JPH09283939A - Printed-wiring board - Google Patents

Printed-wiring board

Info

Publication number
JPH09283939A
JPH09283939A JP8866896A JP8866896A JPH09283939A JP H09283939 A JPH09283939 A JP H09283939A JP 8866896 A JP8866896 A JP 8866896A JP 8866896 A JP8866896 A JP 8866896A JP H09283939 A JPH09283939 A JP H09283939A
Authority
JP
Japan
Prior art keywords
solder resist
magnetic
plate
particles
acicular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8866896A
Other languages
Japanese (ja)
Inventor
Yoshihide Tsuneoka
善英 恒岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8866896A priority Critical patent/JPH09283939A/en
Publication of JPH09283939A publication Critical patent/JPH09283939A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a printed-wiring board whose warp is reduced after the finish of its production process and which achieves effective measures of electromagnetic waves against magnetic field by a method wherein solder resist layers in which sheetlike magnetic particles, sheetlike nonmagnetic particles and a bonding agent are mixed are formed on the surface and the rear of a multilayer board. SOLUTION: First, a first board 3A in which wiring patterns 2a, 2b are formed on the surface and the rear of a prepreg 1a and a second board 3B in which wiring patterns 2a, 2b are formed on the surface and the rear of a prepreg 1b are bonded via a prepreg 1c, and a four-layer multilayer board 4 is formed. Solder resist layers 5a, 5b in which sheetlilke magnetic particles, sheetlike nonmagnetic particles and a bonding agent are mixed are formed on the surface and the rear of the four-layer multilayer board 4, Thereby, a warp which is generated after the manufacture of the multilayer board can be reduced. In addition, since the magnetic particles are contained in the solder resist layers 5a, 5b, it is possible to obtain a printed-wiring board for the effective measures of electromagnetic wave disturbance against a magnetic field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、多層基板製造後に
発生する基板の反りがなく、また、磁界に対して有効な
電磁波妨害対策用のプリント配線板に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a printed wiring board which is free from warpage of a substrate generated after manufacturing a multi-layered substrate and is effective against a magnetic field to prevent electromagnetic interference.

【0002】[0002]

【従来の技術】情報社会の急速な発展に伴い、携帯電
話、PHSに代表される最近の電子機器は多機能性に加
え、小型化、軽量化の方向に開発が進んでいる。電子機
器の小型化、軽量化の方向に開発するためには、プリン
ト配線板の配線パターンの高密度化と板厚を薄くしなが
ら多層化することが重要である。
2. Description of the Related Art With the rapid development of the information society, recent electronic devices typified by mobile phones and PHSs have been developed in the direction of miniaturization and weight reduction in addition to multifunctionality. In order to develop electronic devices in the direction of miniaturization and weight reduction, it is important to increase the density of the wiring pattern of the printed wiring board and increase the thickness of the printed wiring board while reducing the thickness.

【0003】具体的には、従来ではプリント配線板の板
厚を薄くしながら多層化するためには、1つ1つのコア
材、プリプレグを薄くして製造されている。
Specifically, in the past, in order to make the printed wiring board thinner while making it multilayer, each core material and prepreg are thinly manufactured.

【0004】[0004]

【発明が解決しようとする課題】しかし、1つ1つのコ
ア材、プリプレグを薄くした場合には、プリント配線板
の製造工程の終了後に反りが起こり易くなるという課題
があった。
However, when each core material and prepreg are made thin, there is a problem that warpage is likely to occur after the manufacturing process of the printed wiring board is completed.

【0005】また、プリント配線板の回路に電流を流す
と、その回路の配線に磁界が発生すると共に、その磁界
により電磁波が発生する。この磁界および電磁波は共に
機器間に影響を及ぼすため、ノイズの発生源となる課題
があった。
When a current flows through a circuit of a printed wiring board, a magnetic field is generated in the wiring of the circuit, and an electromagnetic wave is generated by the magnetic field. Since both the magnetic field and the electromagnetic wave affect the devices, there is a problem that they become a source of noise.

【0006】本発明は板厚を薄くしながら多層化するこ
とができ、製造工程の終了後の反りが少ないプリント配
線板を提供することを目的とする。また、磁界に対して
有効な電磁波妨害対策用のプリント配線板を提供するこ
とを目的とする。
It is an object of the present invention to provide a printed wiring board which can be formed in multiple layers while reducing the thickness of the board and has less warpage after the manufacturing process. Another object of the present invention is to provide a printed wiring board which is effective against electromagnetic fields and is a countermeasure for electromagnetic interference.

【0007】[0007]

【課題を解決するための手段】本発明のプリント配線板
は、多層基板の裏表に次の何れかのソルダレジスト層を
形成したことを特徴とする。ソルダレジスト層は、板状
磁性粒子と板状非磁性粒子と結合剤を配したソルダレジ
スト層、またはそれぞれ 90 度方向にずらして配向した
針状磁性粒子と板状非磁性無機質粒子と結合剤を配した
ソルダレジスト層、またはそれぞれ 90 度方向にずらし
て配向した針状磁性粒子と針状非磁性無機質粒子と結合
剤を配したソルダレジスト層の何れかである。
The printed wiring board of the present invention is characterized in that any one of the following solder resist layers is formed on the front and back surfaces of a multilayer substrate. The solder resist layer is composed of a plate-shaped magnetic particle, a plate-shaped non-magnetic particle and a binder, or a needle-shaped magnetic particle, a plate-shaped non-magnetic inorganic particle and a binder, which are oriented by shifting 90 degrees. It is either a solder resist layer arranged, or a solder resist layer in which needle-shaped magnetic particles and needle-shaped non-magnetic inorganic particles and binders which are respectively shifted in the direction of 90 degrees are arranged.

【0008】このようなソルダレジスト層を形成するこ
とより、多層基板の反りが少なく、磁界に対して有効な
電磁波妨害対策用のプリント配線板が得られる。
By forming such a solder resist layer, it is possible to obtain a printed wiring board which has less warpage of the multilayer substrate and is effective against electromagnetic fields against electromagnetic interference.

【0009】[0009]

【発明の実施の形態】本発明の請求項1記載のプリント
配線板は、上記課題を解決するために多層基板の表裏
に、板状磁性粒子と板状非磁性粒子と結合剤を配したソ
ルダレジスト層を形成し、ソルダレジスト層中の板状磁
性粒子および板状非磁性無機質粒子の結合剤に対する配
合比率が、重量比で“ 50:50 〜 20:80 ”、かつ板状
磁性粒子の板状非磁性無機質粒子に対する配合比率が、
重量比で“ 70:30 〜 30:70 ”である。
BEST MODE FOR CARRYING OUT THE INVENTION A printed wiring board according to claim 1 of the present invention is a solder in which plate-like magnetic particles, plate-like non-magnetic particles and a binder are arranged on the front and back of a multilayer substrate in order to solve the above problems. The resist layer is formed, and the mixing ratio of the plate-shaped magnetic particles and the plate-shaped non-magnetic inorganic particles in the solder resist layer to the binder is “50:50 to 20:80” by weight, and the plate-shaped magnetic particles The mixing ratio to the non-magnetic inorganic particles,
The weight ratio is "70:30 to 30:70".

【0010】この構成によると、多層基板製造後に発生
する反りを低減し、磁界に対して有効な電磁波妨害対策
用のプリント配線板を提供することができる。すなわ
ち、ソルダレジスト層中の板状磁性粒子および板状非磁
性無機質粒子の形状は板状形状であるので、プリント配
線板製造工程中に発生する反りに必要な力を、XY軸方
向に向けて等方的に分散することができる。さらに、ソ
ルダレジスト層中に磁性粒子を含ませていることから、
磁界に対して有効である。
According to this structure, it is possible to provide a printed wiring board which is effective in preventing electromagnetic interference against a magnetic field by reducing the warpage that occurs after the manufacture of the multilayer board. That is, since the plate-like magnetic particles and the plate-like non-magnetic inorganic particles in the solder resist layer have a plate-like shape, the force necessary for the warp generated during the printed wiring board manufacturing process is directed in the XY axis directions. It can be dispersed isotropically. Furthermore, since magnetic particles are included in the solder resist layer,
Effective for magnetic fields.

【0011】本発明の請求項3記載のプリント配線板
は、上記課題を解決するために多層基板の表裏に板状磁
性粒子と針状非磁性無機質粒子と結合剤を配したソルダ
レジスト層を形成し、前記多層基板の表裏のソルダレジ
スト層は、それぞれ 90 度方向にずらして塗布し、ソル
ダレジスト層中の板状磁性粒子および針状非磁性無機質
粒子の結合剤に対する配合比率が、重量比で“ 50:50
〜 20:80 ”、かつ板状磁性粒子の針状非磁性無機質粒
子に対する配合比率が、重量比で“ 70:30 〜30:70 ”
である。
In order to solve the above problems, a printed wiring board according to a third aspect of the present invention has a solder resist layer having plate-like magnetic particles, acicular non-magnetic inorganic particles and a binder disposed on the front and back surfaces of a multilayer substrate. The solder resist layers on the front and back of the multi-layer substrate are applied with a shift in the direction of 90 degrees, and the compounding ratio of the plate-like magnetic particles and the acicular non-magnetic inorganic particles in the solder resist layer to the binder is a weight ratio. "50:50
~ 20:80 ", and the mixing ratio of plate-like magnetic particles to acicular non-magnetic inorganic particles is" 70: 30-30: 70 "by weight.
It is.

