JPH09292192A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH09292192A
JPH09292192A JP10709796A JP10709796A JPH09292192A JP H09292192 A JPH09292192 A JP H09292192A JP 10709796 A JP10709796 A JP 10709796A JP 10709796 A JP10709796 A JP 10709796A JP H09292192 A JPH09292192 A JP H09292192A
Authority
JP
Japan
Prior art keywords
tube
wall
flat plate
front edge
fluid flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10709796A
Other languages
Japanese (ja)
Other versions
JP3731247B2 (en
Inventor
Takahito Nozaki
孝仁 野崎
Seiichi Kato
精一 加藤
Akira Yamanaka
章 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP10709796A priority Critical patent/JP3731247B2/en
Publication of JPH09292192A publication Critical patent/JPH09292192A/en
Application granted granted Critical
Publication of JP3731247B2 publication Critical patent/JP3731247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the quantity of heat exchange without reducing the distance between fins in a heat exchanger provided with inner fins. SOLUTION: A protruding part 30 that protrudes from a side surface of a flat plate part 22 is provided. An opening part 34 is formed on the upper flow side of the inlet air flow of the protruding part 30 and the lower flow side of it is blocked by a blocking wall 38. A guide wall part 39 is formed with the blocking wall parts 38 inclining to approach each other. With this, the length of a front edge part 31 is increased and the generation of dead water region at the back surface of the blocking wall is prevented. Therefore, the heat exchange capacity of the inner fins is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、流体が流れるチュ
ーブ内に熱交換を促進するフィン(以下、インナーフィ
ンと呼ぶ。)を有する熱交換器に関するもので、エンジ
ンの吸入空気を排気圧等を利用して圧縮する、過給機付
きエンジンの吸入空気の冷却を行うインタークーラに用
いて有効である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger having fins (hereinafter referred to as inner fins) for promoting heat exchange in a tube through which a fluid flows. It is effective for use as an intercooler that cools the intake air of a supercharged engine that is compressed by using it.

【0002】[0002]

【従来の技術】インタークーラは、上述のように、過給
機にて圧縮された高温高圧の吸入空気を冷却して空気の
充填効率を向上させるものであるので、理想的には、圧
力損失が発生することなく吸入空気の冷却のみを行うこ
とが望ましい。そして、従来、インタークーラに用いら
れるインナーフィンとしては、例えば特開平3−843
96号公報に記載の如く、矩形波状に折り曲げ形成され
たインナーフィンの一部を切断する切断部を有するもの
がある。
2. Description of the Related Art As described above, an intercooler cools high-temperature and high-pressure intake air compressed by a supercharger to improve air filling efficiency. It is desirable that only the intake air be cooled without causing the above. And, as an inner fin conventionally used for an intercooler, for example, JP-A-3-843
As described in Japanese Patent Publication No. 96, some of them have a cutting portion that cuts a part of the inner fin bent and formed in a rectangular wave shape.

【0003】[0003]

【発明が解決しようとする課題】ところで、インナーフ
ィンに限らず、熱交換を促進するフィンの熱交換量を増
大させるには、フィンピッチを小さくしてフィンの表面
積を増大させる手段がある。しかし、この手段ではフィ
ンピッチが小さくなるので、フィンを通過する流体の圧
力損失が大きくなる。
By the way, in order to increase the heat exchange amount of not only the inner fins but also the fins for promoting heat exchange, there is a means for decreasing the fin pitch to increase the surface area of the fins. However, since the fin pitch is reduced by this means, the pressure loss of the fluid passing through the fin is increased.

【0004】このため、インタークーラの熱交換量を増
大させるためにインナーフィンのフィンピッチを小さく
すると、圧力損失が大きくなるので、却って、吸入空気
の充填効率が低下してしまうという問題が発生してしま
う。本発明は、上記点に鑑み、インナーフィンを有する
熱交換器において、フィンピッチを小さくすることな
く、熱交換量を増大させることを目的とする。
Therefore, if the fin pitch of the inner fins is reduced in order to increase the amount of heat exchange of the intercooler, the pressure loss increases, which rather causes a problem that the intake air charging efficiency decreases. Will end up. In view of the above points, the present invention has an object to increase the amount of heat exchange in a heat exchanger having inner fins without reducing the fin pitch.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために、以下の技術的手段を用いる。請求項1〜
5に記載の発明では、複数個の結合部(32、33)の
うち、一の結合部(32)から前縁部(31)に沿って
その一の結合部(32)と隣合う他の結合部(33)に
至る前縁部(31)の長さ(L1 )は、その一の結合部
(32)から他の結合部(33)間の距離(L2 )より
長いことを特徴とする。
The present invention uses the following technical means in order to achieve the above object. Claim 1
In the invention described in 5, among the plurality of coupling portions (32, 33), another coupling portion (32) adjacent to the one coupling portion (32) along the front edge portion (31) is provided. The length (L 1 ) of the front edge portion (31) reaching the joint portion (33) is longer than the distance (L 2 ) between the one joint portion (32) and the other joint portion (33). And

