JPH09285860A - Tilting type automatic molten metal pouring method - Google Patents

Tilting type automatic molten metal pouring method

Info

Publication number
JPH09285860A
JPH09285860A JP12640096A JP12640096A JPH09285860A JP H09285860 A JPH09285860 A JP H09285860A JP 12640096 A JP12640096 A JP 12640096A JP 12640096 A JP12640096 A JP 12640096A JP H09285860 A JPH09285860 A JP H09285860A
Authority
JP
Japan
Prior art keywords
ladle
molten metal
pouring
tilting
backward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12640096A
Other languages
Japanese (ja)
Other versions
JP3526501B2 (en
Inventor
Jiro Sato
二朗 佐藤
Kazuhiko Terajima
寺嶋  一彦
Taketoshi Yoshida
健逸 吉田
Koichi Sakano
厚一 阪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOWA KIKO KK
Original Assignee
TOWA KIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOWA KIKO KK filed Critical TOWA KIKO KK
Priority to JP12640096A priority Critical patent/JP3526501B2/en
Publication of JPH09285860A publication Critical patent/JPH09285860A/en
Application granted granted Critical
Publication of JP3526501B2 publication Critical patent/JP3526501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent deterioration of the quality of a product in advance by pouring a molten metal in a molding frame, tilting a ladle backward in the opposite direction to the pouring direction, and damping the vibration of the surface of the molten metal in the ladle to correctly control the molten metal pouring. SOLUTION: In an automatic molten metal pouring equipment 1, the molten metal in a ladle 2 is poured from a tapping port 3 to a down gate Mo of a molding frame 4 by tilting the ladle 2 clockwise around the axis O of revolution by a driving means 9. When the molten metal equivalent to one mold is poured, the ladle 2 is tilted backward at the maximum speed counterclockwise around the axis O of revolution by the driving means 9 in the opposite direction to the pouring direction, and when the ladle reaches the position where the molten metal is not spilled from the tapping part 3, the backward tiltation is stopped to smoothly perform the pouring cutting. The angle of backward tiltation is normally about 110 deg.. The residual vibration of the molten metal in the ladle 2 is eliminated to solve the problem of the sloshing of the molten metal in tilting the ladle 2 backward. Deterioration of the quality of the product due to inclusion of air and slag can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、一般には鋳造技術
に関するものであり、特に、溶解された鉄、アルミニウ
ムなどの金属溶湯を取鍋に所定量保持し、取鍋を傾動す
ることによりモールド枠へと注湯する傾動式自動注湯方
法に関するものである。本発明によれば、取鍋内の湯面
が、特に、注湯終了後の後傾動作時に振動するのを迅速
に抑制した傾動式自動注湯方法が提供される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a casting technique, and more particularly, it holds a molten metal such as molten iron or aluminum in a ladle for a predetermined amount and tilts the ladle to form a mold frame. The present invention relates to a tilt-type automatic pouring method for pouring molten metal. According to the present invention, there is provided a tilt-type automatic pouring method in which vibration of the molten metal in the ladle, particularly when the tilting operation is performed after the pouring is finished is quickly suppressed.

【0002】[0002]

【従来の技術】溶湯を保持した取鍋を傾動することによ
り注湯する傾動式注湯方法においては、取鍋を前傾させ
溶湯をモールド枠に注ぎ込み、注湯終了後に所定角度だ
け取鍋を後傾させ、次の注湯に備えて停止させる。取鍋
の後傾動作を、注湯時の取鍋前傾動作時に比べ、注湯サ
イクルタイムの短縮化のために速くすると、取鍋内に保
持された溶湯と取鍋内壁との衝突により湯面が振動(液
面振動:スロッシング)し、残留振動が生じる。このス
ロッシングが大きい場合には、溶湯が取鍋より溢れ出た
りする。このような溢流がない場合でも残留振動が長い
と次の注湯時に残留振動が悪影響し、注湯制御を良好に
行なうことができない。
2. Description of the Related Art In a tilting pouring method in which a ladle holding a molten metal is tilted to pour the molten metal, the ladle is tilted forward to pour the molten metal into a mold frame, and after the pouring is completed, the ladle is tilted at a predetermined angle. Tilt backwards and stop in preparation for the next pouring. If the backward tilting operation of the ladle is made faster than that of the forward tilting operation when pouring to shorten the pouring cycle time, the molten metal held in the ladle and the inner wall of the ladle will collide with each other. The surface vibrates (liquid level vibration: sloshing), and residual vibration occurs. If this sloshing is large, the molten metal may overflow from the ladle. Even if there is no such overflow, if the residual vibration is long, the residual vibration adversely affects the next pouring, and the pouring control cannot be performed well.

【0003】[0003]

【発明が解決しようとする課題】傾動式注湯では、溶湯
のモールド枠への正確な注湯、及びモールド枠への注湯
口における注湯レベルを一定にする制御が重要である。
In tilting pouring, accurate pouring of molten metal into the mold frame and control for making the pouring level at the pouring port into the mold frame constant are important.

【0004】しかしながら、上述のように、取鍋後傾動
作により湯面が振動すると、それがモールド枠湯口への
正確な注湯制御及びモールド枠内溶湯レベル制御に悪影
響することから、湯面振動をなくす取鍋後傾の回転制御
が現在重要な課題となっている。
However, as mentioned above, when the molten metal surface vibrates due to the backward tilting motion of the ladle, it adversely affects the accurate pouring control to the mold frame sprue and the molten metal level control in the mold frame. Rotational control of the ladle tilting is an important issue at present.

【0005】又、取鍋後傾時のスロッシングが大きい場
合には、空気やノロの巻き込みによるコンタミネーショ
ン(溶湯汚濁)が生じ、品質の劣化の原因となることも
ある。
Further, if sloshing is large when the ladle is tilted backward, contamination (molten metal contamination) may occur due to the entrainment of air or slag, which may cause deterioration of quality.

【0006】昨今、注湯装置の自動化、高速化が進めら
れているが、このような溶湯のスロッシングの問題を完
全に解決した注湯方法及び装置は、未だ実用化されては
いない。
[0006] In recent years, automation and speeding up of a pouring device have been promoted, but a pouring method and device that completely solve the problem of sloshing of the molten metal have not yet been put into practical use.

【0007】従って、本発明の目的は、傾動式注湯方法
における取鍋の後傾動作を迅速に行ない、しかも取鍋内
溶湯の残留振動をなくし、取鍋後傾動作時の溶湯のスロ
ッシングの問題を完全に解決して、溶湯が取鍋より溢れ
出たり、或は、モールド枠湯口への正確な注湯制御及び
モールド枠内溶湯レベル制御に悪影響を与えることがな
く、更には、空気やノロの巻き込みによるコンタミネー
ション(溶湯汚濁)に起因した製品の品質劣化を未然に
防いだ傾動式自動注湯方法を提供することである。
Therefore, an object of the present invention is to quickly perform the backward tilting operation of the ladle in the tilting pouring method, eliminate residual vibration of the molten metal in the ladle, and to slosh the molten metal during the backward tilting operation of the ladle. It completely solves the problem, the molten metal overflows from the ladle, or does not adversely affect the accurate pouring control to the mold frame spout and the level control of the molten metal in the mold frame. It is an object of the present invention to provide a tilt-type automatic pouring method in which deterioration of the product quality caused by contamination (molten metal contamination) due to inclusion of slag is prevented.

【0008】[0008]

【課題を解決するための手段】上記目的は本発明に係る
傾動式自動注湯方法にて達成される。要約すれば、本発
明は、金属溶湯を保持した取鍋を傾動することによって
モールド枠へと注湯する注湯方法において、モールド枠
への注湯後、前記取鍋を前記注湯時とは反対方向へと後
傾する時、前記取鍋の後傾開始後△T時間経過時に加減
速し、取鍋内の溶湯の湯面振動を制振することを特徴と
する傾動式自動注湯方法である。
The above object can be achieved by the tilting automatic pouring method according to the present invention. In summary, the present invention, in a pouring method of pouring into a mold frame by tilting a ladle holding a metal melt, after pouring into the mold frame, the ladle is When tilting backward in the opposite direction, the tilting automatic pouring method is characterized in that the melt surface vibration of the molten metal in the ladle is damped by accelerating and decelerating after ΔT time has elapsed after the tilting of the ladle has started. Is.

【0009】本発明の一実施態様によると、前記取鍋
は、回転加速度(a)=αsin ωt (ωは取鍋の回転角
振動数)にて後傾動作を行ない、後傾開始後△T時間に
前記取鍋には更に回転加速度(b)=Kαsin ω(t−△
T)が加えられる。前記回転加速度(a)=αsin ωt
の一周期により達成される所定の傾動角度と同じ傾動角
度に制御し、しかも、制振させるには、前記取鍋は、回
転加速度(a)=(α/(1+K))sin ωt (ωは取
鍋の回転角振動数)にて後傾動作を行ない、後傾開始後
△T時間に前記取鍋には更に回転加速度(b)=(Kα
/(1+K))sin ω(t−△T)が加えられる。
According to one embodiment of the present invention, the ladle performs a backward tilting motion at a rotational acceleration (a) = αsin ωt (ω is a rotational angular frequency of the ladle), and after the backward tilting starts, ΔT In time, the ladle further has a rotational acceleration (b) = Kαsin ω (t− △
T) is added. The rotational acceleration (a) = α sin ωt
In order to control the tilt angle to be the same as the predetermined tilt angle achieved by one cycle and to suppress the vibration, the ladle has a rotational acceleration (a) = (α / (1 + K)) sin ωt (ω is The tilting operation is performed by the rotation angle frequency of the ladle, and the rotation acceleration (b) = (Kα
/ (1 + K)) sin ω (t−ΔT) is added.

【0010】[0010]

【発明の実施の形態】以下、本発明に係る傾動式自動注
湯方法を図面に則して更に詳しく説明する。図1に本発
明に係る傾動式自動注湯方法を実施するための自動注湯
装置の一実施例を示す。
BEST MODE FOR CARRYING OUT THE INVENTION The tilting automatic pouring method according to the present invention will now be described in more detail with reference to the drawings. FIG. 1 shows an embodiment of an automatic pouring device for carrying out the tilt-type automatic pouring method according to the present invention.

【0011】自動注湯装置1は、取鍋2を有しており、
該取鍋2は、出湯口3近傍を通る回転中心軸線Oの回り
に傾動可能とされる。本実施例で、取鍋2は、断面形状
が扇形とされる、所謂扇形取鍋とされ、回転中心軸線O
は扇形の要の部分を通るように構成される。
The automatic pouring device 1 has a ladle 2.
The ladle 2 is tiltable around a rotation center axis O passing near the tap hole 3. In the present embodiment, the ladle 2 is a so-called fan-shaped ladle having a fan-shaped cross section, and the rotation center axis O
Is constructed so as to pass through the main part of the fan shape.

【0012】更に、取鍋2は、取鍋2に固定されたセク
タ歯車4、及び取鍋を支持する枠体5に設けられたピニ
オンギヤ6を介して、サーボモータのような電動機7及
びベルト駆動部材8を備えた駆動手段9にて傾動され
る。
Further, the ladle 2 is driven by a motor 7 such as a servomotor and a belt drive through a sector gear 4 fixed to the ladle 2 and a pinion gear 6 provided on a frame 5 supporting the ladle. It is tilted by the driving means 9 provided with the member 8.

【0013】今、取鍋2を駆動手段9にて回転中心軸線
Oの回りに、図1にて時計方向へと回転傾動することに
より、取鍋2内の溶湯が出湯口3からモールド枠Mの湯
口Mo へと注湯される。1モールド分の注湯が済むと、
取鍋2は、湯切りが円滑に行なわれるように、駆動手段
9により回転中心軸線Oの回りに注湯時とは逆方向へ
と、図1にて反時計方向へと最大速度で後傾し、一定の
角度(溶湯が出湯口3からこぼれない位置)に達した時
この後傾動作を停止する。通常、後傾角度は10°程度
とされる。
By rotating and tilting the ladle 2 in the clockwise direction in FIG. 1 around the rotation center axis O by the driving means 9, the molten metal in the ladle 2 is discharged from the tap hole 3 into the mold frame M. It is poured into the sprue M o . After pouring one mold,
The ladle 2 is tilted backward by the drive means 9 around the rotation center axis O in the direction opposite to that at the time of pouring, and counterclockwise in FIG. 1 at the maximum speed so that the hot water can be drained smoothly. Then, when a certain angle (a position where the molten metal does not spill from the tap hole 3) is reached, the tilting operation is stopped thereafter. Normally, the backward tilt angle is about 10 °.

【0014】連続したタクトサイクルに従って、次のモ
ールドM枠が注湯ラインLP に沿って所定位置に設置さ
れると、上述の手順に従って繰り返し注湯作業が行なわ
れる。このような注湯作業は取鍋2内の溶湯が1モール
ド分以下になるまで連続して行なわれれる。取鍋2への
溶湯の給湯は、取鍋2を支持した枠体5が搭載された台
車11を軌条12上で後方へと移動させ、そこに位置し
た給湯装置(図示せず)から適宜給湯される。
When the next mold M frame is installed at a predetermined position along the pouring line L P in accordance with the continuous tact cycle, the pouring work is repeated according to the above-mentioned procedure. Such pouring work is continuously performed until the molten metal in the ladle 2 is equal to or less than one mold. To supply the molten metal to the ladle 2, the dolly 11 on which the frame 5 supporting the ladle 2 is mounted is moved rearward on the rail 12, and the water is appropriately supplied from a water heater (not shown) located there. To be done.

【0015】上記構成の鋳造システムにおいては、自動
注湯装置1は、取鍋2が、回転中心軸線Oの回りに駆動
手段9にて傾動される時に取鍋2内に保持した溶湯の振
動、即ち、スロッシングが発生する。
In the casting system having the above-mentioned structure, the automatic pouring apparatus 1 has the vibration of the molten metal held in the ladle 2 when the ladle 2 is tilted by the drive means 9 around the rotation center axis O, That is, sloshing occurs.

【0016】本発明は、上記スロッシングを、取鍋駆動
手段9のサーボモータ7を制御することによって抑制す
るものである。
The present invention suppresses the above sloshing by controlling the servomotor 7 of the ladle driving means 9.

【0017】先ず、本発明の基礎をなす制振の基本原理
について説明する。上述のように、取鍋内液面振動は取
鍋2の後傾動作時に発生すると考えられるので、取鍋2
の後傾時の液面振動について説明する。
First, the basic principle of vibration damping, which is the basis of the present invention, will be described. As described above, since the liquid level vibration in the ladle is considered to occur when the ladle 2 is tilted backward,
The liquid level vibration at the time of tilting backward will be described.

【0018】又、本発明者らの研究実験の結果による
と、取鍋後傾時の取鍋2内の液面は、取鍋後傾開始時に
は液面振動はないものとすると、実際の注湯条件下で
は、ほぼ直線を保ちながら振動しており、液面振動は1
次モードが支配的であることが分かった。従って、1次
モードを対象として、液面振動のモデリングを行なっ
た。
Further, according to the results of the research and experiment conducted by the present inventors, it is assumed that the liquid level in the ladle 2 when the ladle is tilted backward does not have liquid level vibration when the ladle tilt is started. Under hot water conditions, it vibrates while keeping a straight line, and the liquid level vibration is 1
It turns out that the next mode is dominant. Therefore, the liquid surface vibration was modeled for the first-order mode.

【0019】図2は、図1に示すように、取鍋の回転中
心を取鍋の注湯口に設けた構成の注湯装置の模式図であ
り、取鍋内のスロッシングを単振り子型モデルとして捉
えた時のスロッシングモデルの概念図である。尚、図2
に示す取鍋は、図1の扇形取鍋ではなく、円筒形状とさ
れているが、スロッシングの制振に関しては取鍋の形状
に関係なく同様に考えることができる。
As shown in FIG. 1, FIG. 2 is a schematic diagram of a pouring device having a structure in which the center of rotation of the ladle is provided at the pouring port of the ladle. Sloshing in the ladle is a single pendulum type model. It is a conceptual diagram of a sloshing model at the time of capturing. FIG.
The ladle shown in (1) is not the fan-shaped ladle shown in FIG. 1 but has a cylindrical shape. However, damping of sloshing can be similarly considered regardless of the shape of the ladle.

【0020】取鍋の回転中心Or の回りに取鍋がηだけ
傾動したときの振り子の支点Oの回りのモーメントの釣
り合いは、
When the ladle is tilted by η around the center of rotation O r of the ladle, the balance of the moments about the fulcrum O of the pendulum is

【0021】[0021]

【数1】 となる。[Equation 1] Becomes

【0022】ここで、η:取鍋傾動角度 ψ:液面振動角度 Or :取鍋回転中心 Og :溶湯の重心 O:振り子の支点 D:取鍋回転中心Or から溶湯重心Og までの距離 θg :線分Org が水平線となす角度 m:溶湯質量 c:等価粘性係数 l:等価振り子長さ である。又、液面振動角度ψは、時計回りの方向を正と
し、初期角度θini からの変動をとる。
[0022] Here, eta: ladle tilting angle [psi: melt vibration angle O r: ladle rotation center O g: gravity center of the melt O: fulcrum of the pendulum D: from a ladle rotation center O r to melt the centroid O g Of the angle θ g : angle formed by the line segment O r O g with respect to the horizontal line m: mass of molten metal c: equivalent viscosity coefficient l: equivalent pendulum length. Further, the liquid surface vibration angle ψ takes a variation from the initial angle θ ini with the clockwise direction being positive.