【0012】この構成によると、多層基板製造後に発生
する反りを低減し、磁界に対して有効な電磁波妨害対策
用のプリント配線板を提供することができる。すなわ
ち、ソルダレジスト層中の板状磁性粒子は、プリント配
線板製造工程中に発生する反りに必要な力を、XY軸方
向に向けて等方的に分散することができる。さらに、ソ
ルダレジスト層中の針状非磁性無機質粒子は、それぞれ
90 度方向にずらして塗布されているので、XY軸方向
の強度を補うことができる。また、ソルダレジスト層中
に磁性粒子を含ませていることから、磁界に対して有効
である。
According to this structure, it is possible to provide a printed wiring board which is effective in preventing electromagnetic interference against a magnetic field by reducing the warpage that occurs after the manufacture of the multilayer board. That is, the plate-like magnetic particles in the solder resist layer can isotropically disperse the force necessary for the warp generated during the printed wiring board manufacturing process in the XY axis directions. Furthermore, the acicular non-magnetic inorganic particles in the solder resist layer are
Since the coating is shifted in 90 degrees, the strength in the XY axis directions can be supplemented. Further, since the solder resist layer contains magnetic particles, it is effective against a magnetic field.

【0013】本発明の請求項5記載のプリント配線板
は、上記課題を解決するために多層基板の表裏に、それ
ぞれ 90 度方向にずらして配向した針状磁性粒子と板状
非磁性無機質粒子と結合剤を配したソルダレジストを形
成し、ソルダレジスト層中の針状磁性粒子および板状非
磁性無機質粒子の結合剤に対する配合比率が、重量比で
“ 50:50 〜 20:80 ”、かつ針状磁性粒子の板状非磁
性無機質粒子に対する配合比率が、重量比で“ 70:30
〜 30:70 ”である。
In order to solve the above-mentioned problems, a printed wiring board according to a fifth aspect of the present invention comprises needle-like magnetic particles and plate-like non-magnetic inorganic particles, which are oriented on the front and back sides of a multi-layer substrate by being shifted in 90 ° directions. A solder resist with a binder is formed, and the mixing ratio of the acicular magnetic particles and plate-like non-magnetic inorganic particles in the solder resist layer to the binder is “50:50 to 20:80” by weight, and The mixing ratio of the spherical magnetic particles to the plate-like non-magnetic inorganic particles is 70:30 by weight.
~ 30:70 ”.

【0014】この構成によると、多層基板製造後に発生
する反りを低減し、磁界に対して有効な電磁波妨害対策
用のプリント配線板を提供することができる。すなわ
ち、ソルダレジスト層中の針状磁性粒子は、それぞれ 9
0 度方向にずらして塗布され、さらに配向をかけること
で、XY軸方向の強度を補うことができる。さらに、ソ
ルダレジスト層中の板状非磁性無機質粒子は、プリント
配線板製造工程中に発生する反りに必要な力を、XY軸
方向に向けて等方的に分散することができる。また、ソ
ルダレジスト層中に磁性粒子を含ませていることから、
磁界に対して有効である。
According to this structure, it is possible to provide a printed wiring board which is effective in preventing electromagnetic interference against the magnetic field by reducing the warpage that occurs after manufacturing the multilayer substrate. That is, the acicular magnetic particles in the solder resist layer are 9
The coating is shifted in the 0-degree direction and is further oriented so that the strength in the XY-axis directions can be compensated. Furthermore, the plate-shaped non-magnetic inorganic particles in the solder resist layer can isotropically disperse the force necessary for the warpage that occurs during the printed wiring board manufacturing process, in the XY axis directions. Further, since the magnetic particles are contained in the solder resist layer,
Effective for magnetic fields.

【0015】本発明の請求項7記載のプリント配線板
は、上記課題を解決するために多層基板の表裏に、それ
ぞれ 90 度方向にずらして配向した針状磁性粒子と針状
非磁性無機質粒子と結合剤を配したソルダレジスト層を
形成し、ソルダレジスト層中の針状磁性粒子および針状
非磁性無機質粒子の結合剤に対する配合比率が、重量比
で“ 50:50 〜 20:80 ”、かつ針状磁性粒子の針状非
磁性無機質粒子に対する配合比率が、重量比で“ 70:30
〜 30:70 ”である。
In order to solve the above-mentioned problems, the printed wiring board according to claim 7 of the present invention comprises needle-shaped magnetic particles and needle-shaped non-magnetic inorganic particles, which are oriented by being shifted in the direction of 90 degrees, respectively, on the front and back of the multilayer substrate. A solder resist layer with a binder is formed, and the mixing ratio of the acicular magnetic particles and acicular nonmagnetic inorganic particles in the solder resist layer to the binder is “50:50 to 20:80” by weight, and The mixing ratio of acicular magnetic particles to acicular non-magnetic inorganic particles is 70:30 by weight.
~ 30:70 ”.

【0016】この構成によると、多層基板製造後に発生
する反りを低減し、磁界に対して有効な電磁波妨害対策
用のプリント配線板を提供することができる。すなわ
ち、ソルダレジスト層中の針状磁性粒子は、それぞれ 9
0 度方向にずらして塗布され、さらに配向をかけること
で、XY軸方向の強度を補うことができる。さらに、ソ
ルダレジスト層中の針状非磁性無機質粒子は、それぞれ
90 度方向にずらして塗布されているので、XY軸方向
の強度を補うことができる。また、ソルダレジスト層中
に磁性粒子を含ませていることから、磁界に対して有効
である。
According to this structure, it is possible to provide a printed wiring board which is effective in preventing electromagnetic interference against a magnetic field by reducing warpage that occurs after manufacturing a multilayer substrate. That is, the acicular magnetic particles in the solder resist layer are 9
The coating is shifted in the 0-degree direction and is further oriented so that the strength in the XY-axis directions can be compensated. Furthermore, the acicular non-magnetic inorganic particles in the solder resist layer are
Since the coating is shifted in 90 degrees, the strength in the XY axis directions can be supplemented. Further, since the solder resist layer contains magnetic particles, it is effective against a magnetic field.

【0017】以下、本発明の実施の形態を4層プリント
配線板を例に挙げて説明する。図1の(a)〜(c)は
4層プリント配線板の製造過程を示している。先ず、図
1の(a)に示すように、プリプレグ1aの表裏に配線
パターン2a,2bが形成された第1の基板3Aと、プ
リプレグ1bの表裏に配線パターン2a,2bが形成さ
れた第2の基板3Bとを、間にプリプレグ1cを介在さ
せ、図1の(b)に示すように成形して4層の多層基板
4とし、本発明のプリント配線板は、図1の(c)に示
すように4層の多層基板4の表裏に以下のような組成の
ソルダレジスト層5a,5bが設けられて完成されてい
る。
Embodiments of the present invention will be described below by taking a four-layer printed wiring board as an example. 1A to 1C show a manufacturing process of a four-layer printed wiring board. First, as shown in FIG. 1A, a first substrate 3A having wiring patterns 2a and 2b formed on the front and back surfaces of a prepreg 1a and a second substrate 3A having wiring patterns 2a and 2b formed on the front and back surfaces of the prepreg 1b. Substrate 3B of FIG. 1 and intervening prepreg 1c therebetween, and molded as shown in FIG. 1 (b) to form a four-layered multilayer substrate 4, and the printed wiring board of the present invention has the structure shown in FIG. As shown, solder resist layers 5a and 5b having the following compositions are provided on the front and back of the four-layered multilayer substrate 4 to complete the process.

【0018】〔第1の実施の形態〕下記の実施例1〜実
施例6は〔第1の実施の形態〕を示し、比較例1〜比較
例9は〔第1の実施の形態〕を評価するのに必要な比較
例を示している。〔表1〕は各ソルダレジスト層の材料
組成を示している。
[First Embodiment] Examples 1 to 6 below show [First Embodiment], and Comparative Examples 1 to 9 evaluate [First Embodiment]. It shows a comparative example required to do so. [Table 1] shows the material composition of each solder resist layer.

【0019】[0019]

【表1】 [Table 1]

【0020】(実施例1)この(実施例1)ではソルダ
レジスト層5a,5bは、図2に示すように板状磁性粒
子6と板状非磁性無機質粒子7と結合剤の組成で構成さ
れた下記のソルダレジストインキを使用した。
(Example 1) In this (Example 1), the solder resist layers 5a and 5b are composed of a composition of plate-like magnetic particles 6, plate-like non-magnetic inorganic particles 7 and a binder as shown in FIG. The following solder resist ink was used.

【0021】 ソルダレジスト層用インキの調製; エポキシアクリレート系樹脂 ・・・・・・ 40 重量部 アクリレート系モノマー ・・・・・・ 10 重量部 板状磁性粒子BaFe1219(板径 0.1μm,比表面積 50 m2 /g,板状 比5) ・・・・・・ 25 重量部 板状非磁性無機質粒子α−Fe23 (板径 0.1μm,比表面積 50 m2 / g,板状比5) ・・・・・・ 25 重量部 前記材料をミキサーで混合した後、加圧ニーダーで混練
し、さらに溶剤により希釈後サンドミルにより分散して
所定のソルダレジストインキを得た。次に作製したソル
ダレジストインキをスクリーン印刷機を用いて基板上に
塗布し、仮乾燥を 150℃ 20 分おこなった。
Preparation of Ink for Solder Resist Layer; Epoxy Acrylate Resin: 40 parts by Weight Acrylate Monomer: 10 parts by Weight Plate-like Magnetic Particles BaFe 12 O 19 (Plate Diameter 0.1 μm, Specific surface area 50 m 2 / g, plate-shaped ratio 5) 25 parts by weight Plate-shaped non-magnetic inorganic particles α-Fe 2 O 3 (plate diameter 0.1 μm, specific surface area 50 m 2 / g, plate-shaped Ratio 5) ······ 25 parts by weight The above materials were mixed with a mixer, kneaded with a pressure kneader, diluted with a solvent and dispersed by a sand mill to obtain a predetermined solder resist ink. Next, the produced solder resist ink was applied onto the substrate using a screen printer, and temporarily dried at 150 ° C. for 20 minutes.

【0022】(実施例2〜4)ソルダレジスト層の材料
組成を下記の〔表1〕に示したように変えた以外は(実
施例1)と同様にして(実施例2〜4)のプリント配線
板を得た。
(Examples 2 to 4) Printing of (Examples 2 to 4) was performed in the same manner as (Example 1) except that the material composition of the solder resist layer was changed as shown in [Table 1] below. The wiring board was obtained.

【0023】(実施例5)ソルダレジスト層の板状磁性
粒子の板状比を〔表1〕に示したように“3”に変えた
以外は(実施例1)と同様にして、(実施例5)のプリ
ント配線板を得た。
Example 5 (Example 5) was carried out in the same manner as in Example 1 except that the plate ratio of the plate-like magnetic particles in the solder resist layer was changed to "3" as shown in [Table 1]. A printed wiring board of Example 5) was obtained.

【0024】(実施例6)ソルダレジスト層の板状非磁
性粒子の板状比を〔表1〕に示したように“3”に変え
た以外は(実施例1)と同様にして(実施例6)のプリ
ント配線板を得た。
(Example 6) In the same manner as in Example 1 except that the plate ratio of the plate-shaped nonmagnetic particles in the solder resist layer was changed to "3" as shown in [Table 1] (Example 1) A printed wiring board of Example 6) was obtained.

【0025】(比較例1)比較として、市販ソルダレジ
ストインキを用いた。その組成は結合剤は上記と同じで
TiOとBaSO4 の組成からなる一般的なものであ
る。
Comparative Example 1 As a comparison, a commercially available solder resist ink was used. The composition is the same as that of the binder as described above, and is a general one composed of the composition of TiO and BaSO 4 .

【0026】(比較例2〜7)ソルダレジスト層の材料
組成を下記の〔表1〕に示したように変えた以外は(実
施例1)と同様にして(比較例2〜7)のプリント配線
板を得た。
(Comparative Examples 2 to 7) Printing of (Comparative Examples 2 to 7) was carried out in the same manner as (Example 1) except that the material composition of the solder resist layer was changed as shown in [Table 1] below. The wiring board was obtained.

【0027】(比較例8)ソルダレジスト層の板状磁性
粒子の板状比を〔表1〕に示したように“1”に変えた
以外は(実施例1)と同様にして(比較例8)のプリン
ト配線板を得た。
(Comparative Example 8) Comparative Example 8 (Comparative Example) except that the tabular ratio of the tabular magnetic particles in the solder resist layer was changed to "1" as shown in [Table 1]. A printed wiring board of 8) was obtained.

【0028】(比較例9)ソルダレジスト層の板状磁性
粒子の板状比を〔表1〕に示したように“1”に変えた
以外は(実施例1)と同様にして(比較例9)のプリン
ト配線板を得た。
(Comparative Example 9) Comparative Example 9 (Comparative Example) except that the tabular ratio of the tabular magnetic particles in the solder resist layer was changed to "1" as shown in [Table 1]. A printed wiring board of 9) was obtained.

【0029】このようにして得られた各プリント配線板
(その大きさは 510× 340mm)の性能を下記の項目に
ついて測定した。その結果を下記の〔表2〕に示す。 (1)反り量 物差しによりプリント配線板の四隅の反
り量を測定した。 (2)電磁波 不要輻射を 50 MHz, 150MHzにつ
いて測定した。
The performance of each printed wiring board thus obtained (its size is 510 × 340 mm) was measured for the following items. The results are shown in [Table 2] below. (1) Amount of warpage The amount of warpage at the four corners of the printed wiring board was measured using a ruler. (2) Electromagnetic waves Unwanted radiation was measured at 50 MHz and 150 MHz.

【0030】[0030]

【表2】 [Table 2]

【0031】前記実施例および比較例の結果から明かな
ように、本発明の構成で得られるプリント配線板は、反
り量および電磁波の不要輻射に優れていることがわか
る。この〔表2〕を見て分かるように、ソルダレジスト
層中の板状磁性粒子および板状非磁性無機質粒子の結合
剤に対する配合比率は、重量比で“ 50:50〜 20:8
0 ”が好ましい(実施例1,実施例2)。
As is clear from the results of the above-mentioned Examples and Comparative Examples, the printed wiring board obtained by the constitution of the present invention is excellent in the amount of warpage and the unnecessary radiation of electromagnetic waves. As can be seen from this [Table 2], the compounding ratio of the plate-like magnetic particles and the plate-like non-magnetic inorganic particles in the solder resist layer to the binder is “50:50 to 20: 8 by weight ratio”.
0 "is preferable (Examples 1 and 2).

【0032】板状磁性粒子および板状非磁性無機質粒子
の結合剤に対する配合比率が 50 重量部を越えると、ソ
ルダレジスト層中の結合剤が不足し、板状磁性粒子およ
び板状非磁性無機質粒子の充填性、分散性が低下してし
まう(比較例4)。逆に、20重量部を下回るとXY軸
方向の強度を補うことができなくなる(比較例5)。
When the compounding ratio of the plate-shaped magnetic particles and the plate-shaped non-magnetic inorganic particles to the binder exceeds 50 parts by weight, the binder in the solder resist layer becomes insufficient and the plate-shaped magnetic particles and the plate-shaped non-magnetic inorganic particles are insufficient. The filling property and the dispersibility of the product deteriorate (Comparative Example 4). On the other hand, if the amount is less than 20 parts by weight, the strength in the XY axis directions cannot be supplemented (Comparative Example 5).

【0033】さらに、板状磁性粒子の板状非磁性無機質
粒子に対する配合比率は、重量比率で“ 70:30 〜 3
0:70 ”が好ましい(実施例1,実施例3)。板状磁性
粒子の板状非磁性無機質粒子に対する配合比率が 70 重
量部を越えると、クロストークを助長してしまう恐れが
ある(比較例6)。逆に、 30 重量部を下回ると磁界に
対する有効さが現れない(比較例7)。
Further, the compounding ratio of the plate-like magnetic particles to the plate-like non-magnetic inorganic particles is "70:30 to 3 by weight ratio".
0:70 "is preferred (Examples 1 and 3). If the compounding ratio of the plate-shaped magnetic particles to the plate-shaped non-magnetic inorganic particles exceeds 70 parts by weight, crosstalk may be promoted (comparison). Example 6). Conversely, below 30 parts by weight, the effectiveness against the magnetic field does not appear (Comparative Example 7).

【0034】ソルダレジスト層中の板状磁性粒子および
板状非磁性無機質粒子の板状比は“3〜8”が好ましい
(実施例5,実施例6)。板状磁性粒子および板状非磁
性無機質粒子の板状比が“3”より小さくなるとソルダ
レジスト中の配列が悪くなり、XY軸方向の強度を補う
ことができなくなる(比較例8,比較例9)。一方、板
状磁性粒子および板状非磁性無機質粒子の板状比が
“8”より大きくなると分散時に粒子の破壊を招いてし
まうため、XY軸方向の強度を補うことができなくな
る。
The plate-like ratio of the plate-like magnetic particles and the plate-like nonmagnetic inorganic particles in the solder resist layer is preferably "3 to 8" (Examples 5 and 6). When the plate-like ratio of the plate-like magnetic particles and the plate-like non-magnetic inorganic particles is smaller than "3", the arrangement in the solder resist is deteriorated and the strength in the XY axis directions cannot be compensated (Comparative Examples 8 and 9). ). On the other hand, if the plate-shaped ratio of the plate-shaped magnetic particles and the plate-shaped non-magnetic inorganic particles is larger than "8", the particles will be broken during dispersion, so that the strength in the XY axis directions cannot be compensated.

【0035】なお、ソルダレジスト層中に使用する板状
磁性粒子の例としては、BaFe1219の他に、SrF
1219などが挙げられる。ソルダレジスト層中に使用
する板状非磁性無機質粒子の例としては、α−Fe2
3 の他に、雲母、グラファイトなどが挙げられる。
Examples of the plate-like magnetic particles used in the solder resist layer include BaFe 12 O 19 and SrF.
e 12 O 19 and the like. As an example of the plate-shaped non-magnetic inorganic particles used in the solder resist layer, α-Fe 2 O is used.
In addition to 3 , mica, graphite, etc. may be mentioned.

【0036】また、多層基板の裏表に、板状あるいは、
針状形状の磁性粒子と非磁性無機質粒子と結合剤を配し
たソルダレジスト層を2層以上かさねて塗布すれば、よ
り一層の効果が期待できる。
In addition, a plate-like or
A further effect can be expected by coating two or more solder resist layers each having a needle-shaped magnetic particle, a non-magnetic inorganic particle and a binder.

【0037】〔第2の実施の形態〕下記の実施例7〜実
施例12は〔第2の実施の形態〕を示し、比較例10〜
比較例15は〔第2の実施の形態〕を評価するのに必要
な比較例を示している。〔表3〕は各ソルダレジスト層
の材料組成を示している。
[Second Embodiment] The following Examples 7 to 12 show [Second Embodiment], and Comparative Examples 10 to 10.
Comparative example 15 shows a comparative example necessary for evaluating the [second embodiment]. [Table 3] shows the material composition of each solder resist layer.

【0038】[0038]

【表3】 [Table 3]

【0039】(実施例7)この(実施例7)ではソルダ
レジスト層5a,5bは、図3に示すように板状磁性粒
子6と針状非磁性無機質粒子8と結合剤の組成で構成さ
れた下記のソルダレジストインキを使用した。
(Example 7) In this (Example 7), the solder resist layers 5a and 5b are composed of a composition of plate-like magnetic particles 6, acicular non-magnetic inorganic particles 8 and a binder as shown in FIG. The following solder resist ink was used.

【0040】 ソルダレジスト層用インキの調製; エポキシアクリレート系樹脂 ・・・・・ 40 重量部 アクリレート系モノマー ・・・・・ 10 重量部 板状磁性粒子BaFe1219(板径 0.1μm,比表面積 50 m2 /g,板状 比5) ・・・・・ 25 重量部 針状非磁性無機質粒子ZnO(長軸長 0.12 μm,短軸長 0.006μm,比表 面積 35 m2 /g) ・・・・・ 25 重量部 前記材料をミキサーで混合した後、加圧ニーダーで混練
し、さらに溶剤により希釈後、サンドミルにより分散し
て所定のソルダレジストインキを得た。次に作製したソ
ルダレジストインキをスクリーン印刷機を用いて基板の
一方の面に塗布し、仮乾燥を 150℃ 20 分おこなってソ
ルダレジスト層5aとした。さらに、基板の反対の面を
一方の面に対して 90 度方向にずらして、ソルダレジス
トインキを印刷し仮乾燥をおこなってソルダレジスト層
5bとした。
Preparation of Ink for Solder Resist Layer; Epoxy Acrylate Resin: 40 parts by weight Acrylate monomer: 10 parts by weight Plate-like magnetic particles BaFe 12 O 19 (plate diameter 0.1 μm, specific surface area) 50 m 2 / g, plate ratio 5) ・ ・ ・ ・ ・ 25 parts by weight Needle-shaped non-magnetic inorganic particles ZnO (major axis length 0.12 μm, minor axis length 0.006 μm, ratio table area 35 m 2 / g) ・ ・25 parts by weight The above materials were mixed with a mixer, kneaded with a pressure kneader, further diluted with a solvent, and then dispersed by a sand mill to obtain a predetermined solder resist ink. Next, the prepared solder resist ink was applied to one surface of the substrate using a screen printer, and temporary drying was performed at 150 ° C. for 20 minutes to form a solder resist layer 5a. Further, the opposite surface of the substrate was shifted in the direction of 90 degrees with respect to the one surface, a solder resist ink was printed and temporarily dried to form a solder resist layer 5b.

【0041】(実施例8〜10)ソルダレジスト層の材
料組成を〔表3〕に示したように変えた以外は(実施例
7)と同様にして(実施例8〜10)のプリント配線板
を得た。
(Examples 8 to 10) Printed wiring boards of (Examples 8 to 10) in the same manner as in (Example 7) except that the material composition of the solder resist layer was changed as shown in [Table 3]. Got

【0042】(実施例11)ソルダレジスト層の板状磁
性粒子の板状比〔表3〕に示したように“3”に変えた
以外は(実施例7)と同様にして(実施例11)のプリ
ント配線板を得た。
Example 11 Example 11 was repeated except that the plate ratio of the plate-like magnetic particles in the solder resist layer was changed to “3” as shown in Table 3 (Example 11). ) Printed wiring board was obtained.

【0043】(実施例12)ソルダレジスト層の針状非
磁性無機質粒子の針状比を〔表3〕に示したように“1
0”に変えた以外は(実施例7)と同様にして(実施例
12)のプリント配線板を得た。
Example 12 The acicular ratio of the acicular non-magnetic inorganic particles in the solder resist layer was "1" as shown in [Table 3].
A printed wiring board of (Example 12) was obtained in the same manner as in (Example 7) except that the printed wiring board was changed to 0 ″.

【0044】(比較例10〜13)ソルダレジスト層の
材料組成を〔表3〕に示したように変えた以外は(実施
例7)と同様にして(比較例10〜13)のプリント配
線板を得た。
(Comparative Examples 10 to 13) Printed wiring boards of (Comparative Examples 10 to 13) were carried out in the same manner as (Example 7) except that the material composition of the solder resist layer was changed as shown in [Table 3]. Got

【0045】(比較例14)ソルダレジスト層の板状磁
性粒子の板状比を〔表3〕に示したように“1”に変え
た以外は(実施例7)と同様にして(比較例14)のプ
リント配線板を得た。
(Comparative Example 14) The procedure of Comparative Example 14 was repeated except that the tabular ratio of the tabular magnetic particles in the solder resist layer was changed to "1" as shown in [Table 3] (Comparative Example). A printed wiring board of 14) was obtained.

【0046】(比較例15)ソルダレジスト層の針状非
磁性無機質粒子の針状比を〔表3〕に示したように
“2”に変えた以外は(実施例7)と同様にして(比較
例15)のプリント配線板を得た。
(Comparative Example 15) The procedure of (Example 7) was repeated except that the acicular ratio of the acicular non-magnetic inorganic particles in the solder resist layer was changed to "2" as shown in [Table 3]. A printed wiring board of Comparative Example 15) was obtained.

【0047】このようにして得られた各プリント配線板
(その大きさは 510× 340mm)の性能を下記の項目に
ついて測定した。その結果を下記の〔表4〕に示す。 (1)反り量 物差しによりプリント配線板の四隅の
反り量を測定した。 (2)電磁波 不要輻射を 50 MHz, 150MHzに
ついて測定した。
The performance of each printed wiring board thus obtained (its size is 510 × 340 mm) was measured for the following items. The results are shown in [Table 4] below. (1) Amount of warpage The amount of warpage at the four corners of the printed wiring board was measured using a ruler. (2) Electromagnetic waves Unwanted radiation was measured at 50 MHz and 150 MHz.

【0048】[0048]

【表4】 [Table 4]

【0049】前記実施例および比較例の結果から明かな
ように、本発明の構成で得られるプリント配線板は、反
り量および電磁波の不要輻射に優れていることがわか
る。この〔表4〕を見て分かるように、ソルダレジスト
層中の板状磁性粒子および針状非磁性無機質粒子の結合
剤に対する配合比率は、重量比で“ 50:50〜 20:8
0 ”が好ましい(実施例7,実施例8)。板状磁性粒
子および針状非磁性無機質粒子の結合剤に対する配合比
率が 50 重量部を越えると、ソルダレジスト層中の結合
剤が不足し、板状磁性粒子および針状非磁性無機質粒子
の充填性、分散性が低下してしまう(比較例10)。逆
に、 20 重量部を下回るとXY軸方向の強度を補うこと
ができなくなる(比較例11)。
As is clear from the results of the above-mentioned Examples and Comparative Examples, the printed wiring board obtained by the constitution of the present invention is excellent in the amount of warpage and unnecessary radiation of electromagnetic waves. As can be seen from this [Table 4], the compounding ratio of the plate-like magnetic particles and the acicular non-magnetic inorganic particles in the solder resist layer to the binder is “50:50 to 20: 8 by weight ratio”.
0 "is preferable (Examples 7 and 8). When the compounding ratio of the plate-shaped magnetic particles and the acicular non-magnetic inorganic particles to the binder exceeds 50 parts by weight, the binder in the solder resist layer becomes insufficient, The filling properties and dispersibility of the plate-like magnetic particles and the acicular non-magnetic inorganic particles are deteriorated (Comparative Example 10) .On the contrary, when the amount is less than 20 parts by weight, the strength in the XY axis directions cannot be compensated (Comparison). Example 11).

【0050】さらに、板状磁性粒子の針状非磁性無機質
粒子に対する配合比率は、重量比率で“ 70:30 〜 3
0:70 ”が好ましい(実施例9,実施例10)。板状磁
性粒子の針状非磁性無機質粒子に対する配合比率が 70
重量部を越えると、クロストークを助長してしまう恐れ
がある(比較例12)。逆に、 30 重量部を下回ると磁
界に対する有効さが現れない(比較例13)。
Further, the compounding ratio of the plate-like magnetic particles to the acicular non-magnetic inorganic particles is "70:30 to 3 by weight ratio".
0:70 "is preferred (Examples 9 and 10). The compounding ratio of the plate-like magnetic particles to the acicular non-magnetic inorganic particles is 70.
If it exceeds the weight part, crosstalk may be promoted (Comparative Example 12). On the contrary, when the amount is less than 30 parts by weight, the effectiveness against the magnetic field does not appear (Comparative Example 13).