【0006】これにより、インナーフィン(20)の前
縁部23に加えて、一の結合部(32)からその他の前
縁部(31)に沿って結合部(33)に至る突出部(3
0)の前縁部(31)が形成されているので、インナー
フィン(20)全体としてフィンの前縁部の総長さを増
し、インナーフィン(20)の熱交換量が増大する。請
求項2に記載の発明では、突出壁(35)によって囲ま
れた空間(37)内に前縁部(31)側から流入した流
体が空間(37)内から流出する流出口(42)とを有
することを特徴とする。
Thus, in addition to the front edge portion 23 of the inner fin (20), the protrusion (3) extending from one joint portion (32) to the joint portion (33) along the other front edge portion (31).
Since the front edge portion (31) of No. 0) is formed, the total length of the front edge portion of the fin as the entire inner fin (20) is increased, and the heat exchange amount of the inner fin (20) is increased. According to the second aspect of the present invention, the fluid flows from the front edge portion (31) side into the space (37) surrounded by the protruding wall (35) and flows out from the space (37). It is characterized by having.

【0007】請求項3に記載の発明では、突出壁(3
5)には、流出口(42)を閉塞する閉塞壁部(38)
が形成され、平板部(22)には、閉塞壁部(38)と
衝突する流体を突出部(30)が突出する向きと反対側
に導く導口(40)が形成されていることを特徴とす
る。これにより、空間(37)内流入した流体は導口
(40)から平板部(22)に対して突出部(30)と
反対側に流れる。したがって、前縁部(31)からの熱
伝達は、突出壁(35)の両壁面から発生するので、よ
り一層インナーフィン(20)の熱交換量が増大する。
According to the third aspect of the invention, the protruding wall (3
In 5), a closing wall portion (38) for closing the outlet (42).
And the flat plate portion (22) is provided with a guide port (40) for guiding the fluid colliding with the closing wall portion (38) to the side opposite to the direction in which the protruding portion (30) projects. And As a result, the fluid flowing into the space (37) flows from the guide port (40) to the flat plate portion (22) on the side opposite to the protruding portion (30). Therefore, heat transfer from the front edge portion (31) occurs from both wall surfaces of the projecting wall (35), so that the heat exchange amount of the inner fin (20) further increases.

【0008】請求項4に記載の発明では、空間(37)
外を突出壁(35)に沿って流れる流体を、閉塞壁部
(38)のうち流体流れ下流側に位置する裏面(38
a)側に導く案内壁部(39)が形成されていることを
特徴とする。これにより、後述するように、流体流れの
よどみ(死水域)が発生し易い閉塞壁部(38)の裏面
(38a)側に流体を導く案内壁部39が形成されてい
るので、流体流れのよどみの発生を抑制することができ
る。したがって、インナーフィン(20)全体の熱伝達
率を向上させることができる。
In the invention according to claim 4, the space (37)
The fluid flowing outside along the protruding wall (35) is transferred to the back surface (38) located on the downstream side of the fluid flow in the closing wall portion (38).
It is characterized in that a guide wall portion (39) for leading to the a) side is formed. Thereby, as described later, since the guide wall portion 39 that guides the fluid is formed on the back surface (38a) side of the closing wall portion (38) where the stagnation (dead water region) of the fluid flow is likely to occur, Generation of stagnation can be suppressed. Therefore, the heat transfer coefficient of the entire inner fin (20) can be improved.

【0009】請求項5に記載の発明では、隣り合う突出
部(30)間には、平板部(22)を切断する切断部
(41)が形成されていることを特徴とする。なお、上
記各手段の括弧内の符号は、後述する実施形態記載の具
体的手段との対応関係を示すものである。
The invention according to claim 5 is characterized in that a cutting portion (41) for cutting the flat plate portion (22) is formed between the adjacent protruding portions (30). In addition, the code | symbol in the parenthesis of each said means shows the correspondence with the concrete means of embodiment mentioned later.

【0010】[0010]

【発明の実施の形態】以下、本発明を図に示す実施の形
態について説明する。 (第1実施形態)本実施形態は本発明に係る熱交換器を
インタークーラに適用したもので、図1はインタークー
ラ1の全体図であり、図2は図1のA−A断面図であ
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention; (First Embodiment) In this embodiment, the heat exchanger according to the present invention is applied to an intercooler. FIG. 1 is an overall view of the intercooler 1, and FIG. 2 is a sectional view taken along line AA of FIG. is there.

【0011】このインタークーラ1には、図1に示すよ
うに、複数本のアルミニウム製の偏平チューブ(チュー
ブ)2が設けられており、この偏平チューブ2間には、
熱交換を促進する波形状に形成されたアルミニウム製の
クーリングフィン3がそれぞれ配置されている。また、
4は偏平チューブ2内を流れる吸入空気を分配集合させ
る樹脂製のタンク部である。
As shown in FIG. 1, the intercooler 1 is provided with a plurality of flat tubes (tubes) 2 made of aluminum. Between the flat tubes 2,
Aluminum cooling fins 3 each having a corrugated shape that promotes heat exchange are arranged. Also,
Reference numeral 4 denotes a resin tank portion for distributing and collecting intake air flowing through the flat tube 2.

【0012】なお、偏平チューブ2の内外壁にはろう材
が被覆されており、この被覆されたろう材によりクーリ
ングフィン3および後述するインナーフィン2がろう付
けされている。また、偏平チューブ2内には、上述の如
く、過給機にて圧縮された高温高圧の吸入空気が流れて
おり、この偏平チューブ2内には、図2に示すように、
矩形状に折り曲げ形成され、吸入空気の熱交換を促進す
るアルミニウム製のインナーフィン20が配置されてい
る。このインナーフィン20に形成された吸入空気の流
れに対して平行な平板部21、22のうち平板部21
は、偏平チューブ2の内壁2aにろう付けされており、
平板部22には、図3に示すように、平板部22の片面
側に吸入空気の流れに対して交差するように突出する複
数個の突出部30が、平板部22とともに一体形成され
ている。なお、突出部30の詳細については後述する。
A brazing material is coated on the inner and outer walls of the flat tube 2, and the cooling fin 3 and an inner fin 2 described later are brazed by the coated brazing material. Further, as described above, high-temperature and high-pressure intake air compressed by the supercharger flows in the flat tube 2, and in the flat tube 2, as shown in FIG.
Inner fins 20 made of aluminum that are bent in a rectangular shape and that promote heat exchange of intake air are arranged. Of the flat plate portions 21 and 22 formed on the inner fin 20 and parallel to the flow of the intake air, the flat plate portion 21
Is brazed to the inner wall 2a of the flat tube 2,
As shown in FIG. 3, the flat plate portion 22 is integrally formed with a plurality of projecting portions 30 projecting on one side of the flat plate portion 22 so as to intersect with the flow of the intake air. . The details of the protrusion 30 will be described later.

【0013】次に、突出部30について述べる。突出部
30のうち、吸入空気の流れに対する突出部30の前縁
部31は、図4に示すように、結合部32、33の2か
所で平板部22と結合するとともに、両結合部32、3
3を結ぶ直線が吸入空気の流れに略直交するように交差
している。そして、結合部32から前縁部31に沿って
結合部33に至る前縁部31の長さL1 が、結合部32
から結合部33間の距離L2 より長くなっており、これ
により、突出部30の吸入空気上流側にて開口する三角
形状の開口部34を形成している。
Next, the protrusion 30 will be described. As shown in FIG. 4, the front edge portion 31 of the protrusion 30 of the protrusion 30 with respect to the flow of the intake air is coupled to the flat plate portion 22 at two locations of the coupling portions 32 and 33, and both the coupling portions 32 are connected. Three
The straight line connecting 3 intersects so that the flow of intake air is substantially orthogonal. The length L 1 of the front edge portion 31 extending from the joint portion 32 along the front edge portion 31 to the joint portion 33 is the joint portion 32.
Is longer than the distance L 2 between the coupling portions 33, thereby forming a triangular opening 34 that opens on the intake air upstream side of the protrusion 30.

【0014】また、前縁部31から吸入空気流れの下流
側に向かって延びる突出壁35が形成されており、この
突出壁35には、図5に示すように、前縁部31から所
定長さ平板部22と平行に延びた平行突出壁部36と、
平行突出壁部36によって囲まれた空間37の下流側の
閉塞する閉塞壁部38とが形成されている。そして、閉
塞壁部38のうち吸入空気流れの両側方側の部位は、図
4に示すように、互いに吸入空気流れ下流側に向かうほ
ど近づくように傾斜することにより、空間37外を突出
壁35に沿って流れる吸入空気を、閉塞壁部38のうち
吸入空気流れ下流側に位置する裏面38a(図5参照)
側に導く案内壁部39を形成している。
A projecting wall 35 extending from the front edge portion 31 toward the downstream side of the intake air flow is formed. The projecting wall 35 has a predetermined length from the front edge portion 31 as shown in FIG. A parallel projecting wall portion 36 extending parallel to the flat plate portion 22;
A closing wall portion 38 that is closed on the downstream side of a space 37 surrounded by the parallel projecting wall portion 36 is formed. Then, as shown in FIG. 4, the portions of the blocking wall portion 38 on both sides of the intake air flow are inclined so as to approach each other toward the downstream side of the intake air flow, as shown in FIG. The intake air flowing along the back wall 38a of the blocking wall portion 38 located downstream of the intake air flow (see FIG. 5).
A guide wall portion 39 that leads to the side is formed.

【0015】さらに、平板部22のうち空間37と面す
る部位には、図5に示すように、開口部34から流入し
て閉塞壁部38に衝突する吸入空気を、突出部30が吐
出する向きと反対側に導く導口40が形成されている。
なお、複数個の突出部30は、図3に示すように、吸入
空気流れ方向に直列に並んでおり、隣り合う突出部30
間には、平板部22を切断する切断部41が形成されて
いる。
Further, as shown in FIG. 5, in the portion of the flat plate portion 22 facing the space 37, the projecting portion 30 discharges the intake air which flows in from the opening portion 34 and collides with the closing wall portion 38. A guide port 40 that leads to the opposite side is formed.
The plurality of protrusions 30 are arranged in series in the intake air flow direction as shown in FIG.
A cutting portion 41 that cuts the flat plate portion 22 is formed therebetween.

【0016】次に、本実施形態の特徴を述べる。フィン
における熱交換量を増大させるには、フィンの熱伝達率
を大きくする必要がある。そして、熱伝達率は、周知の
如く流体(この場合は空気)の熱伝導率に比例し、温度
境界層の厚みに反比例するので、温度境界層の厚みが最
も小さくなるフィンの前縁部が最も熱伝達率が大きくな
る。
Next, the features of this embodiment will be described. In order to increase the amount of heat exchange in the fin, it is necessary to increase the heat transfer coefficient of the fin. As is well known, the heat transfer coefficient is proportional to the heat conductivity of fluid (air in this case) and inversely proportional to the thickness of the temperature boundary layer, so that the leading edge portion of the fin having the smallest temperature boundary layer is Highest heat transfer coefficient.

【0017】そして、上述のように、本実施形態によれ
ば、インナーフィン20の前縁部23(図3参照)に加
えて、結合部32から前縁部31に沿って結合部33に
至る突出部30の前縁部31が形成されているので、イ
ンナーフィン20全体としてフィンの前縁部の総長さが
増し、インナーフィン20の熱交換量が増大する。ま
た、開口部34とともに導口40が形成されているの
で、開口部34から流入した吸入空気は導口40から平
板部22に対して突出部30と反対側に流れる。したが
って、前縁部31からの熱伝達は、平行突出壁36の両
壁面から発生するので、より一層インナーフィン20の
熱交換量が増大する。
As described above, according to this embodiment, in addition to the front edge portion 23 (see FIG. 3) of the inner fin 20, the joint portion 32 extends from the joint portion 32 along the front edge portion 31 to the joint portion 33. Since the front edge portion 31 of the protruding portion 30 is formed, the total length of the front edge portion of the inner fin 20 as a whole is increased, and the heat exchange amount of the inner fin 20 is increased. Further, since the guide port 40 is formed together with the opening portion 34, the intake air flowing in from the opening portion 34 flows from the guide port 40 to the flat plate portion 22 on the side opposite to the protruding portion 30. Therefore, the heat transfer from the front edge portion 31 occurs from both wall surfaces of the parallel protruding wall 36, so that the heat exchange amount of the inner fin 20 further increases.

【0018】また、開口部34から流入した吸入空気は
閉塞壁部38に衝突するので、閉塞壁部38で温度境界
層の厚みが非常に小さくなる。したがって、閉塞壁部3
8での熱伝達率が大きくなるので、さらにインナーフィ
ン20の熱交換量が増大する。ところで、発明者等は、
本実施形態に係るインナーフィン20の熱伝達率の向上
を確かめるべく、有限要素法による数値解析(2次元)
を行ったところ、図6〜8に示すような結果を得た。
Further, since the intake air flowing in from the opening 34 collides with the closing wall portion 38, the thickness of the temperature boundary layer at the closing wall portion 38 becomes very small. Therefore, the closing wall portion 3
Since the heat transfer coefficient in No. 8 becomes large, the heat exchange amount of the inner fin 20 further increases. By the way, the inventors
Numerical analysis by the finite element method (two-dimensional) in order to confirm the improvement of the heat transfer coefficient of the inner fin 20 according to the present embodiment.
Then, the results shown in FIGS. 6 to 8 were obtained.

【0019】すなわち、図6は平板部22および突出部
30を流れる吸入空気の流線を示しており、前縁部31
から平行突出壁36の両壁面に流線に沿うようにして温
度境界層が発生することが理解される。したがって、温
度境界層の厚みが最も小さくなる前縁部31(図6中の
A部)での熱伝達率が向上する。また、図7は、平板部
22および突出壁35のうち突出部30の突出側の熱伝
達率を示しており、図8は、その反対側の壁面での熱伝
達率を示している。両図7、8から明らかなように、前
縁部31(図6中のA部)、吸入空気が衝突する閉塞壁
部38(図6中のB部)、および平行突出壁36から剥
離して再び平板部22に付着する再付着部(図6中のC
部)での熱伝達率は、突出部30を設けない場合(図中
の一点鎖線)に比べて、それぞれ約5倍、約2.5倍、
約2.2倍と向上している。そして、発明者等の試算に
よれば、本実施形態に係るインナーフィン20は、突出
部30を設けない場合に比べて、インナーフィン20全
体として熱伝達率が約40%の向上することを確認し
た。
That is, FIG. 6 shows the flow lines of the intake air flowing through the flat plate portion 22 and the protruding portion 30, and the front edge portion 31.
It is understood that a temperature boundary layer is generated along the streamline on both wall surfaces of the parallel protruding wall 36. Therefore, the heat transfer coefficient at the front edge portion 31 (A portion in FIG. 6) where the thickness of the temperature boundary layer is the smallest is improved. Further, FIG. 7 shows the heat transfer coefficient of the flat plate portion 22 and the protruding wall 35 on the protruding side of the protruding portion 30, and FIG. 8 shows the heat transfer coefficient on the wall surface on the opposite side. As is clear from FIGS. 7 and 8, the front edge portion 31 (A portion in FIG. 6), the closing wall portion 38 against which the intake air collides (B portion in FIG. 6), and the parallel protruding wall 36 are separated. And the reattachment portion attached to the flat plate portion 22 again (C in FIG. 6).
The heat transfer coefficient in the part) is about 5 times, about 2.5 times, respectively, as compared with the case where the protrusion 30 is not provided (the one-dot chain line in the figure).
It has improved by about 2.2 times. According to a trial calculation by the inventors, it is confirmed that the inner fin 20 according to the present embodiment has a heat transfer coefficient improved by about 40% as a whole as compared with the case where the protrusion 30 is not provided. did.

【0020】なお、上記数値解析に用いた諸元は、次の
通りである(図3、5参照)。 インナーフィン20のピッチP=2mm、 切断部41の切断幅S=2.8mm、 閉塞壁部38と平板部22とのなす角度θ=20° 平板部22と平行突出壁36との距離H=0.5mm 流速=50m/sec L1=3mm、L2=4mm、L3=5mm、L4=1
4mm ところで、図6から明らかなように、閉塞壁部38の裏
面38a側(図6のD部)に吸入空気流れのよどみ(死
水域)が発生しているが、本実施形態によれば、案内壁
部39が形成されているので、突出壁35の側面側(図
6の紙面直角方向突出壁35)に沿って流れてきた吸入
空気は、案内壁部39によって閉塞壁部38の裏面38
a側に流れ込む。したがって、吸入空気流れのよどみ
(死水域)の発生を抑制することができるので、インナ
ーフィン20全体の熱伝達率を向上させることができ
る。
The specifications used in the above numerical analysis are as follows (see FIGS. 3 and 5). Pitch P of inner fin 20 = 2 mm, cutting width S of cutting portion 41 = 2.8 mm, angle θ between closing wall portion 38 and flat plate portion 22 = 20 °, distance H between flat plate portion 22 and parallel projecting wall 36 = 0.5 mm Flow velocity = 50 m / sec L1 = 3 mm, L2 = 4 mm, L3 = 5 mm, L4 = 1
4 mm By the way, as is apparent from FIG. 6, a stagnation (dead water region) of the intake air flow occurs on the back surface 38a side (portion D in FIG. 6) of the closing wall portion 38, but according to the present embodiment, Since the guide wall portion 39 is formed, the intake air flowing along the side surface side of the protruding wall 35 (the protruding wall 35 in the direction perpendicular to the paper surface of FIG. 6) is guided by the guide wall portion 39 to the back surface 38 of the closing wall portion 38.
It flows into the a side. Therefore, the occurrence of stagnation of the intake air flow (dead water region) can be suppressed, so that the heat transfer coefficient of the entire inner fin 20 can be improved.

【0021】(第2実施形態)上述の実施形態では、開
口部34を三角形状としたが、開口部34の形状は三角
形状に限られるものではなく、上述の如く結合部32か
ら前縁部31に沿って結合部33に至る前縁部31の長
さL1 が、結合部32から結合部33間の距離L2 より
長ければよい。したがって、図9の(a)、(b)に示
すように、矩形状または円周状としても本発明を実施す
ることができる。
(Second Embodiment) In the above-described embodiment, the opening 34 has a triangular shape, but the shape of the opening 34 is not limited to the triangular shape. It suffices that the length L 1 of the front edge portion 31 which reaches the joint portion 33 along 31 is longer than the distance L 2 between the joint portion 32 and the joint portion 33. Therefore, as shown in FIGS. 9A and 9B, the present invention can be implemented in a rectangular shape or a circumferential shape.

【0022】(第3実施形態)上述の実施形態では、閉
塞壁部38を設けて空間40の吸入空気下流側を閉塞し
たが、図10に示すように、空間40の吸入空気下流側
を開放し、空間40内に流入した空気を流出させる流出
口42を形成しても本発明を実施することができる。
(Third Embodiment) In the above embodiment, the closed wall portion 38 is provided to close the intake air downstream side of the space 40. However, as shown in FIG. 10, the intake air downstream side of the space 40 is opened. However, the present invention can be implemented by forming the outlet 42 that allows the air that has flowed into the space 40 to flow out.

【0023】(第4実施形態)上述の実施形態では、平
板部22に平行な平行突出壁36が形成されていたが、
図11に示すように、平行突出壁36を廃止し、前縁部
31から吸入空気流れ下流に向かうほど、平板部22に
近づく傾斜壁42としても本発明を実施することができ
る。
(Fourth Embodiment) In the above-mentioned embodiment, the parallel projecting wall 36 parallel to the flat plate portion 22 is formed.
As shown in FIG. 11, the parallel projecting wall 36 may be omitted, and the present invention may be implemented as an inclined wall 42 that approaches the flat plate portion 22 as it goes from the front edge portion 31 toward the downstream side of the intake air flow.

【0024】(第5実施形態)上述の実施形態では、前
縁部31から吸入空気流れ下流に向かって延びる突出壁
35が形成されていたが、図12に示すように、突出壁
35の吸入空気流れ方向長さを十分に小さくしても本発
明を実施することができる。ところで、上述の実施形態
では、吸入空気を空気で冷却する空冷式インタークーラ
を例に説明したが、本発明に係るインタークーラ(熱交
換器)は、空冷式に限定されるものではなく液体(水
等)にて吸入空気を冷却する、いわゆる水冷式インター
クーラに適用してもよい。
(Fifth Embodiment) In the above-described embodiment, the protruding wall 35 extending from the front edge portion 31 toward the downstream side of the intake air flow is formed, but as shown in FIG. The present invention can be implemented even when the length in the air flow direction is sufficiently small. By the way, in the above-described embodiment, the air-cooling type intercooler for cooling the intake air with air has been described as an example, but the intercooler (heat exchanger) according to the present invention is not limited to the air-cooling type, and is not limited to the liquid ( It may be applied to a so-called water-cooled intercooler that cools the intake air with water or the like).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る熱交換器(インタークーラ)の正
面図である。
FIG. 1 is a front view of a heat exchanger (intercooler) according to the present invention.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】第1実施形態に係るインナーフィンの斜視図で
ある。
FIG. 3 is a perspective view of an inner fin according to the first embodiment.

【図4】(a)は、突出部の拡大斜視図であり、(b)
は(a)のB矢視図である。
FIG. 4A is an enlarged perspective view of a protrusion, and FIG.
FIG. 3A is a view as seen from the arrow B in FIG.

【図5】図4の(a)の吸入空気流れ方向の断面図であ
る。
5 is a sectional view of the intake air flow direction of FIG.

【図6】突出部周りを流れる吸入空気の流線を示す模式
図(数値解析結果)である。
FIG. 6 is a schematic diagram (numerical analysis result) showing a streamline of intake air flowing around a protruding portion.

【図7】突出部が形成されている側の平板部および突出
部の壁面の熱伝達率を示すグラフである。
FIG. 7 is a graph showing the heat transfer coefficients of the flat plate portion on the side where the protrusion is formed and the wall surface of the protrusion.

【図8】突出部が形成されている側と反対側の平板部お
よび突出部の壁面の熱伝達率を示すグラフである。
FIG. 8 is a graph showing the heat transfer coefficients of the flat plate portion and the wall surface of the protrusion on the side opposite to the side where the protrusion is formed.

【図9】第2実施形態に係る突出部の拡大斜視図であ
る。
FIG. 9 is an enlarged perspective view of a protrusion according to the second embodiment.

【図10】第3実施形態に係る突出部の拡大斜視図であ
る。
FIG. 10 is an enlarged perspective view of a protrusion according to the third embodiment.

【図11】第4実施形態に係る突出部の拡大斜視図であ
る。
FIG. 11 is an enlarged perspective view of a protrusion according to the fourth embodiment.

【図12】第5実施形態に係る突出部の拡大斜視図であ
る。
FIG. 12 is an enlarged perspective view of a protrusion according to the fifth embodiment.

【符号の説明】 1…インタークーラ、2…偏平チューブ(チューブ)、
3…クーリングフィン、4…タンク、20…インナーフ
ィン、21、22…平板部、30…突出部、31…前縁
部、32、33…結合部、34…開口部、35…突出
壁、36…平行突出壁部、37…空間、38…閉塞壁
部、39…案内壁部、40…導口、41…切断部、42
…流出口。
[Explanation of Codes] 1 ... Intercooler, 2 ... Flat tube,
3 ... Cooling fins, 4 ... Tank, 20 ... Inner fins, 21, 22 ... Flat plate part, 30 ... Projection part, 31 ... Front edge part, 32, 33 ... Coupling part, 34 ... Opening part, 35 ... Projection wall, 36 ... parallel projecting wall part, 37 ... space, 38 ... closing wall part, 39 ... guide wall part, 40 ... guide port, 41 ... cutting part, 42
... outlet.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 内部に流体が流れるチューブ(2)と、 前記チューブ(2)内に配設され、前記チューブ(2)
内の流体流れに平行な平板部(22)を有するインナー
フィン(20)と、 前記平板部(22)の片面側に突出して形成され、前記
チューブ(20)内の流体流れと交差する突出部(3
0)とを有し、 前記チューブ(2)内の流体流れに対する前記突出部
(30)の前縁部(31)には、前記平板部(22)と
結合する複数個の結合部(32、33)が形成されてお
り、 前記複数個の結合部(32、33)のうち、一の結合部
(32)から前記前縁部(31)に沿ってその一の結合
部(32)と隣合う他の結合部(33)に至る前記前縁
部(31)の長さ(L1 )は、その一の結合部(32)
から前記他の結合部(33)間の距離(L2 )より長い
ことを特徴とする熱交換器。
1. A tube (2) in which a fluid flows, and the tube (2) disposed inside the tube (2).
An inner fin (20) having a flat plate portion (22) parallel to the fluid flow inside, and a protruding portion formed to project on one side of the flat plate portion (22) and intersecting with the fluid flow inside the tube (20). (3
0) and a front edge portion (31) of the protrusion (30) with respect to the fluid flow in the tube (2) has a plurality of coupling portions (32, 32) for coupling with the flat plate portion (22). 33) is formed, and one of the plurality of coupling parts (32, 33) is adjacent to the one coupling part (32) along the front edge part (31). The length (L 1 ) of the leading edge (31) to the other mating joint (33) is equal to that of the one mating joint (32).
To a distance (L 2 ) between the other coupling part (33).
【請求項2】 前記複数個の結合部(32、33)のう
ち隣り合う結合部(32、33)間を結ぶ直線は、前記
チューブ(2)内の流体流れと交差しており、 前記突出部(30)は、 前記前縁部(31)から前記チューブ(2)内の流体流
れ下流側に向かって延びる突出壁(35)と、 前記突出壁(35)のうち前記チューブ(2)内の流体
流れ下流側に形成され、前記突出壁(35)によって囲
まれた空間(37)内に前記前縁部(31)側から流入
した流体が前記空間(37)内から流出する流出口(4
2)とを有することを特徴とする請求項1に熱交換器。
2. A straight line connecting between adjacent coupling portions (32, 33) of the plurality of coupling portions (32, 33) intersects with a fluid flow in the tube (2), and the protrusion The portion (30) includes a protruding wall (35) extending from the front edge portion (31) toward the downstream side of the fluid flow in the tube (2), and the protruding wall (35) inside the tube (2). Of the fluid that is formed on the downstream side of the fluid flow, and the fluid that has flowed in from the front edge portion (31) side into the space (37) surrounded by the protruding wall (35) flows out from the space (37) ( Four
2) The heat exchanger according to claim 1, characterized in that
【請求項3】 前記突出壁(35)には、前記流出口
(42)を閉塞する閉塞壁部(38)が形成され、 前記平板部(22)には、前記閉塞壁部(38)と衝突
する流体を前記突出部(30)が突出する向きと反対側
に導く導口(40)が形成されていることを特徴とする
請求項2に熱交換器。
3. The protruding wall (35) is formed with a closing wall portion (38) for closing the outflow port (42), and the flat plate portion (22) is provided with the closing wall portion (38). The heat exchanger according to claim 2, wherein a guide port (40) is formed to guide the impinging fluid to a side opposite to a direction in which the protruding portion (30) protrudes.
【請求項4】 前記突出壁(35)には、前記空間(3
7)外を前記突出壁(35)に沿って流れる流体を、前
記閉塞壁部(38)のうち流体流れ下流側に位置する裏
面(38a)側に導く案内壁部(39)が形成されてい
ることを特徴とする請求項3に記載の熱交換器。
4. The space (3) is provided in the protruding wall (35).
7) A guide wall portion (39) is formed for guiding the fluid flowing outside along the protruding wall (35) to the back surface (38a) side of the closing wall portion (38) located on the downstream side of the fluid flow. The heat exchanger according to claim 3, wherein the heat exchanger is provided.
【請求項5】 前記突出部(30)は、前記チューブ
(2)内の流体流れ方向に複数個形成されており、 隣り合う前記突出部(30)間には、前記平板部(2
2)を切断する切断部(41)が形成されていることを
特徴とする請求項1ないし4のいずれか1つに記載の熱
交換器。
5. The plurality of protrusions (30) are formed in the fluid flow direction in the tube (2), and the flat plate portion (2) is provided between adjacent protrusions (30).
The heat exchanger according to any one of claims 1 to 4, characterized in that a cutting part (41) for cutting 2) is formed.
JP10709796A 1996-04-26 1996-04-26 Heat exchanger Expired - Fee Related JP3731247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10709796A JP3731247B2 (en) 1996-04-26 1996-04-26 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10709796A JP3731247B2 (en) 1996-04-26 1996-04-26 Heat exchanger

Publications (2)

Publication Number Publication Date
JPH09292192A true JPH09292192A (en) 1997-11-11
JP3731247B2 JP3731247B2 (en) 2006-01-05

Family

ID=14450389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10709796A Expired - Fee Related JP3731247B2 (en) 1996-04-26 1996-04-26 Heat exchanger

Country Status (1)

Country Link
JP (1) JP3731247B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222488A (en) * 2002-02-01 2003-08-08 Denso Corp Waste gas heat exchanging device
DE102007036308A1 (en) * 2007-07-31 2009-02-05 Behr Gmbh & Co. Kg Rib for a heat exchanger
KR20100099774A (en) * 2009-03-04 2010-09-15 한라공조주식회사 Evaporator
CN102297612A (en) * 2010-05-21 2011-12-28 株式会社电装 Heat exchanger
WO2014128826A1 (en) * 2013-02-19 2014-08-28 三菱電機株式会社 Heat exchanger and cooling cycle device using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222488A (en) * 2002-02-01 2003-08-08 Denso Corp Waste gas heat exchanging device
DE102007036308A1 (en) * 2007-07-31 2009-02-05 Behr Gmbh & Co. Kg Rib for a heat exchanger
KR20100099774A (en) * 2009-03-04 2010-09-15 한라공조주식회사 Evaporator
CN102297612A (en) * 2010-05-21 2011-12-28 株式会社电装 Heat exchanger
WO2014128826A1 (en) * 2013-02-19 2014-08-28 三菱電機株式会社 Heat exchanger and cooling cycle device using same
GB2525536A (en) * 2013-02-19 2015-10-28 Mitsubishi Electric Corp Heat exchanger and cooling cycle device using same
JP6067094B2 (en) * 2013-02-19 2017-01-25 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus using the same
GB2525536B (en) * 2013-02-19 2019-05-08 Mitsubishi Electric Corp Heat exchanger having concentric pipes including intermediate heat transfer pipe and refrigeration cycle apparatus including the heat exchanger

Also Published As

Publication number Publication date
JP3731247B2 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
EP1411315B1 (en) Exhaust gas heat exchanger
US7077190B2 (en) Exhaust gas heat exchanger
US20100095659A1 (en) Exhaust gas heat exchanger
US20090133860A1 (en) Heat exchanger
US20020074105A1 (en) Heat exchanger
EP1072783A1 (en) Exhaust gas heat exchanger with tilted segment arrangement
JP2004263616A (en) Flat tube for egr cooler
JPH0462393A (en) Heat exchanger
JPH0384396A (en) Heat exchanger
US20120024511A1 (en) Intercooler
JP2001263967A (en) Exhaust heat exchanger
JP2003222488A (en) Waste gas heat exchanging device
JP3985509B2 (en) Exhaust heat exchanger
US20080190589A1 (en) Heat Exchanger
JP2003279293A (en) Exhaust heat exchanger
JPH09292192A (en) Heat exchanger
JP2003227691A (en) Exhaust heat exchanger
JP2003090693A (en) Exhaust gas heat exchanger
JP3879614B2 (en) Heat exchanger
JP6577282B2 (en) Heat exchanger
JPS6317393A (en) Heat exchanger
US5653283A (en) Laminated type heat exchanger
JPH09138084A (en) Heat exchanger
JPH1061438A (en) Heat exchanger
CN101523145B (en) Alternating plate headerless heat exchangers

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051003

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees