JPH09291341A - Austenitic free cutting stainless steel for cold working - Google Patents

Austenitic free cutting stainless steel for cold working

Info

Publication number
JPH09291341A
JPH09291341A JP10570096A JP10570096A JPH09291341A JP H09291341 A JPH09291341 A JP H09291341A JP 10570096 A JP10570096 A JP 10570096A JP 10570096 A JP10570096 A JP 10570096A JP H09291341 A JPH09291341 A JP H09291341A
Authority
JP
Japan
Prior art keywords
cold
less
stainless steel
value
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10570096A
Other languages
Japanese (ja)
Inventor
Kazuo Nakama
一夫 中間
Yasushi Haruna
靖志 春名
Tatsuro Isomoto
辰郎 磯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP10570096A priority Critical patent/JPH09291341A/en
Publication of JPH09291341A publication Critical patent/JPH09291341A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce an austenitic stainless steel combining excellent machinability and cold workability such as cold heading without deteriorating its hot workability and corrosion resistance. SOLUTION: This stainless steel is the one having a compsn. contg., by weight, <=0.050% C, <=1.00% Si, <=2.00% Mn, <=0.010% S, 9.00 to 13.00% Ni, 17.00 to 20.00% Cr, 0.05 to 0.30% Pb, <=0.050% N, 0.001 to 0.020% B and <=0.20% Cu, in which the value α expressed by the formula, α=Ni+27×C +23×N+0.1×Mn+0.3×Cu-1.2×(Cr+Mo)-0.5×Si+10 lies in the range of -1 to 0, and furthermore, the value β expressed by the formula, β=551-462×(C+N)-9.2×Si-8.1×Mn-13.7×Cr-29×Ni-18.5×Mo is regulated to <=-30, and the balance Fe with inevitable impurities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱間加工性と耐食
性を劣化させることなく優れた被削性を有し、冷間圧造
等の冷間加工後、切削加工を受ける材料として好適な冷
間加工用オーステナイト系快削ステンレス鋼に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has excellent machinability without deteriorating hot workability and corrosion resistance, and is suitable as a material to be cut after cold working such as cold forging. The present invention relates to an austenitic free-cutting stainless steel for hot working.

【0002】[0002]

【従来の技術】従来、オーステナイト系ステンレス鋼は
優れた耐食性、耐熱性、機械的性質を有していることか
ら、各方面で広く用いられている。最近では、建築用途
に多用されてきており、ネジやボルト、アンカーボルト
等の強度と耐食性を必要とする部品に使用されている。
これらの部品は線材等の素材が冷間加工により成形さ
れ、その後、切削加工により仕上げられる。しかし、一
般にステンレス鋼は被削性が悪く、快削性を付与するた
めにはSやSe,Te,Ca,Pb,Bi等の快削元素
を1種または2種以上添加されている。特にSUS30
4等のオーステナイト系ステンレス鋼は冷間加工硬化性
が高いため冷間圧造のような強加工用に向いていない。
このため、冷間加工用には加工硬化性を低下させるため
に、Cuを含有させたり更にNiを増量させたりする等
の方法が用いられている。
2. Description of the Related Art Conventionally, austenitic stainless steel has been widely used in various fields because of its excellent corrosion resistance, heat resistance and mechanical properties. Recently, it has been widely used for construction purposes, and is used for parts requiring strength and corrosion resistance such as screws, bolts and anchor bolts.
These parts are formed by cold working a material such as a wire rod and then finishing by cutting. However, stainless steel is generally poor in machinability, and one or more kinds of free-cutting elements such as S, Se, Te, Ca, Pb, and Bi are added to impart free-cutting property. Especially SUS30
Austenitic stainless steels such as No. 4 and the like have a high cold work hardening property, and therefore are not suitable for strong working such as cold heading.
Therefore, for cold working, in order to reduce the work hardenability, a method of adding Cu or further increasing the amount of Ni is used.

【0003】しかしながら、Sを添加した快削鋼(例え
ばSUS303)はMnと結合したMnSが鋼中に分散
し安定した被削性を示すものの、一方で、この介在物は
熱間鍛造により展伸し機械的性質に異方性をもたらすた
め冷間圧造性を悪化させる。また、MnSは耐食性にも
悪影響を与える。Se,Teの添加はSほどでないが、
同様に冷間圧造性と耐食性が劣る。Caについても展伸
した酸化物が冷間加工性を劣化させる。また、Pbは機
械的性質や耐食性に影響を及ぼさない快削元素だが、例
えばSUS304等の通常のオーステナイト系ステンレ
ス鋼にPbを添加しただけでは冷間加工硬化性が高く、
冷間圧造に向いているとは言えない。一方、Cuの添加
により加工硬化性を緩和したSUSXM7等の鋼種は冷
間圧造性には優れているものの被削性が悪い。
However, although free-cutting steel containing S (for example, SUS303) exhibits stable machinability because MnS combined with Mn is dispersed in the steel, on the other hand, the inclusions are expanded by hot forging. However, it causes anisotropy in mechanical properties, which deteriorates the cold forgeability. In addition, MnS also adversely affects the corrosion resistance. The addition of Se and Te is not as great as S,
Similarly, cold forgeability and corrosion resistance are poor. Also for Ca, the expanded oxide deteriorates the cold workability. Further, Pb is a free-cutting element that does not affect mechanical properties and corrosion resistance, but for example, simply adding Pb to an ordinary austenitic stainless steel such as SUS304 has a high cold work hardening property,
It cannot be said that it is suitable for cold heading. On the other hand, steel grades such as SUSXM7 whose work hardenability is moderated by adding Cu are excellent in cold forgeability but poor in machinability.

【0004】これらの問題に対して、これまでに多種の
解決策が講じられている。例えば、特開昭61−677
60号公報はPと必要に応じてS,Caの添加で快削性
を、Cuの添加で冷間圧造性をそれぞれ確保している
が、Pだけでは被削性の向上に不十分でSとCaの添加
は前述のように冷間圧造性を劣化させる。また、特開昭
63−18039号公報では、PbおよびCaと0.5
〜5%のCu添加を行っているが、同様にCa添加によ
り冷間圧造性が悪化し、CuとPbの同時添加のため熱
間加工性が劣化する問題点がある。
Various solutions have been taken to date for these problems. For example, JP-A-61-677
No. 60 gazette secures free machinability by adding P and S and Ca as required, and cold forgeability by adding Cu, but P alone is not sufficient to improve machinability. The addition of Ca and Ca deteriorates the cold forgeability as described above. Further, in JP-A-63-18039, Pb and Ca and 0.5
Although Cu is added by up to 5%, there is a problem that the cold forging property is deteriorated by the addition of Ca and the hot workability is deteriorated due to the simultaneous addition of Cu and Pb.

【0005】また、特開平2−50937号公報が示す
SeおよびCaとCuの添加は、Caによる冷間圧造性
の悪化とSeによる耐食性の劣化が考えられる。このよ
うに、S,Se,Te,Ca,Pb,Biの快削元素の
中でPbとBiを除いたものは、いずれも冷間圧造性、
耐食性またはその両方が悪化する欠点があるが、一方、
含Pb,Bi鋼も冷間圧造性を向上させるためにCuを
添加すると熱間加工性が著しく劣化してしまう問題点が
あった。
Further, the addition of Se and Ca and Cu disclosed in Japanese Patent Laid-Open No. 2-50937 may cause deterioration of cold forgeability due to Ca and deterioration of corrosion resistance due to Se. As described above, among the free-cutting elements of S, Se, Te, Ca, Pb, and Bi, except Pb and Bi, the cold forgeability is
On the other hand, there is a drawback that corrosion resistance or both deteriorate.
The Pb-containing and Bi-containing steels also have a problem that the hot workability is significantly deteriorated when Cu is added in order to improve the cold forgeability.

【0006】[0006]

【発明が解決しようとする課題】上述したように従来技
術では、各特性の両立が困難であった。そこで本発明
は、熱間加工性と耐食性を損なわずに優れた被削性と冷
間圧造等の冷間加工性を兼ね備えたオーステナイト系ス
テンレス鋼を提供せんとするものである。
As described above, it has been difficult in the prior art to satisfy each characteristic. Therefore, the present invention is to provide an austenitic stainless steel having both excellent machinability and cold workability such as cold forging without impairing hot workability and corrosion resistance.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するためになされたものであり、その発明の要旨とす
るところは、重量%で、C:0.050%以下、Si:
1.00%以下、Mn:2.00%以下、S:0.01
0%以下、Ni:9.00〜13.00%、Cr:1
7.00〜20.00%、Pb:0.05〜0.30
%、N:0.050%以下、B:0.001〜0.02
0%、Cu:0.20%以下を含有し、かつ、下記式α
で表される値が、−1〜0の範囲にあり、また、式βで
表される値が、−30以下で、残部Feおよび不可避的
不純物からなることを特徴とする冷間加工用オーステナ
イト系快削ステンレス鋼である。 α=Ni+27×C+23×N+0.1×Mn+0.3
×Cu−1.2×(Cr+Mo)−0.5×Si+10 β=551−462×(C+N)−9.2×Si−8.
1×Mn−13.7×Cr−29×Ni−18.5×M
The present invention has been made in order to solve the above problems, and the gist of the present invention is, in weight%, C: 0.050% or less, Si:
1.00% or less, Mn: 2.00% or less, S: 0.01
0% or less, Ni: 9.00-13.00%, Cr: 1
7.00 to 20.00%, Pb: 0.05 to 0.30
%, N: 0.050% or less, B: 0.001 to 0.02
0%, Cu: 0.20% or less, and the following formula α
Is in the range of -1 to 0, the value represented by the formula β is -30 or less, and the balance is Fe and inevitable impurities. Free-cutting stainless steel. α = Ni + 27 × C + 23 × N + 0.1 × Mn + 0.3
XCu-1.2x (Cr + Mo) -0.5xSi + 10 [beta] = 551-462x (C + N) -9.2xSi-8.
1 x Mn-13.7 x Cr-29 x Ni-18.5 x M
o

【0008】以下、本発明について詳細に説明する。本
発明者らは、種々の検討を行った結果、熱間加工性と耐
食性の劣化なしに優れた被削性と冷間圧造等を有するた
めに、以下の方策が有効であることを見出した。すなわ
ち、快削性は、耐食性と機械的性質に影響を与えない快
削元素であるPbのみの添加で付与した。そして冷間圧
造性の向上は、MnS等の生成を抑えて冷間加工による
割れの発生を低減するため、Sを0.010%以下に限
定し、且つ冷間加工による加工誘起マルテンサイトの生
成を抑制し変形抵抗の上昇を抑えるため、式βで表させ
る値が−30以下になるように成分バランスを調整し
た。また、Pb添加による熱間加工性の劣化は、Bの適
量添加、および式αで表される値を−1〜0の範囲に限
定して凝固時に残留する鋼中のδ−フェライト量を制御
することで防止し、且つPbと共存すると共に熱間加工
性を阻害するCuについて0.20%以下に制限するこ
とで脆化が完全に抑制できることを見出した。
Hereinafter, the present invention will be described in detail. As a result of various investigations, the present inventors have found that the following measures are effective in order to have excellent machinability and cold forging without deterioration of hot workability and corrosion resistance. . That is, the free-cutting property was imparted by adding only Pb, which is a free-cutting element that does not affect the corrosion resistance and mechanical properties. The improvement of cold forging property suppresses the generation of MnS and the like and reduces the occurrence of cracks due to cold working. Therefore, S is limited to 0.010% or less, and the formation of work-induced martensite by cold working. In order to suppress the above and suppress the increase of the deformation resistance, the component balance was adjusted so that the value represented by the formula β would be −30 or less. The deterioration of hot workability due to the addition of Pb is controlled by adding an appropriate amount of B and limiting the value represented by the formula α to the range of -1 to 0 to control the amount of δ-ferrite in the steel remaining during solidification. It was found that embrittlement can be completely suppressed by limiting the Cu content to 0.20% or less to prevent it, and to coexist with Pb and inhibit hot workability.

【0009】[0009]

【発明の実施の形態】本発明鋼の成分限定理由を以下に
示す。 C:0.050%以下 CはNi,Mnとともにオーステナイト安定化元素であ
るが、他に固溶して強度を上げるともに耐食性を劣化さ
せる。特に強度を必要とする場合以外は少ない方が良
く、本発明においても0.050%を超えると冷間圧造
性を劣化させるため、上限を0.050%とする。 Si:1.00%以下 Siは製鋼時の脱酸材として有効な元素であるが、強力
なフェライト安定化元素でもあり、1.00%を超える
とオーステナイト相を不安定にするので、上限を1.0
0%とした。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the components of the steel of the present invention are shown below. C: 0.050% or less C is an austenite stabilizing element together with Ni and Mn, but it also forms a solid solution with other elements to increase the strength and deteriorate the corrosion resistance. Especially when strength is required, it is preferable that the amount be small, and in the present invention, if it exceeds 0.050%, cold forging property deteriorates, so the upper limit is made 0.050%. Si: 1.00% or less Si is an element effective as a deoxidizer during steel making, but is also a strong ferrite stabilizing element, and if it exceeds 1.00%, the austenite phase becomes unstable, so the upper limit is set. 1.0
0%.

【0010】Mn:2.00%以下 Mnは脱酸元素としても、オーステナイト化元素として
も非常に有効な元素であるが、2.00%以上の添加は
冷間圧造性を悪くし、また耐食性も劣化させるので上限
を2.00%にした。 S:0.010%以下 Sは通常被削性を向上させる元素として添加されるが、
本発明においては快削性はPbによって付与するので必
要でなく、逆に0.010%以上で冷間圧造性や耐食性
を劣化するので上限を0.010%とした。
Mn: 2.00% or less Mn is a very effective element as both a deoxidizing element and an austenitizing element. However, addition of 2.00% or more deteriorates cold forgeability and corrosion resistance. Also deteriorates, so the upper limit was made 2.00%. S: 0.010% or less S is usually added as an element that improves machinability,
In the present invention, the free-cutting property is not required because it is imparted by Pb, and conversely 0.010% or more deteriorates cold forging property and corrosion resistance, so the upper limit was made 0.010%.

【0011】Ni:9.00〜13.00% Niはオーステナイト系ステンレス鋼における主要元素
であって、オーステナイト相を安定化し、耐食性を与え
る。18−8ステンレス鋼の基本鋼であるSUS304
のNi量は8.00〜12.00%であるが、加工硬化
性を抑えるため9.00〜13.00%とした。 Cr:17.00〜20.00% CrもNiとともにオーステナイト系ステンレス鋼にお
ける基本元素である。17.00%以下では耐食性が悪
くなり、20.00%より多いと前記のNi範囲ではオ
ーステナイト相が不安定になるので17.00〜20.
00%とした。
Ni: 9.00-13.00% Ni is a main element in austenitic stainless steel and stabilizes the austenitic phase and provides corrosion resistance. SUS304 which is a basic steel of 18-8 stainless steel
Although the amount of Ni was 8.00 to 12.00%, it was set to 9.00 to 13.00% in order to suppress work hardening. Cr: 17.0 to 20.00% Cr is also a basic element in austenitic stainless steel together with Ni. If it is 17.0% or less, the corrosion resistance is poor, and if it is more than 20.00%, the austenite phase becomes unstable in the above Ni range, so that 17.0 to 20.
00%.

【0012】Pb:0.05〜0.30% Pbは鋼中に分散して存在し、機械的性質に異方性をも
たらすことなく、切削時に生じる熱で溶けて工具と鋼と
の間で潤滑材として働き、また切り屑を分断させること
で被削性を向上する快削元素である。またS快削鋼と異
なり、耐食性を劣化することがない。熱間加工性を著し
く劣化するが、前述のようにBの適量添加、Cuの制限
および成分バランスの調整で十分改善される。0.05
%以下では被削性向上の効果が薄く、0.30%以上で
は添加量の増加に見合うだけの効果が得られないので
0.05〜0.30%とした。
Pb: 0.05 to 0.30% Pb exists in the steel in a dispersed state and is melted by the heat generated during cutting without causing anisotropy in mechanical properties, so that it is between the tool and the steel. It is a free-cutting element that acts as a lubricant and also cuts chips to improve machinability. Further, unlike S free-cutting steel, it does not deteriorate corrosion resistance. Although the hot workability is remarkably deteriorated, it is sufficiently improved by adding an appropriate amount of B, limiting Cu and adjusting the component balance as described above. 0.05
% Or less, the effect of improving the machinability is small, and if 0.30% or more, the effect commensurate with the increase of the added amount cannot be obtained, so the content was made 0.05 to 0.30%.

【0013】N:0.050%以下 Nはオーステナイト安定化元素であるがCと同様に固溶
して強度を上げる。0.050%以上になると冷間圧造
性を悪くするため、上限を0.050%とした。 B:0.001〜0.020% Bはオーステナイト系高合金において、熱間加工性を改
善するために添加される。特にPbを含有するような熱
間で粒界脆化を起こしやすい鋼種に有効な元素である。
0.001%以下では効果が乏しく、0.020%以上
では粒界にBの化合物が析出して熱間加工性に有害にな
るため0.001〜0.020%とした。
N: 0.050% or less N is an austenite stabilizing element, but like C, it forms a solid solution to increase the strength. If it is 0.050% or more, the cold forging property deteriorates, so the upper limit was made 0.050%. B: 0.001 to 0.020% B is added to improve hot workability in an austenitic high alloy. In particular, it is an effective element for a steel type that contains Pb and is apt to cause grain boundary embrittlement during heat.
If the content is 0.001% or less, the effect is poor, and if the content is 0.020% or more, the compound B is precipitated at the grain boundaries and becomes harmful to the hot workability, so the content was made 0.001 to 0.020%.

【0014】Cu:0.20%以下 Cuはオーステナイト系ステンレス鋼において加工硬化
性を軽減する効果があり、またオーステナイト安定化元
素で冷間加工に伴うマルテンサイトが生成しにくくなり
変形抵抗の上昇を抑えるため、冷間圧造用として有用な
元素である。ただし、Pbと共存すると熱間加工性を著
しく劣化させる欠点があった。しかし、0.20%以下
のときはPb添加鋼でもCuによる熱間加工性の劣化は
生じず問題とならないため、0.20%以下に限定し
た。
Cu: 0.20% or less Cu has an effect of reducing work hardenability in austenitic stainless steel, and is an austenite-stabilizing element, which makes it difficult for martensite to be generated due to cold working and increases deformation resistance. It is a useful element for cold heading, because it is contained. However, when it coexists with Pb, there is a drawback that the hot workability is significantly deteriorated. However, when the content is 0.20% or less, the deterioration of the hot workability due to Cu does not occur even with Pb-added steel, and this does not pose a problem, so the content was limited to 0.20% or less.

【0015】α=Ni+27×C+23×N+0.1×
Mn+0.3×Cu−1.2×(Cr+Mo)−0.5
×Si+10:−1〜0 式αで計算される値は、オーステナイト中のδ−フェラ
イト量を決定する因子である。式αの値が−1より低く
なると、δ−フェライト量が多くなりすぎて、熱間加工
中にオーステナイト相との界面で割れが生じやすい。一
方、式αの値が0を超えると、ほぼオーステナイト一相
となるため、δ−フェライト相中の偏析しやすいPなど
の不純物がオーステナイト粒界に偏析し、熱間加工性を
悪化させる。このため式αの値を−1〜0に限定した。
Α = Ni + 27 × C + 23 × N + 0.1 ×
Mn + 0.3 × Cu-1.2 × (Cr + Mo) -0.5
XSi + 10: -1 to 0 The value calculated by the formula α is a factor that determines the amount of δ-ferrite in austenite. When the value of the expression α is lower than −1, the amount of δ-ferrite becomes too large, and cracks are likely to occur at the interface with the austenite phase during hot working. On the other hand, when the value of the expression α exceeds 0, the austenite phase is almost formed, so that impurities such as P, which are easily segregated in the δ-ferrite phase, segregate at the austenite grain boundaries, deteriorating the hot workability. Therefore, the value of the expression α is limited to −1 to 0.

【0016】β=551−462×(C+N)−9.2
×Si−8.1×Mn−13.7×Cr−29×Ni−
18.5×Mo:−30以下 式βで計算される値は、オーステナイトの安定性を示す
指標であり、この値が大きいほど冷間加工性により加工
誘起マルテンサイトを生じやすくなる。式βの値が−3
0以上の場合、冷間加工で生じるマルテンサイトのため
変形抵抗の上昇を招き、冷間加工性が悪化する。従っ
て、式βの値を−30以下に限定した。また、本来式β
の値の下限を設定すべきであるが、本発明の場合、加工
誘起マルテンサイトの量は少ない方が良く、式βの値の
値が小さくなることによる弊害はないため下限は特に定
めない。
Β = 551-462 × (C + N) -9.2
XSi-8.1xMn-13.7xCr-29xNi-
18.5 × Mo: −30 or less The value calculated by the formula β is an index showing the stability of austenite, and the larger this value, the more easily the work-induced martensite is generated due to the cold workability. The value of expression β is -3
When it is 0 or more, the martensite generated in cold working causes an increase in deformation resistance, which deteriorates cold workability. Therefore, the value of the expression β is limited to −30 or less. Also, originally β
The lower limit of the value should be set, but in the case of the present invention, it is better that the amount of processing-induced martensite is smaller, and there is no adverse effect due to the smaller value of the expression β, so the lower limit is not specified.

【0017】[0017]

【実施例】表1に、本発明の実施例鋼および比較鋼の化
学成分を、式αおよび式βによる計算された値と併記し
て示す。これらの鋼は、100kg高周波誘導溶解炉で
鋳塊を溶製し、以下の試験に供した。
EXAMPLES Table 1 shows the chemical composition of the example steels of the present invention and the comparative steels together with the values calculated by the formulas α and β. Ingots of these steels were melted in a high frequency induction melting furnace of 100 kg and subjected to the following tests.

【0018】[0018]

【表1】 [Table 1]

【0019】(1)被削性 表2に、高速度鋼ドリルによるドリル穿孔性試験の結果
を示す。試験は、鋳塊をφ20mmに鍛伸後固溶化熱処
理を施して供試材とし、一定荷重および一定周速で深さ
10mm穿孔するのに要する時間を計測した。また、表
中の被削性指数は、SUS304の穿孔時間を100
として評価した。ドリル穿孔に要する時間は、ほぼPb
とSの含有量によって決まり、含有量の増加に伴って穿
孔時間は短くなる。本発明鋼は冷間加工性に悪影響を与
えないためSを極低化しているが、Pbの効果でSUS
304の5割程度の時間で穿孔出来るようになる。
(1) Machinability Table 2 shows the results of the drill piercing test using a high speed steel drill. In the test, forging the ingot to φ20 mm and then subjecting it to solution heat treatment to give a test material, and the time required to perforate a depth of 10 mm at a constant load and a constant peripheral speed was measured. Further, the machinability index in the table indicates that the drilling time of SUS304 is 100
Was evaluated. The time required for drilling is approximately Pb
And S content, and the perforation time becomes shorter as the content increases. The steel of the present invention has an extremely low S because it does not adversely affect the cold workability, but due to the effect of Pb, SUS
Perforation can be done in about 50% of 304.

【0020】[0020]

【表2】 [Table 2]

【0021】(2)冷間圧造性 表2に、圧延試験結果を示す。試験は、鋳塊をφ20m
mに鍛伸後固溶化熱処理を施して試験片を作製して供試
材とし、圧縮試験機により一定速度で拘束圧縮試験を行
った。冷間圧造性は変形抵抗と限界据込率によって評価
した。変形抵抗は50%の圧縮を加えたときの値により
評価した。また限界据込率は以下の式で与えられる。 (1−H/Ho)×100(%) ただし、Ho:圧縮前の試験片の高さ H:拘束圧縮時、割れが発生したときの試験片の高さ 式βはオーステナイト相の安定度を示す指標であり、こ
の値が大きいほどオーステナイト相は不安定で、冷間加
工により加工誘起マルテンサイトを生じやすくなる。従
って、式βで表される値が増加すると、それに伴い変形
抵抗の上昇を招く。限界据込率は、MnS等の熱間で延
伸する介在物が存在すると地との界面で割れが生じやす
くなり、Sが0.010%を超えると悪化する。
(2) Cold forgeability Table 2 shows the rolling test results. Test the ingot by φ20m
m was subjected to solution heat treatment after forging, to prepare a test piece as a test material, and a constrained compression test was performed with a compression tester at a constant speed. Cold forgeability was evaluated by deformation resistance and critical upsetting rate. The deformation resistance was evaluated by the value when 50% compression was applied. Also, the critical upset rate is given by the following formula. (1−H / Ho) × 100 (%) where Ho: height of the test piece before compression H: height of the test piece when cracking occurs during constrained compression Formula β is the stability of the austenite phase. This value is an index indicating that the larger this value, the more unstable the austenite phase becomes, and the more easily the work-induced martensite is generated by cold working. Therefore, when the value represented by the expression β increases, the deformation resistance increases accordingly. The critical upset ratio is apt to be cracked at the interface with the ground when inclusions such as MnS that are stretched hot are present, and deteriorated when S exceeds 0.010%.

【0022】(3)熱間加工性 表2に、熱間加工性試験結果を示す。試験は、高温高速
引張試験を行い、1150℃における絞り値により熱間
加工性を評価した。熱間加工性は、Bを適量添加すると
向上する。しかし、Cuが0.20%を超えると絞り値
の低下を招き、式αで表される値が0を超えても悪化す
る。
(3) Hot workability Table 2 shows the results of the hot workability test. In the test, a high-temperature high-speed tensile test was conducted, and the hot workability was evaluated by the reduction value at 1150 ° C. The hot workability is improved by adding B in an appropriate amount. However, when Cu exceeds 0.20%, the aperture value is lowered, and even if the value represented by the expression α exceeds 0, it deteriorates.

【0023】[0023]

【発明の効果】以上述べたように、本発明に係わる冷間
加工用オーステナイト系快削ステンレス鋼は、熱間加工
性と耐食性を害することなく良好な被削性と冷間圧造性
を示すステンレス鋼であり、冷間圧造等の冷間加工を経
た後切削により成形される材料に最適である。
As described above, the austenitic free-cutting stainless steel for cold working according to the present invention is a stainless steel exhibiting good machinability and cold forgeability without impairing hot workability and corrosion resistance. Steel is most suitable for materials that are formed by cutting after cold working such as cold heading.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.050%以下、 Si:1.00%以下、 Mn:2.00%以下、 S:0.010%以下、 Ni:9.00〜13.00%、 Cr:17.00〜20.00%、 Pb:0.05〜0.30%、 N:0.050%以下、 B:0.001〜0.020%、 Cu:0.20%以下 を含有し、かつ、下記式αで表される値が、−1〜0の
範囲にあり、また、式βで表される値が、−30以下
で、残部Feおよび不可避的不純物からなることを特徴
とする冷間加工用オーステナイト系快削ステンレス鋼。 α=Ni+27×C+23×N+0.1×Mn+0.3
×Cu−1.2×(Cr+Mo)−0.5×Si+10 β=551−462×(C+N)−9.2×Si−8.
1×Mn−13.7×Cr−29×Ni−18.5×M
1. By weight%, C: 0.050% or less, Si: 1.00% or less, Mn: 2.00% or less, S: 0.010% or less, Ni: 9.00-13.00. %, Cr: 17.00 to 20.00%, Pb: 0.05 to 0.30%, N: 0.050% or less, B: 0.001 to 0.020%, Cu: 0.20% or less And the value represented by the following formula α is in the range of -1 to 0, the value represented by the formula β is -30 or less, and the balance is Fe and inevitable impurities. Austenitic free-cutting stainless steel for cold working. α = Ni + 27 × C + 23 × N + 0.1 × Mn + 0.3
XCu-1.2x (Cr + Mo) -0.5xSi + 10 [beta] = 551-462x (C + N) -9.2xSi-8.
1 x Mn-13.7 x Cr-29 x Ni-18.5 x M
o
JP10570096A 1996-04-25 1996-04-25 Austenitic free cutting stainless steel for cold working Pending JPH09291341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10570096A JPH09291341A (en) 1996-04-25 1996-04-25 Austenitic free cutting stainless steel for cold working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10570096A JPH09291341A (en) 1996-04-25 1996-04-25 Austenitic free cutting stainless steel for cold working

Publications (1)

Publication Number Publication Date
JPH09291341A true JPH09291341A (en) 1997-11-11

Family

ID=14414653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10570096A Pending JPH09291341A (en) 1996-04-25 1996-04-25 Austenitic free cutting stainless steel for cold working

Country Status (1)

Country Link
JP (1) JPH09291341A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2371560A (en) * 2000-12-15 2002-07-31 Hitachi Metals Ltd Wire for reinforcing glass
JP2008179891A (en) * 2008-01-16 2008-08-07 Denso Corp Austenitic stainless steel, cold- and warm-forged component made of austenitic stainless steel and method for processing the cold- and warm-forged component
CN108754305A (en) * 2018-05-23 2018-11-06 何满潮 NPR is nonmagnetic anchor pole Steel material and its production method
WO2019222943A1 (en) * 2018-05-23 2019-11-28 He Manchao Npr nonmagnetic anchor rod steel material and production method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2371560A (en) * 2000-12-15 2002-07-31 Hitachi Metals Ltd Wire for reinforcing glass
GB2371560B (en) * 2000-12-15 2005-07-13 Hitachi Metals Ltd Wire for reinforcing glass, glass sealing the same and glass plate having stainless steel wire sealed
JP2008179891A (en) * 2008-01-16 2008-08-07 Denso Corp Austenitic stainless steel, cold- and warm-forged component made of austenitic stainless steel and method for processing the cold- and warm-forged component
CN108754305A (en) * 2018-05-23 2018-11-06 何满潮 NPR is nonmagnetic anchor pole Steel material and its production method
CN108754305B (en) * 2018-05-23 2019-04-23 何满潮 NPR is nonmagnetic anchor pole Steel material and its production method
WO2019222943A1 (en) * 2018-05-23 2019-11-28 He Manchao Npr nonmagnetic anchor rod steel material and production method therefor
US11434558B2 (en) 2018-05-23 2022-09-06 Manchao He NPR non-magnetic steel material for rock bolt and production method thereof

Similar Documents

Publication Publication Date Title
JP3398772B2 (en) Martensitic stainless steel with improved machinability
JP2533481B2 (en) Non-magnetic high strength stainless steel and method for producing the same
JP3736721B2 (en) High corrosion resistance free-cutting stainless steel
US3834897A (en) Low-carbon,high-strength structural steel with good weldability
JP3703008B2 (en) Free-cutting stainless steel
JPH09291341A (en) Austenitic free cutting stainless steel for cold working
JP2001098352A (en) High corrosion resistant free-cutting stainless steel excellent in surface finish characteristic
JP3791664B2 (en) Austenitic Ca-added free-cutting stainless steel
JP3483800B2 (en) Free-cutting stainless steel with excellent outgassing properties
JP4964060B2 (en) Mechanical structural steel and mechanical structural parts with excellent strength anisotropy and machinability
JPS628504B2 (en)
JPH09291344A (en) Low hardness martensitic stainless steel
WO1987004731A1 (en) Corrosion resistant stainless steel alloys having intermediate strength and good machinability
JP2521479B2 (en) Martensite free-cutting stainless steel for cold forging
JP2003183781A (en) Martensitic stainless steel
JPH1046292A (en) Ferritic free cutting stainless steel excellent in hot workability and corrosion resistance
JPH05239589A (en) High strength nonheat-treated steel
JP3958193B2 (en) Austenitic free-cutting stainless steel
JP2003055743A (en) Steel for cold die having excellent machinability
JP3903996B2 (en) Steel bar and machine structural member for cold forging with excellent machinability, cold forgeability and fatigue strength characteristics after quenching and tempering
JPH0317245A (en) High strength non-magnetic stainless steel having excellent machinability
JPH04354852A (en) High hardness shank material or barrel material for high speed steel tool
JP4108506B2 (en) Martensitic free-cutting stainless steel
JP2001164340A (en) High corrosion resistant free cutting stainless steel excellent in hot workability
JPH09143632A (en) Precipitation hardening stainless steel

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020115