【0051】ソルダレジスト層中の板状磁性粒子の板状
比は“3〜8”が好ましい(実施例11)。板状磁性粒
子の板状比が“3”より小さくなるとソルダレジスト中
の配列が悪くなり、XY軸方向の強度を補うことができ
なくなる(比較例14)。一方、板状磁性粒子の板状比
が“8”より大きくなると分散時に粒子の破壊を招いて
しまうため、XY軸方向の強度を補うことができなくな
る。
The plate-like ratio of the plate-like magnetic particles in the solder resist layer is preferably "3 to 8" (Example 11). If the plate-shaped ratio of the plate-shaped magnetic particles is smaller than "3", the arrangement in the solder resist becomes poor and the strength in the XY axis directions cannot be compensated (Comparative Example 14). On the other hand, if the plate-shaped ratio of the plate-shaped magnetic particles is larger than "8", the particles are broken during dispersion, so that the strength in the XY axis directions cannot be compensated.

【0052】ソルダレジスト層中に使用する板状磁性粒
子の例としては、BaFe1219,SrFe1219など
が挙げられる。ソルダレジスト層中の針状非磁性粒子の
針状比は“ 3〜 30 ”が好ましい(実施例12)。針状
無機質粒子の針状比が“3”より小さくなるとソルダレ
ジスト中の配列が悪くなり、XY軸方向の強度を補うこ
とができなくなる(比較例15)。一方、針状非磁性粒
子の針状比が“ 30 ”より大きくなると分散時に粒子の
破壊を招いてしまうため、XY軸方向の強度を補うこと
ができなくなる。
Examples of the plate-like magnetic particles used in the solder resist layer include BaFe 12 O 19 and SrFe 12 O 19 . The acicular ratio of the acicular non-magnetic particles in the solder resist layer is preferably "3 to 30" (Example 12). When the acicular ratio of the acicular inorganic particles is smaller than "3", the arrangement in the solder resist is deteriorated and the strength in the XY axis directions cannot be compensated (Comparative Example 15). On the other hand, if the acicular ratio of the acicular non-magnetic particles is larger than "30", the particles will be broken during dispersion, so that the strength in the XY axis directions cannot be compensated.

【0053】ソルダレジスト層中に使用する針状非磁性
無機質粒子の例としては、α−Fe 23 、ZnO、Z
nSiO4 などが挙げられる。 〔第3の実施の形態〕下記の実施例13〜実施例18は
〔第3の実施の形態〕を示し、比較例16〜比較例23
は〔第3の実施の形態〕を評価するのに必要な比較例を
示している。〔表5〕は各ソルダレジスト層の材料組成
を示している。
Needle-like non-magnetic material used in the solder resist layer
As an example of the inorganic particles, α-Fe Two OThree , ZnO, Z
nSiOFour And the like. [Third Embodiment] The following Examples 13 to 18 are
[Third Embodiment] is shown and Comparative Examples 16 to 23 are shown.
Is a comparative example necessary for evaluating [Third Embodiment]
Is shown. [Table 5] shows the material composition of each solder resist layer.
Is shown.

【0054】[0054]

【表5】 [Table 5]

【0055】(実施例13)この(実施例13)ではソ
ルダレジスト層5a,5bは、図4に示すように針状磁
性粒子9と板状非磁性無機質粒子7と結合剤の組成で構
成された下記のソルダレジストインキを使用した。
(Example 13) In this (Example 13), the solder resist layers 5a and 5b are composed of a composition of needle-like magnetic particles 9, plate-like non-magnetic inorganic particles 7 and a binder as shown in FIG. The following solder resist ink was used.

【0056】 エポキシアクリレート系樹脂 ・・・・・・ 40 重量部 アクリレート系モノマー ・・・・・・ 10 重量部 針状磁性粒子γ−Fe23 (長軸長 0.12 μm,短軸長 0.006μm,比表 面積 35 m2 /g) ・・・・・・ 25 重量部 板状非磁性無機質粒子(板径 0.1μm,比表面積 50 m2 /g,板状比5) ・・・・・・ 25 重量部 前記材料をミキサーで混合した後、加圧ニーダーで混練
し、さらに溶剤により希釈後サンドミルにより分散して
所定のソルダレジストインキを得た。次に作製したソル
ダレジストインキをスクリーン印刷機を用いて基板の一
方の面に塗布し、未乾燥状態で配向を掛け、仮乾燥を 1
50℃ 20 分おこなってソルダレジスト層5aとした。さ
らに、基板の反対の面を一方の面に対して 90 度方向に
ずらして、ソルダレジストインキを印刷し、配向を掛け
た後に、仮乾燥をおこなってソルダレジスト層5bとし
た。
Epoxy acrylate resin: 40 parts by weight Acrylate monomer: 10 parts by weight Needle-like magnetic particles γ-Fe 2 O 3 (long axis length 0.12 μm, short axis length 0.006 μm , Ratio table area 35 m 2 / g) ・ ・ ・ ・ ・ ・ 25 parts by weight Plate-like non-magnetic inorganic particles (plate diameter 0.1 μm, specific surface area 50 m 2 / g, plate-like ratio 5) ・ ・ ・ ・ ・ ・25 parts by weight The above materials were mixed with a mixer, kneaded with a pressure kneader, diluted with a solvent, and then dispersed with a sand mill to obtain a predetermined solder resist ink. Next, apply the prepared solder resist ink to one side of the substrate using a screen printing machine, orient it in the undried state, and temporarily dry it.
The solder resist layer 5a was formed at 50 ° C. for 20 minutes. Further, the opposite surface of the substrate was shifted in the direction of 90 degrees with respect to the one surface, a solder resist ink was printed, orientation was applied, and then temporary drying was performed to form a solder resist layer 5b.

【0057】(実施例14〜16)ソルダレジスト層の
材料組成を〔表5〕に示したように変えた以外は(実施
例13)と同様にして(実施例14〜16)のプリント
配線板を得た。
(Examples 14 to 16) Printed wiring boards of (Examples 14 to 16) in the same manner as (Example 13) except that the material composition of the solder resist layer was changed as shown in [Table 5]. Got

【0058】(実施例17)ソルダレジスト層の針状磁
性粒子の針状比を〔表5〕に示したように“ 10 ”に変
えた以外は(実施例13)と同様にして(実施例17)
のプリント配線板を得た。
(Example 17) Example 17 was repeated except that the acicular ratio of the acicular magnetic particles in the solder resist layer was changed to "10" as shown in [Table 5] (Example 13). 17)
Was obtained.

【0059】(実施例18)ソルダレジスト層の板状磁
性無機質粒子の板状比を変えた以外は(実施例13)と
同様にして(実施例18)のプリント配線板を得た。
(Example 18) A printed wiring board of (Example 18) was obtained in the same manner as in (Example 13) except that the plate ratio of the plate-like magnetic inorganic particles in the solder resist layer was changed.

【0060】(比較例16〜21)ソルダレジスト層の
材料組成を変えた以外は(実施例13)と同様にして
(比較例16〜21)のプリント配線板を得た。
(Comparative Examples 16 to 21) Printed wiring boards of (Comparative Examples 16 to 21) were obtained in the same manner as in (Example 13) except that the material composition of the solder resist layer was changed.

【0061】(比較例22)ソルダレジスト層の針状磁
性粒子の針状比を〔表5〕に示したように“2”に変え
た以外は(実施例13)と同様にして(比較例22)の
プリント配線板を得た。
(Comparative Example 22) Comparative Example 22 (Comparative Example) except that the acicular ratio of the acicular magnetic particles in the solder resist layer was changed to "2" as shown in [Table 5]. A printed wiring board of 22) was obtained.

【0062】(比較例23)ソルダレジスト層の板状非
磁性無機質粒子の板状比を〔表5〕に示したように
“2”に変えた以外は(実施例13)と同様にして(比
較例23)のプリント配線板を得た。
(Comparative Example 23) In the same manner as in (Example 13) except that the tabular ratio of the tabular non-magnetic inorganic particles of the solder resist layer was changed to "2" as shown in [Table 5] (see Example 13). A printed wiring board of Comparative Example 23) was obtained.

【0063】このようにして得られた各プリント配線板
(その大きさは 510× 340mm)の性能を下記の項目に
ついて測定した。その結果を下記の〔表6〕に示す。 (1)反り量 物差しによりプリント配線板の四隅の
反り量を測定した。 (2)電磁波 不要輻射を 50 MHz, 150MHzに
ついて測定した。
The performance of each printed wiring board thus obtained (the size thereof is 510 × 340 mm) was measured for the following items. The results are shown in Table 6 below. (1) Amount of warpage The amount of warpage at the four corners of the printed wiring board was measured using a ruler. (2) Electromagnetic waves Unwanted radiation was measured at 50 MHz and 150 MHz.

【0064】[0064]

【表6】 [Table 6]

【0065】前記実施例および比較例の結果から明かな
ように、本発明の構成で得られるプリント配線板は、反
り量および電磁波の不要輻射に優れていることがわか
る。この〔表6〕を見て分かるように、ソルダレジスト
層中の針状磁性粒子および板状非磁性無機質粒子の結合
剤に対する配合比率は、重量比で“ 50:50〜 20:8
0 ”が好ましい(実施例13,実施例14)。針状磁
性粒子および板状非磁性無機質粒子の結合剤に対する配
合比率が 50 重量部を越えると、ソルダレジスト層中の
結合剤が不足し、針状磁性粒子および板状非磁性無機質
粒子の充填性、分散性が低下してしまう(比較例1
8)。逆に、 20 重量部を下回るとXY軸方向の強度を
補うことができなくなる(比較例19)。
As is clear from the results of the above-mentioned Examples and Comparative Examples, the printed wiring board obtained by the constitution of the present invention is excellent in the amount of warpage and the unnecessary radiation of electromagnetic waves. As can be seen from this [Table 6], the compounding ratio of the acicular magnetic particles and the plate-like nonmagnetic inorganic particles in the solder resist layer to the binder is "50:50 to 20: 8 by weight".
0 "is preferred (Examples 13 and 14). When the compounding ratio of the acicular magnetic particles and the plate-like non-magnetic inorganic particles to the binder exceeds 50 parts by weight, the binder in the solder resist layer becomes insufficient, The filling properties and dispersibility of the acicular magnetic particles and the plate-like non-magnetic inorganic particles are deteriorated (Comparative Example 1).
8). On the contrary, if it is less than 20 parts by weight, the strength in the XY axis directions cannot be compensated (Comparative Example 19).

【0066】さらに、針状磁性粒子の板状非磁性無機質
粒子に対する配合比率は、重量比率で“ 70:30 〜 30:
70”が好ましい(実施例15,実施例16)。針状磁性
粒子の板状非磁性無機質粒子に対する配合比率が 70 量
部を越えると、クロストークを助長してしまう恐れがあ
る(比較例20)。逆に、 30 重量部を下回ると磁界に
対する有効さが現れない(比較例21)。
Further, the mixing ratio of the acicular magnetic particles to the plate-like non-magnetic inorganic particles is 70:30 to 30: by weight.
70 "is preferable (Examples 15 and 16). When the mixing ratio of the acicular magnetic particles to the plate-like non-magnetic inorganic particles exceeds 70 parts by weight, crosstalk may be promoted (Comparative Example 20). On the contrary, when the amount is less than 30 parts by weight, the effectiveness against the magnetic field does not appear (Comparative Example 21).

【0067】ソルダレジスト層中の針状磁性粒子の針状
比は“ 3〜 30 ”が好ましい(実施例17)。針状磁性
粒子の針状比が“3”より小さくなるとソルダレジスト
中の配列が悪くなり、XY軸方向の強度を補うことがで
きなくなる(比較例22)。一方、針状磁性粒子の針状
比が“ 30 ”より大きくなると分散時に粒子の破壊を招
いてしまうため、XY軸方向の強度を補うことができな
くなる。
The acicular ratio of the acicular magnetic particles in the solder resist layer is preferably "3 to 30" (Example 17). When the acicular ratio of the acicular magnetic particles is smaller than “3”, the arrangement in the solder resist is deteriorated and the strength in the XY axis directions cannot be compensated (Comparative Example 22). On the other hand, if the acicular ratio of the acicular magnetic particles is larger than "30", the particles will be broken during dispersion, so that the strength in the XY axis directions cannot be compensated.

【0068】ソルダレジスト層中に使用する針状磁性粒
子の例としては、γ−Fe23 の他に、CrO2 、C
o−γFe23 などが挙げられる。ソルダレジスト層
中の板状非磁性無機質粒子の板状比は“3〜8”が好ま
しい(実施例18)。板状非磁性無機質粒子の板状比が
“3”より小さくなるとソルダレジスト中の配列が悪く
なり、XY軸方向の強度を補うことができなくなる(比
較例23)。一方、板状非磁性無機質粒子の針状比が
“8”より大きくなると分散時に粒子の破壊を招いてし
まうため、XY軸方向の強度を補うことができなくな
る。
Examples of the acicular magnetic particles used in the solder resist layer include γ-Fe 2 O 3 as well as CrO 2 and C.
and o-γFe 2 O 3 and the like. The plate-like ratio of the plate-like non-magnetic inorganic particles in the solder resist layer is preferably "3 to 8" (Example 18). When the plate-like ratio of the plate-like non-magnetic inorganic particles is smaller than "3", the arrangement in the solder resist is deteriorated and the strength in the XY axis directions cannot be compensated (Comparative Example 23). On the other hand, if the acicular ratio of the plate-like non-magnetic inorganic particles is larger than “8”, the particles will be broken during dispersion, so that the strength in the XY axis directions cannot be compensated.

【0069】ソルダレジスト層中に使用する板状非磁性
無機質粒子の例としては、α−Fe 23 の他に、雲
母、グラファイトなどが挙げられる。 〔第4の実施の形態〕下記の実施例19〜実施例24は
〔第4の実施の形態〕を示し、比較例22〜比較例27
は〔第4の実施の形態〕を評価するのに必要な比較例を
示している。〔表7〕は各ソルダレジスト層の材料組成
を示している。
Plate-like non-magnetic material used in solder resist layer
As an example of the inorganic particles, α-Fe Two OThree Besides, clouds
Examples include mother and graphite. [Fourth Embodiment] The following Examples 19 to 24 are
[Fourth Embodiment] is shown and Comparative Examples 22 to 27 are shown.
Is a comparative example necessary for evaluating [fourth embodiment].
Is shown. [Table 7] shows the material composition of each solder resist layer.
Is shown.

【0070】[0070]

【表7】 [Table 7]

【0071】(実施例19)この(実施例19)ではソ
ルダレジスト層5a,5bは、図5に示すように針状磁
性粒子9と針状非磁性無機質粒子7と結合剤の組成で構
成された下記のソルダレジストインキを使用した。
(Example 19) In this (Example 19), the solder resist layers 5a and 5b are composed of needle-like magnetic particles 9, needle-like non-magnetic inorganic particles 7 and a binder as shown in FIG. The following solder resist ink was used.

【0072】 ソルダレジスト層用インキの調製; エポキシアクリレート系樹脂 ・・・・・ 40 重量部 アクリレート系モノマー ・・・・・ 10 重量部 針状磁性粒子γ−Fe23 (長軸長 0.12 μm,短軸長 0.006μm,比表 面積 35 m2 /g) ・・・・・ 25 重量部 針状非磁性無機質粒子ZnO(長軸長 0.12 μm,短軸長 0.006μm,比表 面積 35 m2 /g) ・・・・・ 25 重量部 前記材料をミキサーで混合した後、加圧ニーダーで混練
し、さらに溶剤により希釈後サンドミルにより分散して
所定のソルダレジストインキを得た。次に作製したソル
ダレジストインキをスクリーン印刷機を用いて基板の一
方の面に塗布し、未乾燥状態で配向を掛け、仮乾燥を 1
50℃ 20 分おこなってソルダレジスト層5aとした。さ
らに、基板の反対の面を一方の面に対して 90 度方向に
ずらして、ソルダレジストインキを印刷し、配向を掛け
た後に、仮乾燥をおこなってソルダレジスト層5bとし
た。
Preparation of Ink for Solder Resist Layer; Epoxy Acrylate Resin ・ ・ ・ ・ ・ 40 parts by weight Acrylate monomer ・ ・ ・ ・ ・ 10 parts by weight Needle-like magnetic particles γ-Fe 2 O 3 (long axis length 0.12 μm , Minor axis length 0.006 μm, specific surface area 35 m 2 / g) ・ ・ ・ 25 parts by weight Needle-like non-magnetic inorganic particles ZnO (major axis length 0.12 μm, minor axis length 0.006 μm, specific surface area 35 m 2 / G) 25 parts by weight The above materials were mixed by a mixer, kneaded by a pressure kneader, diluted with a solvent and dispersed by a sand mill to obtain a predetermined solder resist ink. Next, apply the prepared solder resist ink to one side of the substrate using a screen printing machine, orient it in the undried state, and temporarily dry it.
The solder resist layer 5a was formed at 50 ° C. for 20 minutes. Further, the opposite surface of the substrate was shifted in the direction of 90 degrees with respect to the one surface, a solder resist ink was printed, orientation was applied, and then temporary drying was performed to form a solder resist layer 5b.

【0073】(実施例20〜22)ソルダレジスト層の
材料組成を〔表7〕に示したように変えた以外は(実施
例19)と同様にして(実施例20〜22)のプリント
配線板を得た。
(Examples 20 to 22) Printed wiring boards of (Examples 20 to 22) were carried out in the same manner as (Example 19) except that the material composition of the solder resist layer was changed as shown in [Table 7]. Got

【0074】(実施例23)ソルダレジスト層の針状磁
性粒子の針状比を〔表7〕に示したように“ 10 ”に変
えた以外は(実施例19)と同様にして(実施例23)
のプリント配線板を得た。
(Example 23) In the same manner as in Example 19 except that the acicular ratio of acicular magnetic particles in the solder resist layer was changed to "10" as shown in [Table 7] (Example 19) 23)
Was obtained.

【0075】(実施例24)ソルダレジスト層の針状非
磁性無機質粒子の針状比を〔表7〕に示したように“ 1
0 ”に変えた以外は(実施例19)と同様にして(実施
例24)のプリント配線板を得た。
Example 24 The acicular ratio of acicular non-magnetic inorganic particles in the solder resist layer was "1" as shown in [Table 7].
A printed wiring board of (Example 24) was obtained in the same manner as in (Example 19) except that the printed wiring board was changed to "0".

【0076】(比較例22〜25)ソルダレジスト層の
材料組成を〔表7〕に示したように変えた以外は(実施
例19)と同様にして(実施例22〜25)のプリント
配線板を得た。
Comparative Examples 22 to 25 Printed wiring boards of (Examples 22 to 25) in the same manner as (Example 19) except that the material composition of the solder resist layer was changed as shown in [Table 7]. Got

【0077】(比較例26)ソルダレジスト層の針状磁
性粒子の針状比を〔表7〕に示したように“1”に変え
た以外は(実施例19)と同様にして(比較例26)の
プリント配線板を得た。
(Comparative Example 26) Comparative Example 26 (Comparative Example) except that the acicular ratio of the acicular magnetic particles in the solder resist layer was changed to "1" as shown in [Table 7]. A printed wiring board of 26) was obtained.

【0078】(比較例27)ソルダレジスト層の針状非
磁性無機質粒子の針状比を〔表7〕に示したように
“2”に変えた以外は(実施例19)と同様にして(比
較例27)のプリント配線板を得た。
(Comparative Example 27) The procedure of Example 19 was repeated except that the acicular ratio of the acicular non-magnetic inorganic particles in the solder resist layer was changed to "2" as shown in [Table 7]. A printed wiring board of Comparative Example 27) was obtained.

【0079】このようにして得られた各プリント配線板
(その大きさは 510× 340mm)の性能を下記の項目に
ついて測定した。その結果を下記の〔表8〕に示す。 (1)反り量 物差しによりプリント配線板の四隅の
反り量を測定した。 (2)電磁波 不要輻射を 50 MHz, 150MHzに
ついて測定した。
The performance of each printed wiring board thus obtained (its size is 510 × 340 mm) was measured for the following items. The results are shown in [Table 8] below. (1) Amount of warpage The amount of warpage at the four corners of the printed wiring board was measured using a ruler. (2) Electromagnetic waves Unwanted radiation was measured at 50 MHz and 150 MHz.

【0080】[0080]

【表8】 [Table 8]

【0081】前記実施例および比較例の結果から明かな
ように、本発明の構成で得られるプリント配線板は、反
り量および電磁波の不要輻射に優れていることがわか
る。この〔表8〕を見て分かるように、ソルダレジスト
層中の針状磁性粒子および針状非磁性無機質粒子の結合
剤に対する配合比率は、重量比で“ 50:50〜 20:8
0 ”が好ましい(実施例19,実施例20)。
As is clear from the results of the above-mentioned Examples and Comparative Examples, the printed wiring board obtained by the constitution of the present invention is excellent in the amount of warpage and the unnecessary radiation of electromagnetic waves. As can be seen from [Table 8], the mixing ratio of the acicular magnetic particles and acicular non-magnetic inorganic particles in the solder resist layer to the binder is 50:50 to 20: 8 by weight.
0 "is preferable (Examples 19 and 20).

【0082】針状磁性粒子および針状非磁性無機質粒子
の結合剤に対する配合比率が 50 重量部を越えると、ソ
ルダレジスト層中の結合剤が不足し、針状磁性粒子およ
び針状非磁性無機質粒子の充填性、分散性が低下してし
まう(比較例22)。逆に、20 重量部を下回るとXY
軸方向の強度を補うことができなくなる(比較例2
3)。
When the compounding ratio of the acicular magnetic particles and acicular non-magnetic inorganic particles to the binder exceeds 50 parts by weight, the binder in the solder resist layer becomes insufficient, resulting in acicular magnetic particles and acicular non-magnetic inorganic particles. The filling property and the dispersibility of are decreased (Comparative Example 22). On the contrary, if less than 20 parts by weight, XY
It becomes impossible to supplement the strength in the axial direction (Comparative Example 2).
3).

【0083】さらに、針状磁性粒子の針状非磁性無機質
粒子に対する配合比率は、重量比率で“ 70:30 〜 3
0:70 ”が好ましい(実施例21,実施例22)。針状
磁性粒子の針状非磁性無機質粒子に対する配合比率が 7
0 重量部を越えると、クロストークを助長してしまう恐
れがある(比較例24)。逆に、 30 重量部を下回ると
磁界に対する有効さが現れない(比較例25)。
Further, the mixing ratio of the acicular magnetic particles to the acicular non-magnetic inorganic particles is in the range of 70:30 to 3 by weight.
0:70 "is preferable (Examples 21 and 22). The mixing ratio of the acicular magnetic particles to the acicular non-magnetic inorganic particles is 7
If it exceeds 0 part by weight, crosstalk may be promoted (Comparative Example 24). On the contrary, when the amount is less than 30 parts by weight, the effectiveness against the magnetic field does not appear (Comparative Example 25).

【0084】ソルダレジスト層中の針状磁性粒子の針状
比は“ 3〜 30 ”が好ましい(実施例23)。針状磁性
粒子の針状比が“3”より小さくなるとソルダレジスト
中の配列が悪くなり、XY軸方向の強度を補うことがで
きなくなる(比較例26)。一方、針状磁性粒子の針状
比が“ 30 ”より大きくなると分散時に粒子の破壊を招
いてしまうため、XY軸方向の強度を補うことができな
くなる。
The acicular ratio of the acicular magnetic particles in the solder resist layer is preferably "3 to 30" (Example 23). When the acicular ratio of the acicular magnetic particles is smaller than “3”, the arrangement in the solder resist is deteriorated and the strength in the XY axis directions cannot be compensated (Comparative Example 26). On the other hand, if the acicular ratio of the acicular magnetic particles is larger than "30", the particles will be broken during dispersion, so that the strength in the XY axis directions cannot be compensated.

【0085】ソルダレジスト層中に使用する針状磁性粒
子の例としては、γ−Fe23 の他、CrO2 、Co
−γFe23 などが挙げられる。ソルダレジスト層中
に使用する針状非磁性無機質粒子の例としては、ZnO
の他、α−Fe23 、ZnSiO4 などが挙げられ
る。
Examples of needle-like magnetic particles used in the solder resist layer include γ-Fe 2 O 3 , CrO 2 and Co.
-ΓFe 2 O 3 and the like can be mentioned. As an example of the acicular non-magnetic inorganic particles used in the solder resist layer, ZnO is used.
In addition, α-Fe 2 O 3 and ZnSiO 4 may be used.

【0086】[0086]

【発明の効果】以上のように本発明によれば、多層基板
の裏表に、板状あるいは、針状形状の磁性粒子と非磁性
無機質粒子と結合剤を配したソルダレジスト層を形成す
ることにより、多層基板製造後に発生する反りを低減す
ることができる。さらに、ソルダレジスト層中に磁性粒
子を含ませていることから、磁界に対して有効な電磁波
妨害対策用のプリント配線板を提供することができる。
As described above, according to the present invention, by forming a solder resist layer in which plate-shaped or needle-shaped magnetic particles, non-magnetic inorganic particles and a binder are arranged on the front and back sides of a multilayer substrate. It is possible to reduce warpage that occurs after manufacturing the multilayer substrate. Further, since the solder resist layer contains magnetic particles, it is possible to provide a printed wiring board effective against electromagnetic fields against electromagnetic interference.

【図面の簡単な説明】[Brief description of drawings]

【図1】各実施の形態における4層基板の構成図FIG. 1 is a configuration diagram of a four-layer board in each embodiment.

【図2】第1の実施の形態のソルダレジスト層の説明図FIG. 2 is an explanatory diagram of a solder resist layer according to the first embodiment.

【図3】第2の実施の形態のソルダレジスト層の説明図FIG. 3 is an explanatory diagram of a solder resist layer according to the second embodiment.

【図4】第3の実施の形態のソルダレジスト層の説明図FIG. 4 is an explanatory diagram of a solder resist layer according to a third embodiment.

【図5】第4の実施の形態のソルダレジスト層の説明図FIG. 5 is an explanatory diagram of a solder resist layer according to a fourth embodiment.

【符号の説明】[Explanation of symbols]

4 4層基板 5a,5b ソルダレジスト層 6 板状磁性粒子 7 板状非磁性無機質粒子 8 針状非磁性無機質粒子 9 針状磁性粒子 4 4-layer substrate 5a, 5b Solder resist layer 6 Plate-shaped magnetic particles 7 Plate-shaped non-magnetic inorganic particles 8 Needle-shaped non-magnetic inorganic particles 9 Needle-shaped magnetic particles

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 多層基板の表裏に、板状磁性粒子と板状
非磁性粒子と結合剤を配したソルダレジスト層を形成す
ることを特徴とするプリント配線板。
1. A printed wiring board, characterized in that a solder resist layer having plate-shaped magnetic particles, plate-shaped non-magnetic particles and a binder is formed on the front and back surfaces of a multilayer substrate.
【請求項2】 ソルダレジスト層中の板状磁性粒子およ
び板状非磁性無機質粒子の結合剤に対する配合比率が、
重量比で“ 50:50 〜 20:80 ”、かつ板状磁性粒子の
板状非磁性無機質粒子に対する配合比率が、重量比で
“ 70:30 〜30:70 ”であることを特徴とする請求項1
記載のプリント配線板。
2. The compounding ratio of the plate-shaped magnetic particles and the plate-shaped non-magnetic inorganic particles in the solder resist layer to the binder is
The weight ratio of "50:50 to 20:80", and the compounding ratio of the plate-like magnetic particles to the plate-like non-magnetic inorganic particles is "70:30 to 30:70" by weight ratio. Item 1
The printed wiring board as described.
【請求項3】 多層基板の表裏に板状磁性粒子と針状非
磁性無機質粒子と結合剤を配したソルダレジスト層を形
成し、前記多層基板の表裏のソルダレジスト層は、それ
ぞれ 90 度方向にずらして塗布することを特徴とするプ
リント配線板。
3. A solder resist layer having plate-like magnetic particles, acicular non-magnetic inorganic particles and a binder is formed on the front and back surfaces of the multilayer substrate, and the solder resist layers on the front and back surfaces of the multilayer substrate are oriented in a 90 ° direction, respectively. A printed wiring board characterized by being staggered and applied.
【請求項4】 ソルダレジスト層中の板状磁性粒子およ
び針状非磁性無機質粒子の結合剤に対する配合比率が、
重量比で“ 50:50 〜 20:80 ”、かつ板状磁性粒子の
針状非磁性無機質粒子に対する配合比率が、重量比で
“ 70:30〜30:70 ”であることを特徴とする請求項3記
載のプリント配線板。
4. The compounding ratio of the plate-like magnetic particles and the acicular non-magnetic inorganic particles in the solder resist layer to the binder is
The weight ratio of "50:50 to 20:80", and the compounding ratio of the plate-like magnetic particles to the acicular non-magnetic inorganic particles is "70:30 to 30:70" by weight ratio. Item 3. The printed wiring board according to item 3.
【請求項5】 多層基板の表裏に、それぞれ 90 度方向
にずらして配向した針状磁性粒子と板状非磁性無機質粒
子と結合剤を配したソルダレジストを形成することを特
徴とするプリント配線板。
5. A printed wiring board, characterized in that a solder resist having needle-shaped magnetic particles, plate-shaped non-magnetic inorganic particles, and a binder arranged on the front and back sides of a multi-layered substrate, respectively, shifted in the direction of 90 degrees, is formed. .
【請求項6】 ソルダレジスト層中の針状磁性粒子およ
び板状非磁性無機質粒子の結合剤に対する配合比率が、
重量比で“ 50:50 〜 20:80 ”、かつ針状磁性粒子の
板状非磁性無機質粒子に対する配合比率が、重量比で
“70:30 〜 30:70 ”であることを特徴とする請求項5
記載のプリント配線板。
6. The compounding ratio of the acicular magnetic particles and the plate-like non-magnetic inorganic particles in the solder resist layer to the binder is
A weight ratio of "50:50 to 20:80", and a mixing ratio of acicular magnetic particles to plate-like non-magnetic inorganic particles is "70:30 to 30:70" by weight ratio. Item 5
The printed wiring board as described.
【請求項7】 多層基板の表裏に、それぞれ 90 度方向
にずらして配向した針状磁性粒子と針状非磁性無機質粒
子と結合剤を配したソルダレジスト層を形成することを
特徴とするプリント配線板。
7. A printed wiring characterized in that a solder resist layer, in which needle-like magnetic particles and needle-like non-magnetic inorganic particles and binders, which are oriented by being shifted in a direction of 90 degrees, are arranged on the front and back surfaces of a multilayer substrate, respectively. Board.
【請求項8】 ソルダレジスト層中の針状磁性粒子およ
び針状非磁性無機質粒子の結合剤に対する配合比率が、
重量比で“ 50:50 〜 20:80 ”、かつ針状磁性粒子の
針状非磁性無機質粒子に対する配合比率が、重量比で
“ 70:30 〜 30:70 ”であることを特徴とする請求項
7記載のプリント配線板。
8. The compounding ratio of the acicular magnetic particles and acicular non-magnetic inorganic particles in the solder resist layer to the binder is
A weight ratio of "50:50 to 20:80", and a mixing ratio of acicular magnetic particles to acicular non-magnetic inorganic particles is "70:30 to 30:70" by weight ratio. Item 7. A printed wiring board according to item 7.
【請求項9】 板状磁性粒子の板状比“3〜8”である
ことを特徴とする請求項1,請求項3の何れかに記載の
プリント配線板。
9. The printed wiring board according to claim 1, wherein the plate-shaped magnetic particles have a plate-shaped ratio of “3 to 8”.
【請求項10】 板状無機質粒子の板状比“3〜8”で
あることを特徴とする請求項1,請求項5の何れかに記
載のプリント配線板。
10. The printed wiring board according to claim 1, wherein the plate-like inorganic particles have a plate-like ratio of “3 to 8”.
【請求項11】 針状無機質粒子の針状比“ 3〜 30 ”
であることを特徴とする請求項3,請求項7の何れかに
記載のプリント配線板。
11. The acicular ratio "3 to 30" of acicular inorganic particles.
The printed wiring board according to claim 3, wherein the printed wiring board is a printed wiring board.
【請求項12】 針状磁性粒子の針状比“ 3〜 30 ”で
あることを特徴とする請求項5,請求項7の何れかに記
載のプリント配線板。
12. The printed wiring board according to claim 5, wherein the acicular magnetic particles have an acicular ratio of “3 to 30”.
JP8866896A 1996-04-11 1996-04-11 Printed-wiring board Pending JPH09283939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8866896A JPH09283939A (en) 1996-04-11 1996-04-11 Printed-wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8866896A JPH09283939A (en) 1996-04-11 1996-04-11 Printed-wiring board

Publications (1)

Publication Number Publication Date
JPH09283939A true JPH09283939A (en) 1997-10-31

Family

ID=13949209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8866896A Pending JPH09283939A (en) 1996-04-11 1996-04-11 Printed-wiring board

Country Status (1)

Country Link
JP (1) JPH09283939A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261427A (en) * 2001-02-27 2002-09-13 Kyocera Corp Wiring board and method of manufacturing the same
JP2002280208A (en) * 2001-03-22 2002-09-27 Mitsubishi Cable Ind Ltd Wave absorber
JP2002353014A (en) * 2001-05-25 2002-12-06 Mitsubishi Cable Ind Ltd Radio wave absorbing material
JP2015103745A (en) * 2013-11-27 2015-06-04 京セラ株式会社 Wiring board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261427A (en) * 2001-02-27 2002-09-13 Kyocera Corp Wiring board and method of manufacturing the same
JP2002280208A (en) * 2001-03-22 2002-09-27 Mitsubishi Cable Ind Ltd Wave absorber
JP2002353014A (en) * 2001-05-25 2002-12-06 Mitsubishi Cable Ind Ltd Radio wave absorbing material
JP2015103745A (en) * 2013-11-27 2015-06-04 京セラ株式会社 Wiring board

Similar Documents

Publication Publication Date Title
DE69727207T2 (en) HIGHLY CONDUCTING MAGNETIC MIXING MATERIAL
JP3401650B2 (en) Electromagnetic interference suppressor
US11515643B2 (en) Electromagnetic-wave-absorbing sheet
TWI479986B (en) A magnetic filler, a resin composition containing the same, a sheet for suppressing the interference of electromagnetic waves, and a method for suppressing the electromagnetic wave interference sheet
JP4549545B2 (en) Electromagnetic shielding material manufacturing method and pattern forming method
WO1997004469A1 (en) Composite magnetic material and product for eliminating electromagnetic interference
JP5177542B2 (en) Composite magnetic body, circuit board using the same, and electronic component using the same
US6362434B1 (en) Magnetic prepreg, its manufacturing method and printed wiring board employing the prepreg
US20100139971A1 (en) Electromagnetic wave suppression sheet, device, and electronic apparatus
JP2006128649A (en) Electromagnetic compatibility suppressor and method of manufacturing the same
JP2003229694A (en) Electromagnetic wave absorbent and its manufacturing method
TW200908871A (en) Sheet for prevention of electromagnetic wave interference, flat cable for high-frequency signal, flexible print substrate, and method for production of sheet for prevention of electromagnetic wave interference
CN113498563B (en) Circuit board, antenna element, millimeter wave absorber for substrate built-in, and method for reducing noise of circuit board
JP2007281074A (en) Noise suppression sheet
JPH09283939A (en) Printed-wiring board
EP0871183B1 (en) Composite magnetic sheet, method for manufacturing the same, and electromagnetic interference suppressing material
TWI787517B (en) Electromagnetic wave absorber and composition for electromagnetic wave absorber
JP2001210924A (en) Composite magnetic molded material, electronic parts, composite magnetic composition, and method of manufacturing them
JPH10270816A (en) Printed wiring board
JPH1022673A (en) Prepreg and printed wiring board
JPH0974297A (en) Radio wave absorber
KR100712836B1 (en) Multi-layered film for shielding electromagnetic interference and circuit board including the same
JP3528257B2 (en) Printed wiring board
JPH05144615A (en) Magnetic recording magnetic powder and magnetic recording medium using the same
KR100652860B1 (en) Noise suppressing film, noise-suppressed circuit substrate and method of manufacturing the same