JPH09289502A - Wavelength multiplex optical submarine cable network - Google Patents

Wavelength multiplex optical submarine cable network

Info

Publication number
JPH09289502A
JPH09289502A JP8122850A JP12285096A JPH09289502A JP H09289502 A JPH09289502 A JP H09289502A JP 8122850 A JP8122850 A JP 8122850A JP 12285096 A JP12285096 A JP 12285096A JP H09289502 A JPH09289502 A JP H09289502A
Authority
JP
Japan
Prior art keywords
wavelength
transmission
optical
cable network
submarine cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8122850A
Other languages
Japanese (ja)
Inventor
Naoki Norimatsu
直樹 則松
Koji Goto
光司 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
K D D KAITEI CABLE SYST KK
KDDI Corp
Original Assignee
K D D KAITEI CABLE SYST KK
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K D D KAITEI CABLE SYST KK, Kokusai Denshin Denwa KK filed Critical K D D KAITEI CABLE SYST KK
Priority to JP8122850A priority Critical patent/JPH09289502A/en
Publication of JPH09289502A publication Critical patent/JPH09289502A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the wavelength multiplex optical submarine cable network which can increase the transmission capacity of light signals without lowering the reliability of transmission quality. SOLUTION: Wavelengths λ1-λi-a-i and λi+b+i-λn of ordinary transmission characteristics among in-use wavelengths are assigned to optical transmitters 1a-1i-a-1 and 1i+b+1-1n of an optical wavelength multiplex transmitting terminal station and a communication is made at a transmission speed of, for example, 5Gbps. Wavelengths λi-a-λi+b of excellent transmission characteristics are assigned to optical transmitters 1i-a-1i+b and a communication is made at a transmission speed of, for example, 10Gbps. Consequently, the optical transmitters 1i-a-1i+b can be increased in transmission capacity by the increase in transmission speed. There is another practical style which is increased in transmission capacity by using light signals of a wavelength area of inferior transmission characteristics at a slow transmission speed or using light signals of wavelength of inferior transmission characteristics for a short-distance ground communication.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は波長多重光海底ケ
ーブルネットワークに関し、特に、所要の伝送品質を確
保した状態で伝送容量を増加させることができるように
した波長多重光海底ケーブルネットワークに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength division multiplexing optical submarine cable network, and more particularly to a wavelength division multiplexing optical submarine cable network capable of increasing transmission capacity while ensuring required transmission quality.

【0002】[0002]

【従来の技術】光直接増幅技術を応用した光海底ケーブ
ルネットワークにおいて、従来から、互いに異なる複数
の波長の光信号を波長多重して通信する波長多重通信方
法が提案されている。この従来の波長多重通信方法の概
要を、図6を参照して説明する。光海底ケーブルは一般
に長距離であるため、光信号はその伝送中に減衰する。
この減衰を補償するために、伝送路の途中に複数個の光
中継器が設けられ、該光中継器にて光信号を増幅するよ
うにしている。光信号の伝送特性は、主に該光中継器内
の光増幅器の特性により決定され、一般に図6の特性x
のようになる。今、伝送速度を一定とした場合、波長λ
i の光信号の伝送特性が最も良好であるとすると、該波
長λi より波長が小さくなるに従って、また、該該波長
λi より波長が大きくなるに従って伝送特性が劣化す
る。そこで、従来は、中継伝送路が最低の条件として求
められる伝送特性の値s以上の波長λ1 〜λn の光信号
を、波長多重通信に使用している。
2. Description of the Related Art In an optical submarine cable network to which an optical direct amplification technique is applied, a wavelength multiplexing communication method has been conventionally proposed in which optical signals having a plurality of different wavelengths are wavelength-multiplexed for communication. An outline of this conventional wavelength division multiplexing communication method will be described with reference to FIG. Since optical submarine cables are generally long distances, optical signals are attenuated during their transmission.
In order to compensate for this attenuation, a plurality of optical repeaters are provided in the middle of the transmission line, and the optical signals are amplified by the optical repeaters. The transmission characteristic of the optical signal is mainly determined by the characteristic of the optical amplifier in the optical repeater, and in general, the characteristic x in FIG.
become that way. Now, if the transmission rate is constant, the wavelength λ
If the transmission characteristics of the optical signal of i are the best, the transmission characteristics deteriorate as the wavelength becomes smaller than the wavelength λi and as the wavelength becomes larger than the wavelength λi. Therefore, conventionally, optical signals of wavelengths λ1 to λn having a transmission characteristic value s or more required as a minimum condition for a relay transmission line are used for wavelength division multiplexing communication.

【0003】図7は従来の波長多重伝送路の一系統の概
略の構成を示し、光波長多重送信端局20、合波器2
1、中継伝送路22、分波器23および光波長多重受信
端局24とから構成されている。前記光波長多重送信端
局20は波長λ1 〜λn の光信号を送出する光送信機2
0a〜20nを有し、光波長多重受信端局24は波長λ
1 〜λn の光信号を受信する光受信機24a〜24nを
有している。また、前記中継伝送路22中には、複数個
の光中継器22a〜22mが適当な間隔で挿入されてい
る。今、光波長多重送信端局20の光送信機20a〜2
0nのそれぞれから、波長λ1 〜λn の光信号が送出さ
れると、これらの光信号は合波器21により合波されて
中継伝送路22に入り、光波長多重信号として中継伝送
路22中を伝送される。この伝送途中で、複数個の光中
継器22a〜22mによって増幅され、分波器23に到
着する。分波器23は受信した光信号を分波し、分波さ
れた光信号は各光受信機24a〜24nで受信される。
FIG. 7 shows a schematic configuration of one system of a conventional wavelength division multiplexing transmission line, which is an optical wavelength division multiplexing transmission terminal station 20 and a multiplexer 2.
1, a relay transmission line 22, a demultiplexer 23, and an optical wavelength multiplex reception terminal station 24. The optical wavelength division multiplexing transmission terminal station 20 is an optical transmitter 2 for transmitting optical signals of wavelengths λ1 to λn.
0a to 20n, the optical wavelength division multiplexing reception terminal station 24 has a wavelength λ
It has optical receivers 24a to 24n for receiving optical signals of 1 to λn. A plurality of optical repeaters 22a to 22m are inserted in the relay transmission line 22 at appropriate intervals. Now, the optical transmitters 20 a to 2 of the optical wavelength division multiplexing transmission terminal station 20
When the optical signals of wavelengths λ1 to λn are transmitted from each of 0n, these optical signals are multiplexed by the multiplexer 21 and enter the relay transmission line 22, and are transmitted through the relay transmission line 22 as optical wavelength multiplexed signals. Is transmitted. During this transmission, it is amplified by the plurality of optical repeaters 22a to 22m and arrives at the demultiplexer 23. The demultiplexer 23 demultiplexes the received optical signal, and the demultiplexed optical signal is received by each of the optical receivers 24a to 24n.

【0004】このような構成の波長多重伝送路を用いた
波長多重通信において、従来は、波長λ1 〜λn の光信
号を全て等しい伝送速度で伝送していた。例えば、波長
λ1〜λn の光信号を全て5Gbps で伝送していた。
In the wavelength division multiplex communication using the wavelength division multiplex transmission line having such a configuration, conventionally, all the optical signals of the wavelengths λ1 to λn are transmitted at the same transmission rate. For example, all optical signals of wavelengths λ1 to λn are transmitted at 5 Gbps.

【0005】[0005]

【発明が解決しようとする課題】さて、近年国際間の通
信の需要が急激に増大しており、従来の波長多重伝送路
の伝送容量を越える虞れがある。この対策として、前記
した伝送特性値s、すなわち伝送特性のしきい値sを少
し下げて、波長λa1、λb1の光信号を使用することによ
り、伝送容量を増大することが考えられる。しかしなが
ら、この対策では、波長λa1、λb1の光信号を用いた通
信の伝送品質は、波長λ1 〜λn のそれに比べて劣るこ
とになり、全ての利用者に公平な通信条件の通信サービ
スを提供することができなくなるという問題があった。
In recent years, the demand for international communication has been rapidly increasing, and there is a possibility that the transmission capacity of the conventional wavelength division multiplexing transmission line may be exceeded. As a countermeasure against this, it is possible to increase the transmission capacity by slightly lowering the above-mentioned transmission characteristic value s, that is, the threshold value s of the transmission characteristic and using the optical signals of the wavelengths λa1 and λb1. However, with this measure, the transmission quality of communication using optical signals of wavelengths λa1 and λb1 will be inferior to that of wavelengths λ1 to λn, and all users will be provided with communication services under fair communication conditions. There was a problem that I could not do it.

【0006】この発明の目的は、前記した従来技術の問
題点を除去し、伝送品質の信頼性を低下させることなく
(すなわち、伝送特性のしきい値sを下げずに)、光信
号の伝送容量を増加させることのできる波長多重光海底
ケーブルネットワークを提供することにある。また、新
たな波長多重伝送路を敷設することなく、安価に光信号
の伝送容量を増加させることのできる波長多重光海底ケ
ーブルネットワークを提供することにある。
The object of the present invention is to eliminate the above-mentioned problems of the prior art and to transmit an optical signal without lowering the reliability of the transmission quality (that is, without lowering the threshold s of the transmission characteristic). It is to provide a wavelength division multiplexing optical submarine cable network capable of increasing the capacity. Another object of the present invention is to provide a wavelength-multiplexed optical submarine cable network that can inexpensively increase the transmission capacity of an optical signal without laying a new wavelength-multiplexed transmission line.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、この発明の特徴は、互いに異なる複数の波長の光信
号を波長多重して通信する波長多重光海底ケーブルネッ
トワークにおいて、使用波長の中で伝送特性のより良好
な波長領域の波長の光信号に対して、より高速の伝送速
度で伝送する伝送端局装置を設けた点にある。他の特徴
は、使用波長の伝送特性より低い伝送特性の波長領域の
波長の光信号に対して、より低速の伝送速度で伝送する
伝送端局装置を設けた点にある。さらに他の特徴は、3
以上の対地間で通信する波長多重光海底ケーブルネット
ワークにおいて、対地間の距離が長くなるほど、伝送特
性の良好な波長領域の光信号を使用する伝送端局装置を
設けた点にある。
In order to achieve the above object, a feature of the present invention is that a wavelength-division optical submarine cable network that wavelength-multiplexes and communicates optical signals having a plurality of different wavelengths, The point is that a transmission terminal station device for transmitting an optical signal having a wavelength in a wavelength region having a better transmission characteristic at a higher transmission speed is provided. Another feature is that a transmission terminal station device is provided for transmitting an optical signal having a wavelength in a wavelength region having a transmission characteristic lower than that of a used wavelength at a lower transmission rate. Still another feature is 3
In the above-mentioned wavelength-division-multiplexed optical submarine cable network for communication between grounds, a transmission terminal station device that uses an optical signal in a wavelength region having good transmission characteristics is provided as the distance between the grounds becomes longer.

【0008】この発明によれば、従来の通常の伝送速度
より速い速度で通信できたり、従来使用していなかった
波長領域の波長を用いた通信が可能になったりするの
で、光信号の伝送容量を増加させることができるように
なる。また、対地間の距離が長いほど伝送特性の良好な
波長の光信号を優先的に用い、短距離の対地間には長距
離伝送に使用しないまたは適さない光信号を用いるよう
にしているので、対地間の距離に依存せずに伝送品質を
平均化できるようになり、光信号波長の有効利用が可能
となる。
According to the present invention, it is possible to perform communication at a speed higher than the conventional normal transmission speed, and it becomes possible to perform communication using a wavelength in the wavelength region which has not been used conventionally, so that the transmission capacity of the optical signal is increased. Will be able to increase. Also, the longer the distance to the ground is, the more preferentially the optical signal with a wavelength having a good transmission characteristic is used, and the optical signal that is not used or not suitable for the long distance transmission is used between the short distances to the ground. The transmission quality can be averaged without depending on the distance to the ground, and the optical signal wavelength can be effectively used.

【0009】[0009]

【発明の実施の形態】以下に、図面を参照して、本発明
を詳細に説明する。図1は本発明の一実施形態の概略構
成図であり、1a〜1nは光波長多重送信端局の光送信
機、2は光中継器2a、…、2mが挿入されている中継
伝送路、3a〜3nは光波長多重受信端局の光受信機で
ある。なお、図には合波器、分波器等は省略されてい
る。この実施形態では、波長λ1 〜λi-a-1 、λi+b+1
〜λn の光信号を伝送する光送信機1a〜1i-a-1 と1
i+b+1 〜1n は、例えば5Gbps で伝送し、波長λi-a
〜λi+b の光信号を伝送する光送信機は例えば10Gbp
s で伝送するようにする。図2は、同一伝送速度(この
場合、5Gbps)および同一伝送距離(この場合は、
中継伝送路2)において、中継伝送路2における波長λ
1 〜λn の伝送特性を示している。ここで、伝送特性と
は、受信再生した信号の符号誤り率と一意的に関係付け
られる電気的SNRと等化なファクタ(Qファクタ)と
する。図2のsは、中継伝送路2が求められている伝送
特性の最低値(伝送特性のしきい値と呼ぶ)である。す
なわち、図2に示されているように、伝送特性がしきい
値sより3dB以上大きい伝送特性値s1 以上の波長λ
i-a 〜λi+b の光信号の伝送速度が2倍に大きくなるよ
うにする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, in which 1a to 1n are optical transmitters of an optical wavelength multiplex transmission terminal station, 2 is an optical repeater 2a, ... Reference numerals 3a to 3n are optical receivers of an optical wavelength multiplex reception terminal station. Note that a multiplexer, a demultiplexer, etc. are omitted in the figure. In this embodiment, wavelengths λ1 to λi-a-1, λi + b + 1
Optical transmitters 1a to 1i-a-1 and 1 for transmitting optical signals of .about..lambda.n.
i + b + 1 to 1n are transmitted at, for example, 5 Gbps and have a wavelength of λi-a.
An optical transmitter that transmits an optical signal of ~ λi + b is, for example, 10 Gbps
Send with s. FIG. 2 shows that the same transmission rate (in this case, 5 Gbps) and the same transmission distance (in this case,
In the relay transmission line 2), the wavelength λ in the relay transmission line 2
The transmission characteristics of 1 to λn are shown. Here, the transmission characteristic is a factor (Q factor) equal to the electrical SNR that is uniquely associated with the code error rate of the received and reproduced signal. 2 s is the minimum value of the transmission characteristics for which the relay transmission line 2 is required (called the threshold value of the transmission characteristics). That is, as shown in FIG. 2, a wavelength λ having a transmission characteristic value s1 or more whose transmission characteristic is 3 dB or more larger than the threshold value s.
The transmission speed of the optical signals of ia to λi + b is doubled.

【0010】この実施形態によれば、しきい値s1 以上
の波長λi-a 〜λi+b の光信号の伝送速度を2倍に大き
くしているので、伝送特性は3dB程度低下するが、シ
ステム上求められている伝送特性のしきい値sは維持す
ることができ、従って伝送品質を低下させることなくシ
ステムの伝送容量を増大させることができると言える
る。なお、波長λ1 〜λn の一具体例として、1545
nm〜1561nm程度を考えることができる。
According to this embodiment, since the transmission rate of the optical signals of the wavelengths λi-a to λi + b which is equal to or larger than the threshold value s1 is doubled, the transmission characteristic is lowered by about 3 dB, but the system It can be said that the threshold value s of the transmission characteristic required above can be maintained, and therefore the transmission capacity of the system can be increased without deteriorating the transmission quality. As one specific example of the wavelengths λ1 to λn, 1545
nm to 1561 nm can be considered.

【0011】図3は本発明の第2の実施形態の概略構成
図である。図において、1a1 、1n1 は2.5Gbp
sで伝送する光送信機、3a1 、3n1 は該光送信機で
送信された光信号を受信する光受信機である。また、1
a〜1nは5Gbpsで光信号を送信する光送信機、3
a〜3nはこれらの光信号を受信する光受信機である。
図4は同一伝送速度(この場合は、5Gbps)およ
び同一伝送距離(この場合は、中継伝送路2)におい
て、中継伝送路2における波長λ11,λ1 ,…,λn 、
λn1の伝送特性を示している。図4のsは、中継伝送路
2が求められている伝送特性の最低値(伝送特性のしき
い値と呼ぶ)である。
FIG. 3 is a schematic configuration diagram of the second embodiment of the present invention. In the figure, 1a1 and 1n1 are 2.5 Gbp
Optical transmitters 3a1 and 3n1 for transmitting at s are optical receivers for receiving the optical signals transmitted by the optical transmitters. Also, 1
a to 1n are optical transmitters that transmit optical signals at 5 Gbps, 3
Reference numerals a to 3n are optical receivers for receiving these optical signals.
FIG. 4 shows the wavelengths λ11, λ1, ..., λn in the relay transmission line 2 at the same transmission rate (5 Gbps in this case) and the same transmission distance (relay transmission line 2 in this case).
The transmission characteristics of λn1 are shown. S in FIG. 4 is the minimum value of the transmission characteristics for which the relay transmission line 2 is sought (called the threshold value of the transmission characteristics).

【0012】この実施形態では、図4に示されているよ
うに、伝送特性のしきい値sより3dB程度下の伝送特
性値s2 を設定し、伝送特性値s〜s2 に相当する波長
λ11、λn1の光信号を、伝送速度を下げて送信するよう
にしている。
In this embodiment, as shown in FIG. 4, a transmission characteristic value s2, which is about 3 dB below the threshold s of the transmission characteristic, is set, and the wavelength λ11 corresponding to the transmission characteristic values s to s2 is set. The optical signal of λn1 is transmitted at a reduced transmission rate.

【0013】この実施形態によれば、他の波長と同一伝
送速度において、伝送特性のやや悪い波長の光信号の伝
送速度を1/2に下げて用いるようにしたので、伝送特
性のしきい値sを確保できるので、伝送品質を低下させ
ることなく、システムの伝送容量を増大することができ
る。なお、前記第1および第2の実施形態を併用すれ
ば、システムの伝送容量をシステムの構築後において
も、より増大することができる。
According to this embodiment, at the same transmission rate as other wavelengths, the transmission rate of an optical signal having a wavelength having a slightly poorer transmission characteristic is reduced to 1/2 and used. Since s can be secured, the transmission capacity of the system can be increased without degrading the transmission quality. By using the first and second embodiments together, the transmission capacity of the system can be further increased even after the system is constructed.

【0014】次に、本発明の第3の実施形態を説明す
る。図5は本実施形態の波長多重光海底ケーブルネット
ワークの概略の構成を示し、10a〜10cはそれぞれ
波長λ1 〜λ3 の光信号を送出する光波長多重送信端局
Aの光送信機、11aは前記波長λ2 の光信号を受信す
る光波長多重受信端局Bの光受信機、12aは前記波長
λ1 の光信号を受信する光波長多重受信端局Cの光受信
機、13aは前記波長λ3 の光信号を受信する光波長多
重受信端局Dの光受信機である。また、15a、15b
は中継伝送路に挿入された海中分岐装置である。
Next, a third embodiment of the present invention will be described. FIG. 5 shows a schematic configuration of a wavelength division multiplexing optical submarine cable network of the present embodiment, 10a to 10c are optical transmitters of an optical wavelength division multiplexing transmission terminal station A for transmitting optical signals of wavelengths .lambda.1 to .lambda.3, and 11a is the above-mentioned. The optical receiver of the optical wavelength multiplex receiving terminal station B for receiving the optical signal of the wavelength λ2, 12a is the optical receiver of the optical wavelength multiplex receiving terminal station C for receiving the optical signal of the wavelength λ1, and 13a is the optical receiver of the wavelength λ3. It is an optical receiver of an optical wavelength division multiplexing reception terminal station D for receiving a signal. Also, 15a, 15b
Is an underwater branching device inserted in the relay transmission line.

【0015】図示されているように、光波長多重送信端
局Aの光送信機10aから送出された波長λ1 の光信号
は中継伝送路を通って伝送され、海中分岐装置15aで
分岐されて端局Cの光受信機12aで受信される。ま
た、端局Aの光送信機10bから送出された波長λ2 の
光信号は中継伝送路を通って伝送され、端局Bの光受信
機11aで受信される。さらに、端局Aの光送信機10
cから送出された波長λ3 の光信号は中継伝送路を通っ
て伝送され、海中分岐装置15bで分岐されて端局Dの
光受信機13aで受信される。
As shown in the figure, the optical signal of wavelength λ1 sent from the optical transmitter 10a of the optical wavelength division multiplexing transmission terminal station A is transmitted through the relay transmission line and is branched by the undersea branching device 15a. The signal is received by the optical receiver 12a of the station C. The optical signal of wavelength .lambda.2 sent from the optical transmitter 10b of the terminal station A is transmitted through the relay transmission line and received by the optical receiver 11a of the terminal station B. Further, the optical transmitter 10 of the terminal station A
The optical signal of wavelength λ3 sent from c is transmitted through the relay transmission line, branched by the undersea branching device 15b, and received by the optical receiver 13a of the terminal station D.

【0016】今、端局A−B間の伝送路が長距離、端局
A−D間の伝送路が中距離、端局A−C間の伝送路が短
距離であるとすると、本実施形態では、一番伝送特性の
良い波長の光信号を長距離の端局A−B間の伝送に割り
当て、次に伝送特性の良い波長の光信号を中距離の端局
A−D間の伝送に割り当て、伝送特性の一番悪い波長の
光信号を短距離の端局A−C間の伝送に割り当てる。ま
た、各光信号の伝送速度は一定とする。
Now, assuming that the transmission path between the terminal stations A and B is a long distance, the transmission path between the terminal stations A and D is a medium distance, and the transmission path between the terminal stations A and C is a short distance, this embodiment is carried out. In the configuration, the optical signal of the wavelength having the best transmission characteristic is assigned to the transmission between the long-distance terminal stations A and B, and the optical signal of the wavelength having the next best transmission characteristic is transmitted between the intermediate distance terminal stations A-D. The optical signal having the wavelength with the worst transmission characteristic is assigned to the transmission between the short-distance terminal stations A to C. The transmission speed of each optical signal is constant.

【0017】このようにすることにより、本実施形態で
は、例えば図4の伝送特性のしきい値s以下の波長λ1
1、λn1等を短距離の伝送に割り当てることができる。
なお、この場合は、図4の伝送特性の伝送距離は、長距
離の端局A−B間となる。伝送距離が短くなれば、光信
号の品質の劣化は小さくなるから、図4の伝送特性のし
きい値s以下の波長λ11、λn1を用いても、実際には伝
送特性のしきい値sを確保することができ、伝送品質を
十分に保証することができる。なお、前記の説明は、端
局Aから、端局B、CおよびDに光信号を送信する場合
であったが、他の端局から他の複数の端局に光信号を送
信する場合にも、同様に端局間の距離を考慮して、長距
離の通信に対しては伝送特性の良好な波長の光信号が使
用され、逆に短距離の通信に対しては伝送特性が劣る波
長の光信号が使用されるようになされる。
By doing so, in the present embodiment, for example, the wavelength λ1 below the threshold s of the transmission characteristic of FIG.
1, λn1, etc. can be assigned for short-distance transmission.
In this case, the transmission distance of the transmission characteristic of FIG. 4 is between the long distance terminal stations AB. As the transmission distance becomes shorter, the deterioration of the quality of the optical signal becomes smaller. Therefore, even if the wavelengths λ11 and λn1 below the threshold s of the transmission characteristic of FIG. It can be ensured and the transmission quality can be sufficiently guaranteed. In the above description, the optical signal is transmitted from the terminal station A to the terminal stations B, C and D. However, when the optical signal is transmitted from another terminal station to a plurality of other terminal stations. Similarly, considering the distance between terminal stations, an optical signal with a good transmission characteristic is used for long-distance communication, and conversely a wavelength with poor transmission characteristic for short-distance communication. Optical signals are used.

【0018】また、本実施形態の変形として、実施形態
2、3と同様に、端局間の距離に応じて伝送速度を変え
たり、端局間の距離に応じて光信号の波長と伝送速度の
両方を変えるようにしてもよい。
Further, as a modification of this embodiment, as in the second and third embodiments, the transmission rate is changed according to the distance between the terminal stations, or the wavelength and transmission rate of the optical signal are changed according to the distance between the terminal stations. Both may be changed.

【0019】[0019]

【発明の効果】以上の説明から明らかなように、請求項
1ないし3の発明によれば、使用波長の中で伝送特性の
より良好な波長領域の波長の光信号に対して、より高速
の伝送速度で通信する伝送端局装置を設けたり、使用最
短波長より短波長および使用最長波長より長波長領域の
波長の少くとも一方を、使用波長の伝送速度より低速の
伝送速度で伝送する伝送端局装置を設けたりしているの
で、伝送品質の信頼性を低下させることなく、光信号の
伝送容量を増加させることのできる。また、新たな波長
多重伝送路を敷設することなく、安価に光信号の伝送容
量を増加させることができるようになる。
As is apparent from the above description, according to the first to third aspects of the present invention, a higher speed optical signal having a wavelength in a wavelength region having a better transmission characteristic in the used wavelength can be obtained. A transmission end device that communicates at the transmission speed is provided, or a transmission end that transmits at least one of the wavelengths shorter than the shortest used wavelength and longer than the longest used wavelength at a transmission speed lower than the transmission speed of the used wavelength. Since the station device is provided, the transmission capacity of the optical signal can be increased without lowering the reliability of the transmission quality. In addition, the transmission capacity of the optical signal can be increased at low cost without laying a new wavelength division multiplexing transmission line.

【0020】また、請求項4、5の発明によれば、前記
の効果に加えて、波長多重伝送における伝送特性の波長
依存性を効果的に利用して、各対地間の通信の伝送品質
を平均化させた波長多重光海底ケーブルネットワークを
提供することができるという効果がある。
Further, according to the inventions of claims 4 and 5, in addition to the above effects, the wavelength dependence of the transmission characteristics in the wavelength division multiplex transmission is effectively utilized to improve the transmission quality of the communication between each ground. There is an effect that it is possible to provide an averaged wavelength division multiplexing optical submarine cable network.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施形態の構成の概略を示す
ブロック図である。
FIG. 1 is a block diagram showing an outline of a configuration of a first exemplary embodiment of the present invention.

【図2】 該第1の実施形態の要部の説明図である。FIG. 2 is an explanatory diagram of a main part of the first embodiment.

【図3】 本発明の第2の実施形態の構成の概略を示す
ブロック図である。
FIG. 3 is a block diagram showing an outline of a configuration of a second exemplary embodiment of the present invention.

【図4】 該第2の実施形態の要部の説明図である。FIG. 4 is an explanatory diagram of a main part of the second embodiment.

【図5】 本発明の第3の実施形態の構成の概略を示す
ブロック図である。
FIG. 5 is a block diagram showing an outline of a configuration of a third exemplary embodiment of the present invention.

【図6】 光信号波長の伝送特性を示す図である。FIG. 6 is a diagram showing a transmission characteristic of an optical signal wavelength.

【図7】 従来の波長多重光海底ケーブルネットワーク
の概要を示すブロック図である。
FIG. 7 is a block diagram showing an outline of a conventional wavelength division multiplexing optical submarine cable network.

【符号の説明】[Explanation of symbols]

1a〜1n…光送信機、2…中継伝送路、2a〜2m…
光中継器、3a〜3n…光受信機、10a〜10c…光
送信機、11a、12a、13a…光受信機、15a、
15b…海中分岐装置。
1a to 1n ... Optical transmitter, 2 ... Relay transmission line, 2a to 2m ...
Optical repeaters 3a to 3n ... Optical receivers, 10a to 10c ... Optical transmitters, 11a, 12a, 13a ... Optical receivers, 15a,
15b ... Submarine branching device.

フロントページの続き (72)発明者 則松 直樹 東京都新宿区西新宿2丁目3番2号 国際 電信電話株式会社内 (72)発明者 後藤 光司 東京都新宿区西新宿2丁目3番2号 国際 電信電話株式会社内Front page continued (72) Inventor Naoki Norimatsu 2-3-2 Nishishinjuku, Shinjuku-ku, Tokyo International Telegraph and Telephone Corporation (72) Inventor Koji Goto 2-3-2 Nishishinjuku, Shinjuku-ku, Tokyo International Telegraph Phone Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 互いに異なる複数の波長の光信号を波長
多重して通信する波長多重光海底ケーブルネットワーク
において、 使用波長の中で伝送特性のより良好な波長領域の波長の
光信号に対して、より高速の伝送速度で伝送する伝送端
局装置を設けたことを特徴とする波長多重光海底ケーブ
ルネットワーク。
1. In a wavelength-multiplexed optical submarine cable network for wavelength-multiplexing and communicating optical signals of a plurality of different wavelengths, an optical signal of a wavelength in a wavelength region having better transmission characteristics among used wavelengths, A wavelength-division-multiplexed optical submarine cable network provided with a transmission terminal device that transmits at a higher transmission speed.
【請求項2】 互いに異なる複数の波長の光信号を波長
多重して通信する波長多重光海底ケーブルネットワーク
において、 使用波長の伝送特性より低い伝送特性の波長領域の波長
の光信号に対して、より低速の伝送速度で伝送する伝送
端局装置を設けたことを特徴とする波長多重光海底ケー
ブルネットワーク。
2. In a wavelength-division optical submarine cable network for wavelength-multiplexing and communicating optical signals of a plurality of different wavelengths, the optical signal having a wavelength in a wavelength region having a transmission characteristic lower than a transmission characteristic of a used wavelength is more A wavelength-division-multiplexed optical submarine cable network, which is provided with a transmission terminal device that transmits at a low transmission speed.
【請求項3】 請求項1または2記載の波長多重光海底
ケーブルネットワークにおいて、 前記使用波長は、所定の伝送速度で伝送された時に許容
される伝送特性の最低以上の伝送特性を達成する波長領
域の波長であることを特徴とする波長多重光海底ケーブ
ルネットワーク。
3. The wavelength-division-multiplexed optical submarine cable network according to claim 1 or 2, wherein the used wavelength is a wavelength region that achieves a transmission characteristic of at least a transmission characteristic allowed when transmitted at a predetermined transmission speed. Wavelength-multiplexed optical submarine cable network.
【請求項4】 中継伝送路中に光アド・ドロップ機能を
有する海中分岐装置を設け、3以上の対地間で通信する
波長多重光海底ケーブルネットワークにおいて、 対地間の距離が長くなるほど、伝送特性の良好な波長領
域の光信号を使用する伝送端局装置を設けたことを特徴
とする波長多重光海底ケーブルネットワーク。
4. A submarine branching device having an optical add / drop function is provided in a relay transmission line, and in a wavelength multiplexing optical submarine cable network for communicating between three or more grounds, the longer the distance between the grounds is, the more the transmission characteristics are improved. A wavelength-division-multiplexed optical submarine cable network comprising a transmission terminal device that uses an optical signal in a good wavelength range.
【請求項5】 請求項4の波長多重光海底ケーブルネッ
トワークにおいて、 距離が最短の対地間の通信には、使用最短波長より短波
長および使用最長波長より長波長領域の波長の少くとも
一方を使用する伝送端局装置を設けたことを特徴とする
波長多重光海底ケーブルネットワーク。
5. The wavelength-division-multiplexed optical submarine cable network according to claim 4, wherein at least one of wavelengths shorter than the shortest wavelength used and longer than the longest wavelength used is used for communication between the shortest distances to the ground. A wavelength-division-multiplexed optical submarine cable network, which is provided with a transmission terminal device.
JP8122850A 1996-04-22 1996-04-22 Wavelength multiplex optical submarine cable network Pending JPH09289502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8122850A JPH09289502A (en) 1996-04-22 1996-04-22 Wavelength multiplex optical submarine cable network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8122850A JPH09289502A (en) 1996-04-22 1996-04-22 Wavelength multiplex optical submarine cable network

Publications (1)

Publication Number Publication Date
JPH09289502A true JPH09289502A (en) 1997-11-04

Family

ID=14846192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8122850A Pending JPH09289502A (en) 1996-04-22 1996-04-22 Wavelength multiplex optical submarine cable network

Country Status (1)

Country Link
JP (1) JPH09289502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018011185A (en) * 2016-07-13 2018-01-18 日本電信電話株式会社 Light transmission system and light transmission method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018011185A (en) * 2016-07-13 2018-01-18 日本電信電話株式会社 Light transmission system and light transmission method

Similar Documents

Publication Publication Date Title
JP3373332B2 (en) Pre-emphasis type optical wavelength division multiplexing communication method and apparatus
KR101039181B1 (en) Optical line terminal
US5311344A (en) Bidirectional lightwave transmission system
US6043914A (en) Dense WDM in the 1310 nm band
JP4773454B2 (en) Light modulation method and system in fixed wavelength FP-LD by injection of broadband light source using FP-LD injected mutually
US8750707B2 (en) System and method for establishing secure communications between transceivers in undersea optical communication systems
JPH088835A (en) Optical transmission system
EP1475914B1 (en) Network element for use in an optical communication network, in particular a DWDM communication network
KR20140076112A (en) Optical line terminal for monitoring and controlling of upstream/downstream optical signals
US20240056709A1 (en) Optical communication system, control apparatus and quality compensation method
JPH08181656A (en) Monitoring device for optical wavelength multiplex communication line
Lin et al. The Modified Star-Ring Architecture forHigh-Capacity Subcarrier MultiplexedPassive Optical Networks
US7697802B2 (en) Optical bypass method and architecture
JPH0918453A (en) Noise suppressing method for wavelength multiplex transmission system
JP2007510388A (en) Cable station for submarine optical transmission system
US6920277B2 (en) Optical bypass method and architecture
JP3769172B2 (en) Optical wavelength division multiplexing system
JPH09289502A (en) Wavelength multiplex optical submarine cable network
JP2002504777A (en) Dense wavelength division multiplexing method and system in 1310 nm band
RU2204211C1 (en) Subscriber optical communication line
KR100767898B1 (en) Optical transmission system and method for sharing optical fiber cable between hybrid fiber coaxial network and coarse wavelength division multiplexing passive optical network
GB2345399A (en) Wideband optical service channel for wavelength division multiplexed networks
JPH1013382A (en) Optical add-drop multiplexing node equipment
JP3258038B2 (en) Optical communication system
JP3989783B2 (en) Optical multiplex transmission equipment