JPH09289113A - Terminal for ac superconducting device - Google Patents

Terminal for ac superconducting device

Info

Publication number
JPH09289113A
JPH09289113A JP9982896A JP9982896A JPH09289113A JP H09289113 A JPH09289113 A JP H09289113A JP 9982896 A JP9982896 A JP 9982896A JP 9982896 A JP9982896 A JP 9982896A JP H09289113 A JPH09289113 A JP H09289113A
Authority
JP
Japan
Prior art keywords
superconducting
wire
terminal
electrically conductive
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9982896A
Other languages
Japanese (ja)
Inventor
Tsukasa Taniguchi
谷口  司
Ryukichi Takahashi
龍吉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9982896A priority Critical patent/JPH09289113A/en
Publication of JPH09289113A publication Critical patent/JPH09289113A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stable terminal for enabling an enough performance of an AC superconducting device such as superconducting transformer or current limiter which passes a specially large current. SOLUTION: In a terminal for an AC superconducting device, an oxide superconducting wire 3 with a covering which exhibits good electrical and thermal conduction is disposed and connected in parallel to an AC superconducting wire 1. With this construction the local Joule heating by skin effect associated with AC current passage is reduced and efficiently cooled. Also, by using an oxide superconducting material representing superconducting properties at relatively high temperature, the superconducting properties of the terminal 4 heated by the Joule heating is maintained for steadily operating the AC superconducting device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は交流超電導機器の端
子に係り、特に超電導式の変圧器,限流器や全超電導発
電機の電機子などの超電導電力機器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a terminal of an AC superconducting device, and more particularly to a superconducting power device such as a superconducting transformer, a fault current limiter or an armature of an all superconducting generator.

【0002】[0002]

【従来の技術】従来の交流超電導機器の端子構造は特開
平5−82188号公報に詳しく記載されているので概要を図
6を用いて説明する。交流通電時、端子板4と交流超電
導線1との接続部では表皮効果が起こり交流超電導線1
の局部的なジュール発熱が交流超電導線の温度を上昇さ
せクエンチ(超電導状態から常電導状態への転移)する
ため、交流超電導線1を小より線または超電導素線2に
よりほぐし各々を端子板に表皮効果による端子板の電流
分布に従いロー付け(半田付け)して局所的ジュール発
熱を分散させた。従来は百A程度の小電流では健全に動
作したが、数千〜数万Aの大電流のもとでは通電に伴う
ジュール発熱は電流の自乗に比例するため非常に大きく
なり端子の温度が上昇し容易にクエンチが起こった。
2. Description of the Related Art A terminal structure of a conventional AC superconducting device is described in detail in Japanese Patent Laid-Open No. 82882/1993, so an outline will be described with reference to FIG. When AC is energized, a skin effect occurs at the connection between the terminal plate 4 and the AC superconducting wire 1 and the AC superconducting wire 1
Since the local Joule heating of the above raises the temperature of the AC superconducting wire and causes quenching (transition from the superconducting state to the normal conducting state), the AC superconducting wire 1 is loosened with a small stranded wire or superconducting element wire 2 and each is used as a terminal board. Local Joule heat generation was dispersed by brazing (soldering) according to the current distribution of the terminal plate due to the skin effect. Conventionally, it operated soundly with a small current of about 100 A, but under a large current of several thousand to tens of thousands A, the Joule heat generated by energization is extremely large because it is proportional to the square of the current, and the temperature of the terminal rises. Then the quench happened easily.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上記
従来技術の欠点を克服し、大電流通電で安定に動作する
交流超電導機器の端子を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a terminal for an AC superconducting device that overcomes the above-mentioned drawbacks of the prior art and operates stably with a large current.

【0004】[0004]

【課題を解決するための手段】本発明は上記課題を解決
するため、交流超電導機器の端子で電気抵抗が低くかつ
熱伝導性の良い被覆物を有する酸化物超電導線を交流超
電導線に並列接続となるように配置させ、交流通電時の
表皮効果による局部的なジュール発熱を低減するととも
に発生したジュール熱を効果的に拡散・冷却させる。し
かも比較的高温で超電導性を示す酸化物超電導材料を用
いることで端子部の温度がジュール発熱により上昇した
ときでも端子の超電導性を維持し交流超電導機器を安定
に動作させることができる。
In order to solve the above-mentioned problems, the present invention connects an oxide superconducting wire having a coating having a low electric resistance and a good thermal conductivity at the terminals of an AC superconducting device in parallel with the AC superconducting wire. Is arranged so as to reduce local Joule's heat generation due to the skin effect during AC energization and to effectively diffuse and cool the generated Joule heat. Moreover, by using an oxide superconducting material exhibiting superconductivity at a relatively high temperature, the superconductivity of the terminal can be maintained and the AC superconducting device can be stably operated even when the temperature of the terminal portion rises due to Joule heat generation.

【0005】上記の交流超電導機器の端子を用い、交流
通電時の表皮効果による電流集中によるジュール発熱の
局在化が抑制され、安定な交流超電導機器の端子が得ら
れる。
By using the terminals of the AC superconducting device described above, the localization of Joule heat generation due to the current concentration due to the skin effect during AC energization is suppressed, and a stable terminal of the AC superconducting device can be obtained.

【0006】[0006]

【発明の実施の形態】本実施例では交流通電時、安定に
動作する交流超電導機器の端子の詳細を説明する。図1
は本発明の実施例に係わる交流超電導機器の端子の構成
を示す概略図である。本発明の交流超電導機器の端子は
交流超電導線1,交流超電導線1を構成し、よりほぐさ
れた小より線または超電導素線2,電気良導性物を被覆
した酸化物超電導線3,端子板4,端子板4と電気良導
性物を被覆した酸化物超電導線3および電気良導性物を
被覆した酸化物超電導線3と小より線または超電導素線
2とをそれぞれ電気的に接続するロー付け(半田付け)
部5で構成される。小より線または超電導素線2を端子
板4に接続する際、電気抵抗が小さく熱伝導性が良好で
比較的高温で超電導特性を示す電気良導性物を被覆した
酸化物超電導線3を小より線または超電導素線2と端子
板4の間に配置したことが本発明の大きな特徴である。
このため、大電流を交流超電導コイルに通電しても電気
良導性物を被覆した酸化物超電導線3の低電気抵抗性と
高熱伝導性の特長により交流通電時のジュール熱を低減
させ速やかに冷却できる。そして比較的高温で超電導性
を示す酸化物超電導材料を用いたことで、もし端子の温
度がジュール発熱により上昇したときでも端子の超電導
性を維持し交流超電導機器を安定に動作させることがで
きる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present embodiment, details of terminals of an AC superconducting device that operates stably when an AC current is applied will be described. FIG.
FIG. 3 is a schematic diagram showing a configuration of terminals of an AC superconducting device according to an embodiment of the present invention. The terminals of the AC superconducting device of the present invention constitute an AC superconducting wire 1 and an AC superconducting wire 1, and are loosened small strands or superconducting element wires 2, oxide superconducting wires 3 and terminals coated with an electrically conductive material. Electrical connection between the plate 4, the terminal plate 4, the oxide superconducting wire 3 coated with the electrically conductive material, and the oxide superconducting wire 3 coated with the electrically conductive material and the small stranded wire or the superconducting element wire 2, respectively. Brazing (soldering)
It is composed of part 5. When connecting a small stranded wire or a superconducting element wire 2 to a terminal board 4, the oxide superconducting wire 3 coated with an electrically conductive material having a small electric resistance, good thermal conductivity and superconducting characteristics at a relatively high temperature is small. The arrangement of the stranded wire or superconducting element wire 2 and the terminal board 4 is a major feature of the present invention.
Therefore, even if a large current is applied to the AC superconducting coil, due to the low electrical resistance and high thermal conductivity of the oxide superconducting wire 3 coated with an electrically conductive material, the Joule heat during AC energization can be reduced quickly. Can be cooled. By using the oxide superconducting material exhibiting superconductivity at a relatively high temperature, even if the temperature of the terminal rises due to Joule heat generation, the superconductivity of the terminal can be maintained and the AC superconducting device can be operated stably.

【0007】一般に交流超電導機器に使用される交流超
電導線の超電導素線の母材には交流損失低減のためCu
−Ni合金などの高電気抵抗材料が使用されるが、Cu
−Ni合金の極低温(4.2K)における電気抵抗と熱伝
導特性は『超伝導・低温工学ハンドブック』(社)低温工
学協会編によれば電気抵抗値はCuと比較して1000倍、
熱伝導度は1/5である。Cu−Ni合金とAgを比較
すると電気抵抗値は200倍、熱伝導度は1/300で
あり、特に、熱伝導度に関してAgとCu−Ni合金は
格段の差があり、Cu−Ni合金は一般金属に比べ高電
気抵抗性で低熱伝導性の材料であることがわかる。一
方、交流超電導機器の端子がクエンチに至る過程を考察
してみる。超電導状態は超電導線の発熱と冷却がうまく
バランスして超電導線が臨界温度以下の温度で保たれる
ならば維持される。しかし交流超電導機器の端子では交
流電流を通電するため接続部で局所的なジュール発熱が
起こり、発熱と冷却のバランスが崩れやすい。特に上記
Cu−Ni合金を超電導素線の母材として用いるため、
その高電気抵抗性と低熱伝導性によりバランスが崩れや
すい状況にある。『Superconducting Magnets』MARTIN
N.WILSON 著p.131〜p.133 によれば、何らか
の原因で超電導線の温度上昇が起こると臨界電流密度が
低下して超電導線内を貫いている磁束が動いて発熱す
る。次に発熱で生じた熱がさらに超電導線の温度上昇を
引き起こすというサイクルでクエンチに至ることを説明
している。ただし、サイクルは超電導線の冷却条件が良
好であれば発熱が起こっても逆経緯を辿ることが可能で
ある。冷却性能を越えて流れようとする電流は酸化物超
電導材に流れ、大電流通電に対して端子の発熱を最小限
に止め、その発熱を冷却特性の良い部材を用いて冷却し
超電導性を維持できることを示す。本発明では上記サイ
クルの逆経緯を交流超電導機器の端子部分で達成するも
のである。本発明の上記部材に相当するのが電気良導性
物を被覆した酸化物超電導線3であり、本発明の安定動
作する交流超電導機器の端子の重要な構成要素である。
本実施例は端子板4と小より線または超電導素線2の中
間に電気良導性物を被覆した酸化物超電導線3を設けた
ことが大きな特徴であり、電気良導性物被覆としては電
気抵抗が小さく、熱伝導性が良好なAu,Ag,Ag−
Au合金を用いる。酸化物超電導体はYBa2Cu
3x,Bi2Sr2Ca1Cu2x,Bi2Sr2Ca2Cu
3x,Tl2CaBa2Cu2x,Tl2Ca2Ba2Cu3
xなどの比較的高温で超電導性を示す材料が望まし
い。電気良導性物を被覆した酸化物超電導線3を端子板
4と小より線または超電導素線2の間に配置し各々をロ
ー付け(半田付け)して交流電流通電時で接続部のジュ
ール発熱が小さく、熱の拡散が良好な交流超電導機器の
端子を得ることができる。図2は交流超電導コイルに本
発明の交流超電導機器の端子を接続試験したときの交流
超電導機器全体構成を示す概略図である。交流超電導コ
イル8,交流超電導線1,小より線または超電導素線
2,電気良導性物を被覆した酸化物超電導線3,端子板
4,端子板4と電気良導性物を被覆した酸化物超電導線
3および電気良導性物を被覆した酸化物超電導線3と小
より線または超電導素線2とをそれぞれ電気的に接続す
るロー付け(半田付け)部5および電流供給リード10
はクライオスタット7に蓄えられた冷媒(液体ヘリウ
ム)6により冷却されている。外部より電流供給リード
10を通じて交流電流を交流超電導コイル8に通電し、
交流超電導コイル特性を調べる試験を試みた。図3に交
流超電導コイル8に用いた交流超電導線1の断面構成を
示す。交流超電導線1は超電導素線2a,小より線2
b,中心線11a,中心より線11bで構成される。7
本の中心線11aをより合わせた中心より線11bは交
流超電導線1の中心に位置し周りに6本の小より線2b
がより合わされている。小より線2bは中心に中心線1
1aが配置され周りに超電導素線2aがより合わされて
いる。中心線11aは交流超電導線1の機械的な補強の
役割を果たしているため超電導性を示さない常電導合金
が一般に用いられる。本実施例では中心線11a,中心
より線11bとしてCu−Ni合金を用いたが、SUS
材でも良い。表1に実施例に用いた交流超電導線の主要
諸元を示す。
In order to reduce the AC loss, the base material of the superconducting element wire of the AC superconducting wire generally used in AC superconducting equipment is Cu.
-High electrical resistance material such as Ni alloy is used, but Cu
-Electrical resistance and heat conduction characteristics of Ni alloy at cryogenic temperature (4.2K) are 1000 times higher than Cu according to "Superconductivity / Low Temperature Engineering Handbook" edited by Low Temperature Engineering Society.
The thermal conductivity is 1/5. Comparing Cu-Ni alloy and Ag, the electrical resistance value is 200 times and the thermal conductivity is 1/300. Especially, regarding the thermal conductivity, Ag and Cu-Ni alloy have a remarkable difference, and Cu-Ni alloy has It can be seen that the material has higher electrical resistance and lower thermal conductivity than general metals. On the other hand, let us consider the process in which the terminals of an AC superconducting device reach quench. The superconducting state is maintained if the heat generation and cooling of the superconducting wire are well balanced and the superconducting wire is kept at a temperature below the critical temperature. However, in the terminals of the AC superconducting equipment, an AC current is passed, so that local Joule heat is generated at the connection portion, and the balance between heat generation and cooling is likely to be lost. In particular, since the above Cu-Ni alloy is used as the base material of the superconducting wire,
Due to its high electrical resistance and low thermal conductivity, the balance is likely to be lost. "Superconducting Magnets" MARTIN
N. WILSON p. 131-p. According to 133, when the temperature of the superconducting wire rises for some reason, the critical current density decreases, and the magnetic flux penetrating the superconducting wire moves to generate heat. Next, it is explained that the heat generated by heat generation leads to quenching in a cycle in which the temperature of the superconducting wire is further raised. However, the cycle can follow the reverse course even if heat is generated, provided that the superconducting wire is cooled under good conditions. The current that tries to flow beyond the cooling performance flows in the oxide superconducting material, keeps the heat generation of the terminal to a minimum when a large current is passed, and cools the heat generation using a member with good cooling characteristics to maintain superconductivity. Show what you can do. In the present invention, the reverse process of the above cycle is achieved in the terminal portion of the AC superconducting device. The oxide superconducting wire 3 coated with an electrically conductive material corresponds to the above-mentioned member of the present invention, and is an important constituent element of the terminal of the AC superconducting device of the present invention which operates stably.
The present embodiment is characterized in that the oxide superconducting wire 3 coated with an electrically conductive material is provided between the terminal plate 4 and the small stranded wire or superconducting element wire 2. Au, Ag, Ag- with low electrical resistance and good thermal conductivity
Au alloy is used. The oxide superconductor is YBa 2 Cu.
3 O x , Bi 2 Sr 2 Ca 1 Cu 2 O x , Bi 2 Sr 2 Ca 2 Cu
3 O x , Tl 2 CaBa 2 Cu 2 O x , Tl 2 Ca 2 Ba 2 Cu 3
A material having superconductivity at a relatively high temperature such as O x is desirable. An oxide superconducting wire 3 coated with an electrically conductive material is placed between a terminal plate 4 and a small strand wire or a superconducting element wire 2 and each is brazed (soldered) so that a joule is formed at a connection portion when an alternating current is applied. It is possible to obtain a terminal of an AC superconducting device which generates little heat and has good heat diffusion. FIG. 2 is a schematic diagram showing the overall configuration of an AC superconducting device when a connection test of the terminals of the AC superconducting device of the present invention is performed on the AC superconducting coil. AC superconducting coil 8, AC superconducting wire 1, small stranded wire or superconducting element wire 2, oxide superconducting wire coated with electrically conductive material 3, terminal plate 4, terminal plate 4 and oxidation coated with electrically conductive material Brazing (soldering) part 5 for electrically connecting the superconducting wire 3 and the oxide superconducting wire 3 coated with an electrically conductive material to the small strand or the superconducting element wire 2 and the current supply lead 10.
Is cooled by a refrigerant (liquid helium) 6 stored in a cryostat 7. AC current is supplied to the AC superconducting coil 8 from the outside through the current supply lead 10.
An attempt was made to test the characteristics of the AC superconducting coil. FIG. 3 shows a cross-sectional structure of the AC superconducting wire 1 used for the AC superconducting coil 8. The AC superconducting wire 1 is a superconducting element wire 2a and a small stranded wire 2
b, a center line 11a, and a center line 11b. 7
The center twisted line 11b obtained by twisting the center lines 11a of the two books is located at the center of the AC superconducting wire 1 and has six small twisted wires 2b around it.
Are better matched. Small strand 2b is centered on centerline
1a is arranged and a superconducting wire 2a is twisted around it. Since the center line 11a plays a role of mechanically reinforcing the AC superconducting wire 1, a normal conducting alloy that does not exhibit superconducting property is generally used. In this embodiment, a Cu-Ni alloy is used for the center line 11a and the center line 11b.
You can use wood. Table 1 shows the main specifications of the AC superconducting wire used in the examples.

【0008】[0008]

【表1】 [Table 1]

【0009】超電導素線2aから小より線2b,小より
線2bから交流超電導線1へと超電導素線2aを2段階
より合わせた構成である。表2に実施例に用いた交流超
電導コイルの主要設計諸元を示す。
The superconducting element wire 2a is composed of two strands of superconducting element wire 2a, a small stranded wire 2b, and a small stranded wire 2b to an AC superconducting wire 1. Table 2 shows the main design specifications of the AC superconducting coil used in the examples.

【0010】[0010]

【表2】 [Table 2]

【0011】交流超電導コイルは上記交流超電導線1を
ソレノイド状に一層あたり50ターン、4層分巻線して
製作した。交流超電導コイルの設計電流は590Arms、
最大経験磁場は1.0Tpeakである。本発明の効果を検証
するため、上記交流超電導コイルのクエンチ試験を実施
した結果を図4に示す。図中、比較のため従来例を用い
た試験結果も同時に示す。本発明を用いると、交流超電
導コイル特性は交流超電導線特性に対して95%(図
中:○印)まで通電でき良好な結果を示した。しかし、
従来例では交流超電導線特性に対して交流超電導コイル
特性は55%の性能(図中:●印)まで低下した。従来
例では交流超電導コイルより早く端子部からクエンチし
た。よって、交流超電導コイル特性は交流超電導機器本
来の性能ではなかった。一方、本発明では交流超電導コ
イルと端子がほぼ同時にクエンチが発生し、交流超電導
機器本来の性能を引き出すことができた。
The AC superconducting coil was manufactured by winding the AC superconducting wire 1 in a solenoid shape for 50 turns per layer for four layers. The design current of the AC superconducting coil is 590Arms,
The maximum empirical magnetic field is 1.0 Tpeak. In order to verify the effect of the present invention, the results of the quench test of the above AC superconducting coil are shown in FIG. In the figure, the test results using the conventional example are also shown for comparison. According to the present invention, the characteristics of the AC superconducting coil were up to 95% of the AC superconducting wire characteristics (marked with a circle in the figure), and good results were obtained. But,
In the conventional example, the characteristics of the AC superconducting coil were reduced to 55% of the characteristics of the AC superconducting wire (marked with ● in the figure). In the conventional example, the terminal portion was quenched earlier than the AC superconducting coil. Therefore, the characteristics of the AC superconducting coil were not the original performance of the AC superconducting device. On the other hand, in the present invention, quenching occurred at the AC superconducting coil and the terminal almost at the same time, and the original performance of the AC superconducting device could be obtained.

【0012】端子板4は円柱形状を記したが、円柱形状
に限らず平板・円筒・円錐形状などの小より線または超
電導素線2を分散し接続できればどのような形状でもよ
い。図5は本発明の交流超電導機器の端子の端子板に平
板状を採用したときの斜視図である。交流超電導線1は
小より線または超電導素線2によりほぐされ各々を電気
良導性物を被覆した酸化物超電導線3にロー付け(半田
付け)する。電気良導性物を被覆した酸化物超電導線3
にロー付け(半田付け)された超電導素線または超電導
素線2の電気良導性物を被覆した酸化物超電導線3側は
端子板4に分散配置されロー付け(半田付け)される。
交流超電導コイル8に流れようとする交流全電流は電気
良導性物を被覆した酸化物超電導線3を介して接続され
た小より線または超電導素線2各々に分配され流れる。
Although the terminal plate 4 is described as having a cylindrical shape, the terminal plate 4 is not limited to a cylindrical shape and may have any shape as long as it can disperse and connect flat strands, cylinders, conical strands or the superconducting element wires 2. FIG. 5 is a perspective view when a flat plate is used for the terminal plate of the terminal of the AC superconducting device of the present invention. The AC superconducting wire 1 is loosened by a small stranded wire or a superconducting element wire 2, and each is brazed (soldered) to an oxide superconducting wire 3 coated with an electrically conductive material. Oxide superconducting wire coated with electrically conductive material 3
The superconducting element wire or the oxide superconducting wire 3 side of the superconducting element wire 2 which is brazed (soldered) to the electrically conductive material is dispersedly arranged on the terminal board 4 and brazed (soldered).
The total AC current that is about to flow in the AC superconducting coil 8 is distributed and flows to each of the small strand wires or the superconducting element wires 2 connected via the oxide superconducting wire 3 coated with an electrically conductive material.

【0013】[0013]

【発明の効果】本発明によれば熱伝導性が良好でかつ発
熱が著しく小さくなるので、高安定な交流用超電導機器
の端子を得ることができ、これを用いた変圧器,限流器
や全超電導発電機,SMES(Superconducting magnet
ic storage)等の交流用超電導機器を提供することがで
きる。
According to the present invention, since the thermal conductivity is good and the heat generation is remarkably reduced, it is possible to obtain a highly stable terminal for an AC superconducting device, and a transformer, current limiter or SMES (Superconducting magnet)
It is possible to provide an AC superconducting device such as ic storage).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の交流超電導機器の端子の説明
図。
FIG. 1 is an explanatory diagram of terminals of an AC superconducting device according to an embodiment of the present invention.

【図2】本発明の実施例の交流超電導機器の全体の説明
図。
FIG. 2 is an explanatory diagram of an entire AC superconducting device according to an embodiment of the present invention.

【図3】本発明の実施例の交流超電導コイルに使用した
交流超電導線の断面図。
FIG. 3 is a cross-sectional view of an AC superconducting wire used in the AC superconducting coil of the embodiment of the invention.

【図4】短尺の交流超電導線特性に対する交流超電導コ
イルの特性図。
FIG. 4 is a characteristic diagram of an AC superconducting coil with respect to characteristics of a short AC superconducting wire.

【図5】本発明の交流超電導機器の端子の端子板に平板
形状を採用した斜視図。
FIG. 5 is a perspective view in which a flat plate shape is adopted for the terminal plate of the terminal of the AC superconducting device of the present invention.

【図6】従来の交流超電導機器の端子の断面図。FIG. 6 is a sectional view of a terminal of a conventional AC superconducting device.

【符号の説明】[Explanation of symbols]

1…交流超電導線、2…小より線または超電導素線、3
…電気良導性物を被覆した酸化物超電導線、4…端子
板、5…ロー付け(半田付け)部。
1 ... AC superconducting wire, 2 ... small stranded wire or superconducting element wire, 3
… Oxide superconducting wire coated with electrically conductive material, 4 ... Terminal plate, 5 ... Brazed (soldered) part.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】小より線または素線が多重より合わされ構
成される交流超電導線と端子板との接続部において、交
流超電導線をよりほぐした小より線または超電導素線を
端子板へ均等に配置し接続する場合に端子板と小より線
または超電導素線の中間に電気良導性物を被覆した酸化
物超電導線を配置したことを特徴とする交流超電導機器
の端子。
1. A small stranded wire or superconducting element wire in which the AC superconducting wire is loosened is evenly distributed to the terminal plate at a connecting portion between the AC superconducting wire and the terminal board, which are formed by superposing small stranded wires or strands. A terminal for an AC superconducting device, characterized in that an oxide superconducting wire coated with an electrically conductive material is arranged between the terminal plate and the small strand or superconducting element wire when arranged and connected.
【請求項2】請求項1において、前記端子板と電気良導
性物を被覆した酸化物超電導線,電気良導性物を被覆し
た酸化物超電導線と小より線または超電導素線は各々ロ
ー付けで接続されている交流超電導機器の端子。
2. The oxide superconducting wire coated with the terminal plate and the electrically conductive material, and the oxide superconducting wire coated with the electrically conductive material and the small stranded wire or the superconducting element wire according to claim 1, respectively. Terminals for AC superconducting devices that are connected together.
【請求項3】請求項1または2において、前記電気良導
性物を被覆した酸化物超電導線の電気良導性物は金また
は銀の純金属,銀金合金またはそれらを主成分とした合
金である交流超電導機器の端子。
3. The electrically conductive material of the oxide superconducting wire coated with the electrically conductive material according to claim 1 or 2, wherein the electrically conductive material is a pure metal of gold or silver, a silver-gold alloy, or an alloy containing them as a main component. AC superconducting equipment terminal.
【請求項4】請求項1,2または3において、前記電気
良導性物を被覆した酸化物超電導線の超電導材料はY
系,Bi系またはTl系の材料であり、比較的高温で超
電導特性を示す酸化物超電導体である交流超電導機器の
端子。
4. The superconducting material of the oxide superconducting wire coated with the electrically conductive material according to claim 1, 2, or 3.
A terminal of an AC superconducting device which is an oxide superconductor made of a system-based, Bi-based or Tl-based material and which exhibits superconducting properties at a relatively high temperature.
JP9982896A 1996-04-22 1996-04-22 Terminal for ac superconducting device Pending JPH09289113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9982896A JPH09289113A (en) 1996-04-22 1996-04-22 Terminal for ac superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9982896A JPH09289113A (en) 1996-04-22 1996-04-22 Terminal for ac superconducting device

Publications (1)

Publication Number Publication Date
JPH09289113A true JPH09289113A (en) 1997-11-04

Family

ID=14257689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9982896A Pending JPH09289113A (en) 1996-04-22 1996-04-22 Terminal for ac superconducting device

Country Status (1)

Country Link
JP (1) JPH09289113A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021260A (en) * 2008-07-09 2010-01-28 Sumitomo Electric Ind Ltd Current lead for cryogenic apparatus, and terminal connection structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021260A (en) * 2008-07-09 2010-01-28 Sumitomo Electric Ind Ltd Current lead for cryogenic apparatus, and terminal connection structure

Similar Documents

Publication Publication Date Title
JP3215697B2 (en) Superconducting coil that limits fault current
JP4058920B2 (en) Superconducting connection structure
EP0371410B1 (en) Joining of high-temperature oxide superconductors
US20090118126A1 (en) Superconductor induction coil
JP6853267B2 (en) 2nd generation superconducting filaments and cables
US3619479A (en) Electrical conductor of electrically normal conducting metal and superconducting material
US20100245005A1 (en) Superconducting wire rod, persistent current switch, and superconducting magnet
Hayashi et al. Development of Ag-sheathed Bi-2223 superconducting wires and their applications
JP5552805B2 (en) Oxide superconducting wire connection method
JP3541123B2 (en) Superconducting current lead
JPH09289113A (en) Terminal for ac superconducting device
JP2003037303A (en) Superconducting coil with permanent current switch using magnesium diboride superconducting wire material and its manufacturing method
Tsukamoto et al. A method to reduce magnetization losses in assembled conductors made of YBCO coated conductors
JP2005085612A (en) Superconducting tape conductor, manufacturing method of the same, and device equipped with the same
JP2012059468A (en) Superconductive current lead
JP2004335160A (en) Current lead for superconductive device
Berriaud et al. Study of a CICC copper jacket junction for MADMAX
JP2913940B2 (en) Superconducting current lead
JP4901585B2 (en) Oxide superconducting current lead
JP3699884B2 (en) Superconducting current limiting element
JP2001283660A (en) Connection structure for superconducting wire
Lacaze et al. Coil performances of superconducting cables of AC applications
JP3326453B2 (en) Superconducting wire connection terminal
JP3363164B2 (en) Superconducting conductor
Lin et al. A cryogenically stable superconducting magnet