【0023】又、上記式(1)で、Jは支点Oの回りの
振り子の慣性モーメントであり、J=ml2 とされる。
gは重力加速度である。
In the above equation (1), J is the moment of inertia of the pendulum around the fulcrum O, and J = ml 2 .
g is the gravitational acceleration.

【0024】従って、上記式(1)の左辺は慣性項、右
辺第1項は粘性(減衰)項、右辺第2項は重力項、右辺
第3項は取鍋回転による外力の鉛直成分の項、右辺第4
項は取鍋回転による外力の水平成分の項である。
Therefore, the left side of the above equation (1) is the inertial term, the first term of the right side is the viscous (damping) term, the second term of the right side is the gravity term, and the third term of the right side is the term of the vertical component of the external force due to the ladle rotation. , Right side 4th
The term is the horizontal component of the external force due to ladle rotation.

【0025】本発明にて、取鍋の後傾角度は0.174
5rad(10°)とされるので、ηを十分小さいと見
なすことができる。従って、ψが十分小さいとき、式
(1)を線形近似する。このとき、D、θg は定数と見
なすことができ、又、式(1)にて右辺第3項において
In the present invention, the backward tilt angle of the ladle is 0.174.
Since it is set to 5 rad (10 °), η can be considered to be sufficiently small. Therefore, when ψ is sufficiently small, the equation (1) is linearly approximated. At this time, D and θ g can be regarded as constants, and in the third term on the right side of the equation (1),

【0026】[0026]

【数2】 であるとし、この第3項を省略すると、式(1)は次の
式(2)で表される。
[Equation 2] If the third term is omitted, the equation (1) is represented by the following equation (2).

【0027】[0027]

【数3】 (Equation 3)

【0028】更に、その伝達関数G(s)は次の式
(3)となる。但し、sはラプラス演算子である。
Further, the transfer function G (s) is given by the following equation (3). Here, s is a Laplace operator.

【0029】[0029]

【数4】 (Equation 4)

【0030】上述のように、取鍋後傾時の液面振動が式
(2)のような簡単なモデルで表現することができたの
で、このモデルを用い液面振動の制振を行なうことがで
きる。
As described above, the liquid level vibration when the ladle is tilted backward can be expressed by a simple model such as equation (2). Therefore, use this model to suppress the liquid level vibration. You can

【0031】一般に、対象システムの伝達関数G(s)
が次の式(4)で示す2次遅れ系で表現でされるとき、
初期時刻t0 にインパルス状に大きさ1の入力を加える
と、図3(A)に示すような振動が生じる。
Generally, the transfer function G (s) of the target system
Is expressed by the second-order lag system shown in the following equation (4),
When an impulse-shaped input of magnitude 1 is applied at the initial time t 0 , vibration as shown in FIG.

【0032】[0032]

【数5】 但し、 A:システムゲイン ωn :固有角周波数 ζ:減衰比 u(s):入力(注湯では、取鍋の回転加速度) y(s):出力(注湯では、取鍋内溶湯振動の大きさ) s:ラプラス演算子(Equation 5) However, A: System gain ω n : Natural angular frequency ζ: Damping ratio u (s): Input (rotational acceleration of the ladle in pouring) y (s): Output (in molten metal vibration of ladle in pouring) Size) s: Laplace operator

【0033】これに対して、時刻t1 で実線の振動を打
ち消すような入力インパルスKを加えると、その入力に
対して、点線のような振動が生じる。従って、図3
(A)にて実線で示された2次系の振動特性は、点線の
振動にて互に打ち消され、図3(B)のような振動とな
る。即ち、この制振方法は、逆位相入力による制振方法
である。
On the other hand, when an input impulse K for canceling the vibration of the solid line is applied at time t 1 , a vibration like the dotted line is generated for the input. Therefore, FIG.
The vibration characteristics of the secondary system shown by the solid line in (A) are canceled by the vibration of the dotted line, resulting in the vibration as shown in FIG. 3 (B). That is, this damping method is a damping method by the input of the opposite phase.

【0034】この逆位相入力による制振方法では、逆位
相入力の大きさKと、そのタイミングの時間△T、即
ち、(t1 −t0 )が重要である。2次系の場合は、上
記式(4)の解がラプラス逆変換により求まり、次の式
(5)で示される。
In this damping method by the anti-phase input, the magnitude K of the anti-phase input and the timing time ΔT, that is, (t 1 -t 0 ) are important. In the case of a quadratic system, the solution of the above equation (4) is obtained by Laplace inverse transformation, and is represented by the following equation (5).

【0035】[0035]

【数6】 この式(5)を用いて、K及び△Tが次のように求ま
る。
(Equation 6) Using this equation (5), K and ΔT are obtained as follows.

【0036】[0036]

【数7】 (Equation 7)

【0037】上述したように、最初のインパルス入力1
に対して、△T時間経過後に入力インパルスKを加える
ことにより残留振動を完全になくすことができる。この
方法は、ポジ−キャスト(Posi−Cast)或はプ
リシェイプ(Preshape)理論と呼ばれるもので
ある。
As mentioned above, the first impulse input 1
On the other hand, residual vibration can be completely eliminated by applying the input impulse K after the lapse of ΔT time. This method is called positive-cast (Presi-Cast) or pre-shape (Preshape) theory.

【0038】上述のように、プリシェイプ理論は、上記
式(4)に適用し得るものであるが、本発明の液面振動
モデルは、上記式(3)で示すように、分子も(s)に
ついての2次式である。しかしながら、本発明者らの研
究の理論解析によると、システムの応答については式
(3)の分母が支配的であり、本発明においても同様に
プリシェイプ理論を適用し得ることが分かった。
As described above, the pre-shape theory can be applied to the above equation (4), but the liquid surface vibration model of the present invention also includes the numerator (s) as shown in the above equation (3). ) Is a quadratic expression for. However, according to the theoretical analysis of the present inventors' research, it was found that the denominator of the equation (3) is dominant in the response of the system, and the pre-shape theory can be applied to the present invention as well.

【0039】しかしながら、上記制振方法では、実際に
は、二つのインパルス状の加速入力で制御するために大
きな入力を要し、しかもインパルス状であるために、実
現が困難であり、又、衝撃的入力であるため、モデル化
されていない高次モードの振動を励起し易く、現実的で
ない。又、実際の注湯においては、インパルスのような
急激な入力を加えると、取鍋内溶湯の飛散を起こす可能
性もあり、好ましいものではない。
However, in the above-mentioned vibration damping method, in reality, a large input is required to control with two impulse-shaped acceleration inputs, and since it is impulse-shaped, it is difficult to realize it, and the shock Since it is a dynamic input, it is easy to excite vibration of a higher-order mode that is not modeled, which is not realistic. In addition, in the actual pouring, if a sudden input such as impulse is applied, the molten metal in the ladle may be scattered, which is not preferable.

【0040】更に、注湯制御では、取鍋を後傾させ、一
定角度で止めなけらばならず、そのためには負の加速度
も必要となる。
Furthermore, in the pouring control, the ladle must be tilted backward and stopped at a constant angle, which requires a negative acceleration.

【0041】そこで、次に、取鍋後傾時に目的の角度だ
け後傾させ、しかも残留振動をなくす本発明に従った迅
速な取鍋回転制御方法について説明する。
Then, a rapid ladle rotation control method according to the present invention will be described which tilts the ladle backward by a desired angle and eliminates residual vibration.

【0042】取鍋後傾での後傾角度の制御:取鍋は、湯
切りや溢流を防ぐため、注湯後、完全に取鍋を戻すので
はなく、一定の後傾角度、上述したように、最大10
°、例えば5°程度、戻される。その時の加減速カーブ
は、インパルス状ではなく、滑らかな正弦波状のカーブ
が望ましい。このとき、この正弦波状のカーブを極めて
滑らかなものとすると時間がかかるので、例えば、図4
(A)に示すように立ち上げ、立ち下げは不連続になら
ないように滑らかにし、そして所定の目標時間(tf
後に目標回転角度(θ)になるような加減速カーブを有
した回転加速度(a)を与える。その時の回転角速度
(v)及び回転角(θ)を図4(B)及び(C)にそれ
ぞれ示す。
Control of the backward tilt angle of the ladle after tilting: In order to prevent hot water draining and overflow, the ladle should not be completely returned after pouring, but a constant backward tilt angle, as described above. So up to 10
It is returned by °, for example, about 5 °. The acceleration / deceleration curve at that time is preferably a smooth sinusoidal curve rather than an impulse curve. At this time, it takes time to make this sinusoidal curve extremely smooth.
As shown in (A), the start-up, the fall is made smooth so as not to be discontinuous, and the predetermined target time (t f )
Later, the rotational acceleration (a) having an acceleration / deceleration curve such that the target rotational angle (θ) is obtained is given. The rotation angular velocity (v) and the rotation angle (θ) at that time are shown in FIGS. 4B and 4C, respectively.

【0043】加減速カーブが正弦波状(即ち、回転加速
度a=αsinωt、ωは取鍋の回転角振動数)の場合
に、目標時間tf と目標回転角度θが与えられると、目
標時間tf より回転各振動数ωが、又回転角θよりαが
求められる。
When the acceleration / deceleration curve is sinusoidal (that is, the rotational acceleration a = αsin ωt, ω is the rotational angular frequency of the ladle), given the target time t f and the target rotational angle θ, the target time t f Thus, each rotation frequency ω and α are obtained from the rotation angle θ.

【0044】溶湯の制振:図4(A)の加減速カーブで
は、取鍋の回転終了時tf において残留振動が生じる。
従って、加減速カーブ(図4(A))に対して、上述の
プリシェイプ理論を、図5及び図6に説明するように適
用する。
Damping of molten metal: In the acceleration / deceleration curve of FIG. 4 (A), residual vibration occurs at the time t f at the end of rotation of the ladle.
Therefore, the above-described pre-shape theory is applied to the acceleration / deceleration curve (FIG. 4A) as described in FIGS. 5 and 6.

【0045】つまり、図5(A)には、図4(A)に示
すと同様の取鍋の後傾時の回転加速度を示す加減速カー
ブを示す。この加減速カーブは、コンピュータからの指
令のために、図5(B)に示すように適当なサンプリン
グ間隔、例えば△t=0.01秒で離散化する。
That is, FIG. 5 (A) shows an acceleration / deceleration curve showing the rotational acceleration when the ladle is tilted backward, similar to that shown in FIG. 4 (A). This acceleration / deceleration curve is discretized at an appropriate sampling interval, for example, Δt = 0.01 seconds, as shown in FIG. 5B, due to a command from the computer.

【0046】そこで、この各々のインパルス的加速度に
対して、液体振動をなくすために、式(6)に従い、△
T秒後に、Kの入力を加える。即ち、加速ai (i=
1、2、3、・・・・、10)に対して各々△T秒後に
加速bi (i=1、2、3、・・・・、10)を加え
る。この状態が図6(A)に示される。従って、実際に
取鍋に加えられる加減速カーブは、図6(B)に示すよ
うになる。
Therefore, in order to eliminate the liquid vibration with respect to each of the impulse accelerations, according to the equation (6), Δ
After T seconds, add K input. That is, acceleration a i (i =
Acceleration b i (i = 1, 2, 3, ..., 10) is added after ΔT seconds for each of 1, 2, 3, ..., 10). This state is shown in FIG. Therefore, the acceleration / deceleration curve actually added to the ladle is as shown in FIG. 6 (B).

【0047】これによって、tf +△T秒後には、残留
振動は完全になくなる。
As a result, after t f + ΔT seconds, the residual vibration is completely eliminated.

【0048】溶湯の制振を考慮した目標回転角度への到
達:上述より理解されるように、取鍋内溶湯の液面振動
の制振において、目標取鍋回転角度θを得るために、取
鍋の後傾動作時の回転加速度をa=αsinωtとした
場合、残留振動を打ち消すために△T時間後に取鍋に加
えられる回転加速度は、図7に示すように、b=Kαs
inω(t−△T)である。
Reaching the target rotation angle in consideration of vibration suppression of the molten metal: As will be understood from the above, in order to obtain the target ladle rotation angle θ in damping the liquid level vibration of the molten metal in the ladle, When the rotational acceleration during the backward tilting motion of the pan is a = αsinωt, the rotational acceleration applied to the ladle after ΔT time to cancel the residual vibration is, as shown in FIG. 7, b = Kαs
inω (t−ΔT).

【0049】従って、実際には、取鍋に、 a=αsinωt+Kαsinω(t−△T) の加速入力を加えることとなる。Therefore, in practice, an acceleration input of a = αsinωt + Kαsinω (t-ΔT) is added to the ladle.

【0050】しかしながら、その場合タンクの回転角
(θ)は、 a=αsinωt と、 a=αsinωt+Kαsinω(t−△T) の加速入力では異なる。
However, in this case, the rotation angle (θ) of the tank is different between a = αsinωt and a = αsinωt + Kαsinω (t-ΔT).

【0051】つまり、取鍋の回転角θは、加速度を2
回、時間で積分すると求まり、 (i)a=Asinωtの場合
That is, the rotation angle θ of the ladle has an acceleration of 2
It is found by integrating the number of times and time. (I) In the case of a = Asin ωt

【0052】[0052]

【数8】 (ii) a=Asinωt+KAsinω(t−△T)の
場合
(Equation 8) (Ii) In the case of a = Asinωt + KAsinω (t-ΔT)

【0053】[0053]

【数9】 [Equation 9]

【0054】従って、残留振動を考慮した(ii)の場合の
回転角θは、(i)の場合の(1+K)倍とされる。
Therefore, the rotation angle θ in the case of (ii) considering the residual vibration is (1 + K) times that in the case of (i).

【0055】よって、残留振動を考慮した(ii)の場合
に、回転角θを(α/ω)tf としたい場合には、
Therefore, in the case of (ii) in which the residual vibration is taken into consideration, when it is desired to set the rotation angle θ to (α / ω) t f ,

【0056】[0056]

【数10】 とすればよい。従って、a’=a+bとなり、その積分
は(α/ω)tf となり、回転角度の制御が達成され
る。この状態を図8に示す。
(Equation 10) And it is sufficient. Therefore, a ′ = a + b, and the integral becomes (α / ω) t f , and the control of the rotation angle is achieved. This state is shown in FIG.

【0057】従って、実際には、 (1)tf と△Tの合計時間が目標時間となるように、
f を決め、ωとαを決定する。但し、△Tは実施され
る注湯方法によって決定される。 (2)下記式にて表される加速度入力を加える。
Therefore, in practice, (1) so that the total time of t f and ΔT becomes the target time,
Determine t f and determine ω and α. However, ΔT is determined by the pouring method performed. (2) Add the acceleration input represented by the following formula.

【0058】[0058]

【数11】 (3)これにより、目標時間tf で、目標角度θが達成
され、且つ、tf +△T以降残留振動がなくなる。
[Equation 11] (3) As a result, the target angle θ is achieved at the target time t f , and residual vibration is eliminated after t f + ΔT.

【0059】つまり、前記回転加速度(a)=αsin ω
t の一周期により達成される所定の傾動角度と同じ傾動
角度に制御し、しかも、制振させるには、取鍋2は、回
転加速度(a)=(α/(1+K))sin ωt にて後傾
動作を行ない、後傾開始後△T時間に取鍋2には更に回
転加速度(b)=(Kα/(1+K))sin ω(t−△
T)を加えればよい。
That is, the rotational acceleration (a) = α sin ω
In order to control the tilt angle to be the same as the predetermined tilt angle achieved by one cycle of t and to suppress the vibration, the ladle 2 has a rotational acceleration (a) = (α / (1 + K)) sin ωt After tilting backward, at the time ΔT after the start of tilting, the ladle 2 further has a rotational acceleration (b) = (Kα / (1 + K)) sin ω (t- △
T) may be added.

【0060】以上説明した本発明を実施するに際して
は、上記式(3)或は式(4)において、減衰係数ζ及
び固有角振動数ωn を求めることが必要であるが、これ
らは、実験により求めることができる。又、これら減衰
係数ζ及び固有角振動数ωn は、例えば、本発明者らが
開発した流体解析数値シミュレータによりコンピュータ
計算によって求めることも可能である。
In carrying out the present invention described above, it is necessary to obtain the damping coefficient ζ and the natural angular frequency ω n in the above equation (3) or equation (4). Can be obtained by Further, the damping coefficient ζ and the natural angular frequency ω n can be obtained by computer calculation, for example, by a fluid analysis numerical simulator developed by the present inventors.

【0061】ただ、減衰係数ζ及び固有角振動数ωn
は、取鍋内の湯面の位置、即ち、液位により異なるの
で、各液位毎に求める。従って、液面振動の制振のため
の上記式(6)は、液位毎に求めておく。
However, the damping coefficient ζ and the natural angular frequency ω n
Is determined for each liquid level because it varies depending on the position of the molten metal in the ladle, that is, the liquid level. Therefore, the above equation (6) for damping the liquid level vibration is obtained for each liquid level.

【0062】[0062]

【発明の効果】以上説明したように、本発明の傾動式自
動注湯方法は、金属溶湯を保持した取鍋を傾動すること
によってモールド枠へと注湯する注湯方法において、モ
ールド枠への注湯後前記取鍋を、前記注湯時とは反対方
向へと後傾する時、前記取鍋の後傾開始後△T時間に加
減速し、取鍋内の溶湯の湯面振動を制振する構成とされ
るので、取鍋の後傾動作を迅速に行ない、しかも取鍋内
溶湯の残留振動をなくし、取鍋後傾動作時の溶湯のスロ
ッシングの問題を完全に解決して、溶湯が取鍋より溢れ
出たり、或は、モールド枠湯口への正確な注湯制御及び
モールド枠内溶湯レベル制御に悪影響を与えることがな
く、更には、空気やノロの巻き込みによるコンタミネー
ション(溶湯汚濁)に起因した製品の品質劣化を未然に
防ぐことができる。
As described above, the tilt-type automatic pouring method of the present invention is a pouring method for pouring the molten metal into the mold frame by tilting the ladle holding the molten metal. After pouring, when the ladle is tilted backward in the opposite direction to that at the time of pouring, it accelerates / decelerates at time ΔT after the tilt of the ladle starts to be controlled to suppress the vibration of the molten metal in the ladle. Since it is configured to shake, the backward tilting operation of the ladle is performed quickly, and the residual vibration of the molten metal in the ladle is eliminated, and the problem of sloshing of the molten metal during the backward tilting operation of the ladle is completely solved. Does not overflow from the ladle, or does not adversely affect the accurate pouring control to the mold frame spout and the level control of the molten metal in the mold frame. Furthermore, contamination due to the entrainment of air or slag (molten metal contamination) ) Can prevent product quality deterioration due to

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の傾動式自動注湯方法を実施するための
自動注湯装置の一実施例を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of an automatic pouring device for carrying out the tilting automatic pouring method of the present invention.

【図2】取鍋内のスロッシングを単振り子型モデルとし
て捉えた時のスロッシングモデルの概念図である。
FIG. 2 is a conceptual diagram of a sloshing model when sloshing in a ladle is regarded as a single pendulum model.

【図3】図3(A)は、2次系の振動特性を示す図であ
り、図3(B)は逆位相入力による制振の態様を示す図
である。
FIG. 3 (A) is a diagram showing a vibration characteristic of a secondary system, and FIG. 3 (B) is a diagram showing a mode of vibration suppression by antiphase input.

【図4】取鍋の後傾動作における回転角、回転角速度及
び回転加速度を示す線図である。
FIG. 4 is a diagram showing a rotation angle, a rotation angular velocity, and a rotation acceleration in a backward tilting operation of a ladle.

【図5】図5(A)は、取鍋に加えられた加減速カーブ
を示し、図5(B)は、この加減速カーブを所定の時間
△t間隔にて離散化した状態を示す図である。
FIG. 5 (A) shows an acceleration / deceleration curve applied to a ladle, and FIG. 5 (B) shows a state in which this acceleration / deceleration curve is discretized at predetermined time intervals Δt. Is.

【図6】図6(A)は、取鍋の後傾動作時に振動除去の
ために加減速を加えた状態を示す図であり、図6(B)
は、振動除去を考慮して実際に取鍋に加えられる加減速
カーブを示す図である。
FIG. 6 (A) is a view showing a state in which acceleration / deceleration is added for vibration removal at the time of backward tilting operation of the ladle, and FIG.
FIG. 6 is a diagram showing an acceleration / deceleration curve actually added to a ladle in consideration of vibration removal.

【図7】取鍋の後傾動作時における取鍋の後傾加速度カ
ーブと、振動除去のための追加加速度カーブとを示す図
である。
FIG. 7 is a diagram showing a backward tilt acceleration curve of a ladle and an additional acceleration curve for vibration removal during a backward tilt operation of the ladle.

【図8】取鍋の後傾動作時における制振を考慮した回転
角制御を説明する図である。
FIG. 8 is a diagram for explaining rotation angle control in consideration of vibration damping during backward tilting of a ladle.

【符号の説明】[Explanation of symbols]

1 傾動式自動注湯装置 2 取鍋 3 注湯口 9 取鍋駆動手段 1 Tilt-type automatic pouring device 2 Ladle 3 Pouring mouth 9 Ladle driving means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属溶湯を保持した取鍋を傾動すること
によってモールド枠へと注湯する注湯方法において、モ
ールド枠への注湯終了後に前記取鍋を前記注湯時とは反
対方向へと後傾する時、前記取鍋の後傾開始後所定時間
(△T)経過時に加減速し、取鍋内の溶湯の湯面振動を
制振することを特徴とする傾動式自動注湯方法。
1. A pouring method for pouring a ladle holding a molten metal into a mold frame by tilting the ladle, wherein the ladle is moved in a direction opposite to that at the time of pouring after pouring the mold frame. When tilting backward, the tilting automatic pouring method is characterized by accelerating and decelerating after a predetermined time (ΔT) has elapsed since the start of tilting the ladle to suppress the vibration of the molten metal in the ladle. .
【請求項2】 前記取鍋は、回転加速度(a)=αsin
ωt (ωは取鍋の回転角振動数)にて後傾動作を行な
い、後傾開始後△T時間に前記取鍋には更に回転加速度
(b)=Kαsin ω(t−△T)が加えられる請求項1の
傾動式自動注湯方法。
2. The ladle has a rotational acceleration (a) = αsin
ωt (ω is the rotation angle frequency of the ladle) is used for tilting backward, and the rotational acceleration (b) = Kαsin ω (t- △ T) is added to the ladle at time ΔT after the start of tilting backward. The tilting automatic pouring method according to claim 1.
【請求項3】 前記取鍋は、回転加速度(a)=(α/
(1+K))sin ωt (ωは取鍋の回転角振動数)にて
後傾動作を行ない、後傾開始後△T時間に前記取鍋には
更に回転加速度(b)=(Kα/(1+K))sin ω(t
−△T)が加えられる請求項1の傾動式自動注湯方法。
3. The ladle has a rotational acceleration (a) = (α /
(1 + K)) sin ωt (where ω is the rotational frequency of the ladle), the tilting operation is performed, and the rotation acceleration (b) = (Kα / (1 + K )) Sin ω (t
-ΔT) is added.
JP12640096A 1996-04-23 1996-04-23 Tilt automatic pouring method Expired - Fee Related JP3526501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12640096A JP3526501B2 (en) 1996-04-23 1996-04-23 Tilt automatic pouring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12640096A JP3526501B2 (en) 1996-04-23 1996-04-23 Tilt automatic pouring method

Publications (2)

Publication Number Publication Date
JPH09285860A true JPH09285860A (en) 1997-11-04
JP3526501B2 JP3526501B2 (en) 2004-05-17

Family

ID=14934223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12640096A Expired - Fee Related JP3526501B2 (en) 1996-04-23 1996-04-23 Tilt automatic pouring method

Country Status (1)

Country Link
JP (1) JP3526501B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100369698C (en) * 2006-05-26 2008-02-20 江苏常发实业集团有限公司 Clean energizing process for metal melt in steel ladle
CN100382916C (en) * 2006-05-26 2008-04-23 江苏常发实业集团有限公司 Clean energizing device for metal melt in steel ladle
WO2008136295A1 (en) 2007-04-28 2008-11-13 Sintokogio, Ltd. Tilting type automatic pouring control method and medium storing tilting control program for ladle
CN111112592A (en) * 2020-01-14 2020-05-08 合肥工业大学 Molten metal filling equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496280B2 (en) * 2007-04-28 2010-07-07 新東工業株式会社 Tilt-type automatic pouring method and storage medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100369698C (en) * 2006-05-26 2008-02-20 江苏常发实业集团有限公司 Clean energizing process for metal melt in steel ladle
CN100382916C (en) * 2006-05-26 2008-04-23 江苏常发实业集团有限公司 Clean energizing device for metal melt in steel ladle
WO2008136295A1 (en) 2007-04-28 2008-11-13 Sintokogio, Ltd. Tilting type automatic pouring control method and medium storing tilting control program for ladle
US8062578B2 (en) 2007-04-28 2011-11-22 Sintokogio, Ltd. Tilting-type automatic pouring method and a medium that stores programs to control the tilting of a ladle
CN111112592A (en) * 2020-01-14 2020-05-08 合肥工业大学 Molten metal filling equipment
CN111112592B (en) * 2020-01-14 2022-10-21 合肥工业大学 Molten metal filling equipment

Also Published As

Publication number Publication date
JP3526501B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
JP4315395B2 (en) Automatic pouring control method, servo motor control system for automatic pouring device, and storage medium storing tilt control program for ladle
JP4328826B2 (en) Automatic pouring control method and storage medium storing ladle tilt control program
CN101932397B (en) Method to control automatic pouring equipment and system therefor
JP4496280B2 (en) Tilt-type automatic pouring method and storage medium
JP4266235B2 (en) Tilt-type automatic pouring method and storage medium storing ladle tilt control program
US20120109354A1 (en) Tilting-type automatic molten metal pouring method, tilting control system, and storage medium having tilting control program stored therein
JP5408793B2 (en) Tilt-type automatic pouring method and storage medium storing ladle tilt control program
JP6719807B2 (en) Liquid tank transport control system by overhead crane and method of transporting liquid tank by overhead crane
JP3526501B2 (en) Tilt automatic pouring method
JP4282066B2 (en) Automatic pouring control method and storage medium storing ladle tilt control program
TW201636131A (en) Molten metal pouring device and molten metal pouring method
JP3632878B2 (en) Automatic pouring method
JP3386932B2 (en) Pouring method
JP6810409B2 (en) A computer-readable recording medium that stores the control method of the automatic pouring device, the automatic pouring device, the control program, and the control program.
Terashima et al. Modeling and input shaping control of liquid vibration for an automatic pouring system
JPH08174194A (en) Casting apparatus
Terashima et al. Modeling and robust control of liquid level in a sprue cup for batch-type casting pouring processes
Noda et al. Predictive filling weight sequence control in automatic pouring system
JP2000079461A (en) Liquid matter discharging method and liquid matter discharging controller
Kaneko et al. Supervisory control of pouring process by tilting-type automatic pouring robot
Yano et al. Supervisory control of automatic pouring process considering residual pouring quantity
Matsuo et al. Modeling and Identification of Pouring flow process with tilting-type ladle for an innovative press casting method using green-sand mold
JPH06344125A (en) Automatic molten metal pouring apparatus
WO2018207433A1 (en) Pouring system, control method and control program for pouring system, and computer-readable recording medium for storing control program
JPH10291068A (en) Method for restraining waving of liquid surface

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees