より大きい角度の入
射光は全反射するが、臨界角より小さい角度の入射光は
透過光となる。
As another method, it is possible to measure the refractive index of the coating material forming the coating film and specify the type of coating material from the refractive index. As a method of measuring the refractive index, there is a total reflection method, and FIG. 6 shows an outline of a refractive index measuring device by the total reflection method. One surface 1a of the three surfaces of the prism 1
When the sample is placed on and the diffused light is made incident from the light source 3 arranged on the other side surface 1in, the incident light having an angle larger than the critical angle of the sample is totally reflected, but the incident light having an angle smaller than the critical angle is transmitted light. Becomes

【0006】この透過光と反射光の境界位置、あるいは
反射光量を上記プリズム1の入射側の面1inに対抗する
側の面1ouに配置したCCDセンサ7で検出して、試料
の屈折率を決定するようになっている。
The boundary position between the transmitted light and the reflected light, or the amount of the reflected light is detected by the CCD sensor 7 arranged on the surface 1ou on the side opposite to the incident side surface 1in of the prism 1, and the refractive index of the sample is determined. It is supposed to do.

【0007】この方法は、液体の屈折率の測定に有利で
あるが、固体であっても、プリズム1の表面と試料との
間に高屈折率の液体を満たすことによって測定可能とな
る。従って、上記のように剥ぎ取った塗装膜をプリズム
1の試料面に乗せ、かつ上記高屈折率の液体で空気層が
形成されない状態にすることによって、塗装膜の屈折率
を得ることが出来、この屈折率から塗料の種類を特定す
ることが可能となる。
This method is advantageous for measuring the refractive index of a liquid, but even a solid can be measured by filling a high refractive index liquid between the surface of the prism 1 and the sample. Therefore, the refractive index of the coating film can be obtained by placing the coating film stripped off as described above on the sample surface of the prism 1 and by making the air layer not formed by the liquid having the high refractive index, It is possible to identify the type of paint from this refractive index.

【0008】[0008]

【発明が解決しようとする課題】上記化学分析等による
と、塗装膜の一部を剥ぎ取る必要があり現実的ではない
し、また、手数、時間ともに増加する欠点がある。上記
屈折率測定装置を用いた場合には、測定時間は短縮でき
るが、塗装膜の一部を剥ぎ取る必要がある点では化学分
析法と変わりない。
According to the above chemical analysis and the like, it is necessary to remove a part of the coating film, which is not realistic, and there is a drawback that both the number of steps and the time increase. When the above refractive index measuring device is used, the measuring time can be shortened, but it is the same as the chemical analysis method in that it is necessary to remove a part of the coating film.

【0009】本発明は上記従来の事情に鑑みて提案され
たものであって、塗装膜を剥ぎ取ることなく、その屈折
率から塗料の種類を割り出すことができ、しかも、塗装
膜だけでなく、あらゆる製品あるいは構造物の表面物質
を非破壊で割り出すことができる方法と装置を提供する
ことを目的とするものである。
The present invention has been proposed in view of the above-mentioned conventional circumstances, and it is possible to determine the type of coating material from the refractive index of the coating film without stripping off the coating film. It is an object of the present invention to provide a method and a device capable of nondestructively determining surface substances of all products or structures.

【0010】[0010]

【課題を解決するための手段】本発明は上記従来の事情
に鑑みて提案されたものであって、全反射法による屈折
率の測定方法において、図1に示すように、被検体30
とプリズム11の測定面11aとの間に、可撓性の透明
物質14を介在させ、プリズム11を被検体30に押し
つけることにより、被検体30とプリズム11の間に空
気層が形成されない状態で該被検体30の屈折率の測定
をするようにしたものである。
The present invention has been proposed in view of the above conventional circumstances, and in a method of measuring a refractive index by a total reflection method, as shown in FIG.
The flexible transparent substance 14 is interposed between the prism 11 and the measurement surface 11a of the prism 11, and the prism 11 is pressed against the subject 30, so that an air layer is not formed between the subject 30 and the prism 11. The refractive index of the subject 30 is measured.

【0011】上記方法において、図2(a) 、図2(b) に
示すように可撓性の透明物質14がプリズム11の測定
面11aと被検体30との間に介在している状態と、そ
うでない状態とは入射光と出射光の角度が変わるわけで
はないので、測定される屈折率が変化する訳ではない。
しかも、上記方法により被検体30に上記可撓性の透明
物質14を押しつけ、上記被検体30とプリズム11の
測定面11aとの間に空気層が介在出来ない状態を形成
することができるので、正確な屈折率の測定ができるこ
とになる。
In the above method, as shown in FIGS. 2 (a) and 2 (b), the flexible transparent substance 14 is interposed between the measurement surface 11a of the prism 11 and the subject 30. In the other state, the angle between the incident light and the emitted light does not change, so the measured refractive index does not change.
Moreover, since the flexible transparent substance 14 is pressed against the subject 30 by the above method, a state in which an air layer cannot be interposed between the subject 30 and the measurement surface 11a of the prism 11 can be formed. It will be possible to accurately measure the refractive index.

【0012】この方法により、例えば自動車の車体表面
の塗装膜の屈折率の測定が可能となり、非破壊による屈
折率の測定しいては物質の特定をすることが可能とな
る。更に、上記方法を実現する装置としては、プリズム
11の測定面に可撓性の透明物質14を貼り着けた状態
の装置が使用される。
According to this method, for example, the refractive index of the coating film on the surface of the car body of an automobile can be measured, and the substance can be specified by non-destructive measurement of the refractive index. Further, as a device for realizing the above method, a device in which a flexible transparent substance 14 is attached to the measurement surface of the prism 11 is used.

【0013】[0013]

【実施の形態】図3は本願発明に使用する全反射法を用
いた屈折率計を示すものであり、センサ部10とゲージ
部20がセパレートになった構成となっている。上記セ
ンサ部10の本体はペンタイプのハウジング19よりな
り、該ハウジング19内の先端の開口部18に、プリズ
ム11が、その計測面11aが外則を向くように配置さ
れる。
FIG. 3 shows a refractometer using the total reflection method used in the present invention, in which the sensor portion 10 and the gauge portion 20 are separated. The main body of the sensor unit 10 is composed of a pen-type housing 19, and a prism 11 is arranged in an opening 18 at the tip of the housing 19 such that a measurement surface 11a of the prism 11 faces the external law.

【0014】上記プリズム11の後方には光源13、C
CD17等が配置され、上記光源13への電力の供給は
ゲージ部20に備えた電池よりなされ、また、上記CC
D17よりの信号はゲージ部20に伝送されて屈折率を
算出するための演算がなされる。
Behind the prism 11, light sources 13 and C are provided.
A CD 17 or the like is arranged, and power is supplied to the light source 13 from a battery provided in the gauge section 20.
The signal from D17 is transmitted to the gauge section 20 and calculation for calculating the refractive index is performed.

【0015】上記プリズム11の計測面11aには可撓
性の透明膜14が貼り付けられている。これによって、
上記可撓性の透明膜14を介してプリズム11の計測面
11aを被検体30に押しつけることができるので、プ
リズム11の計測面11aと被検体30との間に空気層
を介在させない状態を形成することができる。
A flexible transparent film 14 is attached to the measurement surface 11a of the prism 11. by this,
Since the measurement surface 11a of the prism 11 can be pressed against the subject 30 via the flexible transparent film 14, a state in which no air layer is interposed between the measurement surface 11a of the prism 11 and the subject 30 is formed. can do.

【0016】上記方法において、可撓性の透明物質14
の屈折率の選択は例えば以下のように考えることができ
る。まず、2種の物質(例えば上記した自動車の塗装膜
がアクリル系塗料であるかフッ素樹脂混合の塗料である
か)の分別のみを目的とする場合、上記可撓性の透明物
質14として、被検体30としての2種の物質30-1,
30-2の屈折率の中間の値を選択するとともに、プリズ
ム11の屈折率は透明物質14より大きい値を選択す
る。これによって、上記2つの被検体30-1, 30-2の
内、屈折率の小さい方の被検体30-1を測定した場合に
は、図4(a) に示すように、可撓性の透明物質の屈折率
>被検体30-1の屈折率であるので、臨界角を生じるこ
とになりCCDセンサ17は屈折率を測定することが可
能となる。屈折率の大きい方の被検体30-2を測定した
場合には、図4(b) に示すように、可撓性の透明物質の
屈折率<被検体30-2の屈折率であるので、臨界角を生
じることはなく、従ってCCDセンサ17は被検体30
-2の屈折率を測定することができない。この場合、可撓
性の透明物質14への光の入射角が大きくなるに従って
プリズム11と可撓性の透明物質14との境界面で全反
射が発生し、CCD17により可撓性の透明物質14の
屈折率が測定されることになる。従って、被検体の屈折
率を測定することができたときは、被検体は屈折率の小
さい方の物質であり、可撓性の透明物質14の屈折率を
検出したときは被検体は屈折率の大きい方の物質である
ことが判る。
In the above method, the flexible transparent material 14
The selection of the refractive index of can be considered as follows, for example. First, when the purpose is only to separate two kinds of substances (for example, whether the above-mentioned automobile coating film is an acrylic paint or a fluororesin mixed paint), the flexible transparent substance 14 is Two kinds of substances 30-1 as the sample 30
The intermediate value of the refractive index of 30-2 is selected, and the refractive index of the prism 11 is selected to be larger than the transparent substance 14. As a result, when the object 30-1 having the smaller refractive index of the two objects 30-1 and 30-2 is measured, as shown in FIG. Since the refractive index of the transparent substance> the refractive index of the subject 30-1, a critical angle is generated, and the CCD sensor 17 can measure the refractive index. When the object 30-2 having the larger refractive index is measured, the refractive index of the flexible transparent material is smaller than the refractive index of the object 30-2 as shown in FIG. 4 (b). There is no critical angle, so the CCD sensor 17 is
-It is not possible to measure the refractive index of -2. In this case, as the incident angle of light on the flexible transparent material 14 increases, total reflection occurs at the boundary surface between the prism 11 and the flexible transparent material 14, and the CCD 17 causes the flexible transparent material 14 to move. Will be measured. Therefore, when the refractive index of the subject can be measured, the subject is the substance having a smaller refractive index, and when the refractive index of the flexible transparent substance 14 is detected, the subject has the refractive index. It is understood that it is the substance of the larger one.

【0017】次いで、純粋に被検体の屈折率を求めよう
とするときは、上記可撓性の透明物質の屈折率は大きい
方がよい。すなわち図5(a) に示すように、屈折率が低
いときには、入射光と出入射のプリズム面での位置
0 ,P1 の隔たりが大きくなるのに対して、図5(b)
に示すように、屈折率が高いときには、入射光と出射光
のプリズム面での位置P0 ,P1 の隔たりが小さくな
り、従って、出射光を受光素子17上に集光しやすくな
り、設計が容易となる。
Next, when the refractive index of the subject is to be obtained purely, the refractive index of the flexible transparent material should be large. That is, as shown in FIG. 5 (a), when the refractive index is low, the distance between the incident light and the incident / incident positions P 0 and P 1 on the prism surface is large, whereas in FIG. 5 (b).
As shown in (1), when the refractive index is high, the distance between the positions P 0 and P 1 of the incident light and the outgoing light on the prism surface becomes small, so that the outgoing light is easily collected on the light receiving element 17, and Will be easier.

【0018】下記表1は上記の測定方法で実際の塗装面
31の屈折率を測定した結果を示すものである。アクリ
ル系樹脂塗料である,のサンプル群とフッ素系樹脂
塗料である,,のサンプル群の屈折率はレンジが
異なっている。従って、測定結果を比較することによっ
て、塗装面を構成する塗料の種類を割り出すことが可能
となる。
Table 1 below shows the result of measuring the refractive index of the actual coated surface 31 by the above-mentioned measuring method. The range of the refractive index of the sample group of acrylic resin paint is different from that of the sample group of fluorine resin paint. Therefore, by comparing the measurement results, it is possible to determine the type of paint that constitutes the painted surface.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】以上説明したように、本発明は目的とす
る被検体が構成する商品、あるいは構造物を破壊しない
で、該試料の物質を特定することができる効果がある。
As described above, the present invention has the effect that the substance of the sample can be specified without destroying the product or structure of the object to be examined.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の基本構成図である。FIG. 1 is a basic configuration diagram of the present invention.

【図2】 本発明の原理図である。FIG. 2 is a principle diagram of the present invention.

【図3】 本発明の一実施例構成図である。FIG. 3 is a configuration diagram of an embodiment of the present invention.

【図4】 2つの物質を分別する場合の説明図である。FIG. 4 is an explanatory diagram for separating two substances.

【図5】 可撓性物質の屈折率の相違を示す説明図であ
る。
FIG. 5 is an explanatory diagram showing a difference in refractive index of flexible materials.

【図6】 従来例を示す構成図である。FIG. 6 is a configuration diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

11 プリズム 14 可撓性の透明物質 30 被検体 11 Prism 14 Flexible Transparent Material 30 Subject

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 全反射法による屈折率の測定方法にお
いて、被検体とプリズムの測定面との間に、可撓性の透
明物質を介在させ、プリズムを被検体に押しつけること
により、被検体とプリズムの間に空気層が形成されない
状態で該被検体の屈折率の測定をすることを特徴とする
非破壊による屈折率測定方法。
1. In the method of measuring the refractive index by the total reflection method, a flexible transparent substance is interposed between the subject and the measurement surface of the prism, and the prism is pressed against the subject, whereby A non-destructive refractive index measuring method, characterized in that the refractive index of the subject is measured in a state where no air layer is formed between the prisms.
【請求項2】 上記被検体が物体の塗装膜である請求
項1に記載の非破壊による屈折率測定方法。
2. The non-destructive refractive index measuring method according to claim 1, wherein the object is a coating film of an object.
【請求項3】 全反射法による屈折率の測定装置にお
いて、プリズムの測定面に可撓性の透明物質を貼り着
け、該プリズムを被検体に押しつけることにより、被検
体とプリズムの間に空気層が形成されない状態で該被検
体の屈折率の測定をすることを特徴とする非破壊による
屈折率測定装置。
3. An apparatus for measuring a refractive index by the total reflection method, wherein a flexible transparent material is attached to a measurement surface of a prism, and the prism is pressed against a subject, thereby forming an air layer between the subject and the prism. A non-destructive refractive index measuring device, characterized in that the refractive index of the subject is measured in a state in which no film is formed.
JP10502696A 1996-04-25 1996-04-25 Non-destructive refractive index measuring method and apparatus Expired - Fee Related JP3269772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10502696A JP3269772B2 (en) 1996-04-25 1996-04-25 Non-destructive refractive index measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10502696A JP3269772B2 (en) 1996-04-25 1996-04-25 Non-destructive refractive index measuring method and apparatus

Publications (2)

Publication Number Publication Date
JPH09292339A true JPH09292339A (en) 1997-11-11
JP3269772B2 JP3269772B2 (en) 2002-04-02

Family

ID=14396536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10502696A Expired - Fee Related JP3269772B2 (en) 1996-04-25 1996-04-25 Non-destructive refractive index measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP3269772B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630542A1 (en) * 2003-05-29 2006-03-01 Aisin Seiki Kabushiki Kaisha Reflection type terahertz spectrometer and spectrometric method
CN104792733A (en) * 2015-04-04 2015-07-22 华中科技大学 Quick calibration module and application

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630542A1 (en) * 2003-05-29 2006-03-01 Aisin Seiki Kabushiki Kaisha Reflection type terahertz spectrometer and spectrometric method
EP1630542A4 (en) * 2003-05-29 2007-04-11 Aisin Seiki Reflection type terahertz spectrometer and spectrometric method
US7488940B2 (en) 2003-05-29 2009-02-10 Aisin Seiki Kabushiki Kaisha Reflection type terahertz spectrometer and spectrometric method
CN104792733A (en) * 2015-04-04 2015-07-22 华中科技大学 Quick calibration module and application
CN104792733B (en) * 2015-04-04 2017-05-17 华中科技大学 Quick calibration module and application

Also Published As

Publication number Publication date
JP3269772B2 (en) 2002-04-02

Similar Documents

Publication Publication Date Title
DE59410197D1 (en) Optical method and device for analyzing substances on sensor surfaces
ATE6888T1 (en) ELLIPSOMETRIC METHOD AND ELLIPSOMETRIC DEVICE FOR STUDYING THE PHYSICAL PROPERTIES OF THE SURFACE OF A SAMPLE.
ATE190719T1 (en) ARRANGEMENT FOR ANALYZING SUBSTANCES ON THE SURFACE OF AN OPTICAL SENSOR
DE59107707D1 (en) Analysis system and method for determining an analyte in a fluid sample
CN103884401B (en) The detection means of optical fiber oil water surface and detection method
CN103759675B (en) A kind of synchronization detecting method for optical element aspheric surface micro structure
EP0534002A1 (en) Method for determining the position and the configuration of an object under observation
JPH09292339A (en) Method and device for measuring reflective index without destruction
KR20090055081A (en) Apparatus and method for non-contact measuring film thickness from the surface roughness
EP0222346B1 (en) Method of measuring a sound pressure distribution in a solid body due to a ultrasonic probe by using photoelasticity
JPS5887444A (en) Method of executing cracking test and test piece for said method
KR940022056A (en) Distance measuring method and device
DE69921821D1 (en) OPTICAL METHOD FOR DETECTING COLOR-MARKED DIESEL FUEL IN UNMARKETED DIESEL FUEL
RU2300077C1 (en) Remote method of measuring thickness of oil product thick films onto water surface
SE9800590D0 (en) Determination of polymerization / coagulation in a fluid
KR100240800B1 (en) An apparatus for measuring contact pressure of tire
US20030206291A1 (en) Optical configuration and method for differential refractive index measurements
Teller Holographic Inspection for Debonds in Sonar Transducer Head Mass/Shroud Subassemblies
TWM429094U (en) Cascade-type surface plasmon resonance fiber sensor and the apparatus comprising thereof
JPS62116204A (en) Method and apparatus for measuring contact area
Cielo Optical inspection by internal reflection and spatial filtering
JP3365881B2 (en) Lens refractive index inspection device
RU2113707C1 (en) Device measuring mechanical damages to fruit
Sarr Aircraft exterior scratch measurement system using machine vision
CN112362590A (en) Oil pollution detection device and method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees