JPH09282612A - Magnetoresistance effect head - Google Patents

Magnetoresistance effect head

Info

Publication number
JPH09282612A
JPH09282612A JP8086212A JP8621296A JPH09282612A JP H09282612 A JPH09282612 A JP H09282612A JP 8086212 A JP8086212 A JP 8086212A JP 8621296 A JP8621296 A JP 8621296A JP H09282612 A JPH09282612 A JP H09282612A
Authority
JP
Japan
Prior art keywords
film
head
magnetic phase
exchange spring
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8086212A
Other languages
Japanese (ja)
Inventor
Masahiro Tobiyo
飛世  正博
Akimasa Sakuma
昭正 佐久間
Keiko Kikuchi
慶子 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP8086212A priority Critical patent/JPH09282612A/en
Publication of JPH09282612A publication Critical patent/JPH09282612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably control the output with a rather weak vertical bias magnetic field and to improve reproducibility of signals having a large output amplitude in a magnetoresistance effect head by forming an exchange spring magnet film for a permanent magnet film. SOLUTION: An insulating film 12 is formed on a lower shield film 2, on which an MR film 11 and nonmagnetic film 10 are formed, and a base film 4, exchange spring magnet film 7 and SAL film 9 are formed to surround the films 11, 10. Further, an electrode 3 is formed on both sides of a track width regulating film 8, and an insulating film 12 and an upper shield film 1 are formed thereon. The magnet film 7 consists of a hard magnetic phase 5 and a soft magnetic phase 6. By changing the thickness ratio of layer thickness between the hard magnetic phase 5 and the soft magnetic phase 6 of the magnet film 7, the product of the residual magnetic flux density and the film thickness can be controlled to 5 to 40Tnm. By controlling the film thickness of the base film, Hc can be controlled to >1200Oe. Thereby fluctuation in the magnetic field caused by fluctuation the magnetization state of the MR or SAL film by a transverse bias magnetic field can be enough suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気媒体から磁気情報信
号を読み取るための磁気抵抗効果型ヘッドに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive head for reading a magnetic information signal from a magnetic medium.

【0002】[0002]

【従来の技術】磁気抵抗効果型ヘッド(MRヘッド)
は、高記録密度で磁気記録媒体に記録されているデータ
を読み取ることのできる磁気ヘッドとして従来から知ら
れている。このヘッドは、記録時と再生時とでそれぞれ
専用のヘッドを使用する録再分離型ヘッドの再生専用ヘ
ッドとして広く用いられている。このヘッドは磁気抵抗
効果を示す材料で作られた磁気抵抗効果素子(MR素
子)の抵抗が、外部磁界の強度及び方向の関数として変
化することを利用して媒体からの情報信号を検出するも
のである。
2. Description of the Related Art Magnetoresistive head (MR head)
Is conventionally known as a magnetic head capable of reading data recorded on a magnetic recording medium with high recording density. This head is widely used as a read-only head of a recording / playback separation type head that uses dedicated heads for recording and reproduction. This head detects an information signal from a medium by utilizing the fact that the resistance of a magnetoresistive effect element (MR element) made of a material exhibiting a magnetoresistive effect changes as a function of the strength and direction of an external magnetic field. Is.

【0003】種々のMRヘッドが開発されており、これ
らは従来用いられて記録再生装置の要件を満たしてい
た。しかしながら、記録再生装置には更に高い記録密度
が要求され、トラック幅がますます狭くなり、且つ、ト
ラックと直角方向の線記録密度も高くなる状況になって
いる。従来のMRヘッド作製技術では、狭いトラック幅
や高い線記録密度に適合したMRヘッドを得ることは困
難になりつつある。
Various MR heads have been developed and have been used conventionally to meet the requirements of recording / reproducing devices. However, the recording / reproducing apparatus is required to have a higher recording density, the track width becomes narrower, and the linear recording density in the direction perpendicular to the track also becomes higher. With the conventional MR head manufacturing technique, it is becoming difficult to obtain an MR head adapted to a narrow track width and a high linear recording density.

【0004】従来のMRヘッドでは、MR素子が最適に
動作するためには互いに直交する2つのバイアス磁界が
与えられなければならない。ひとつは磁界に対する応答
が線形になるように、MR素子をバイアスするための横
方向のバイアス磁界である。このバイアス磁界は磁気媒
体の面に垂直であり、かつMR素子の素子高さ方向に平
行である。他のバイアス磁界は、磁気媒体の面に平行で
あり、かつMR素子の磁化容易軸方向である長手方向に
平行に延びる縦方向バイアス磁界である。この縦方向バ
イアス磁界の目的は、MR素子における多磁区構造によ
って生ずるノイズ(バルクハウゼンノイズ)を抑止する
ことである。
In the conventional MR head, two bias magnetic fields which are orthogonal to each other must be applied in order for the MR element to operate optimally. One is a lateral bias magnetic field for biasing the MR element so that the response to the magnetic field becomes linear. This bias magnetic field is perpendicular to the surface of the magnetic medium and parallel to the element height direction of the MR element. The other bias magnetic field is a longitudinal bias magnetic field which is parallel to the surface of the magnetic medium and extends parallel to the longitudinal direction which is the easy axis direction of the MR element. The purpose of this longitudinal bias magnetic field is to suppress noise (Barkhausen noise) caused by the multi-domain structure in the MR element.

【0005】特開昭52-062417号公報には、軟磁性膜
(SAL膜)の飽和磁化を利用して横方向のバイアス磁
界を印加する方式(SALバイアス法)によるMRヘッ
ドが開示されている。一方、特開昭57-198528号公報に
は絶縁膜によってMR素子をバイアス膜から離したMR
ヘッドが開示されており、トラック幅はヘッドの信号検
出用電極の内側間隔によって定められている。特開昭64
-35717号公報には絶縁膜を挿入したトラック幅規制法が
開示されている。また、特開平7-210828号公報には永久
磁石膜を多層構造とすることによって保磁力を高める方
法が開示されている。
Japanese Unexamined Patent Publication (Kokai) No. 52-062417 discloses an MR head using a method (SAL bias method) of applying a lateral bias magnetic field by utilizing the saturation magnetization of a soft magnetic film (SAL film). . On the other hand, Japanese Patent Laid-Open No. 57-198528 discloses an MR in which an MR element is separated from a bias film by an insulating film.
A head is disclosed, and the track width is defined by the inner spacing of the signal detection electrodes of the head. JP 64
-35717 discloses a track width regulation method in which an insulating film is inserted. Further, Japanese Patent Laid-Open No. 7-210828 discloses a method of increasing coercive force by forming a permanent magnet film into a multilayer structure.

【0006】[0006]

【発明が解決しようとする課題】これら先行技術に開示
されているバイアス法において、縦方向バイアス磁界発
生膜としては従来CoPt膜等の永久磁石膜が一般に用い
られている。しかし、CoPt膜の保磁力は800Oe程度と
小さく、ヘッドの記録再生時に発生する磁界によって磁
化状態が変化するため、縦方向バイアス磁界が変動して
しまい、出力信号の振幅及び波形が大きく変化してしま
う。
In the bias method disclosed in these prior arts, a permanent magnet film such as a CoPt film is generally used as a longitudinal bias magnetic field generating film. However, the coercive force of the CoPt film is as small as about 800 Oe, and the magnetization state changes due to the magnetic field generated during recording / reproducing of the head, so the longitudinal bias magnetic field fluctuates, and the amplitude and waveform of the output signal change greatly. I will end up.

【0007】筆者らがシミュレーションによって見積も
ったところ、媒体の残留磁束密度及び膜厚,浮上量,ギ
ャップ長及び薄膜誘導型記録ヘッドに流す記録電流等の
条件によって異なるが、媒体対向面近傍で各300〜400O
e程度の媒体磁界及び記録磁界が永久磁石膜に漏洩す
る。媒体磁界または横バイアス磁界によるMRまたはS
AL膜の磁化状態の変動により発生する磁界は、トラッ
ク幅境界近傍で500〜600Oe程度の磁界が永久磁石膜に漏
洩する。トラック幅境界近傍での永久磁石膜の磁化状態
は縦方向バイアス発生に最も大きな影響を与えるため、
永久磁石膜の保磁力としては1000Oe望ましくは1200Oe程
度の値が望まれる。
According to the simulations by the authors, although it depends on the conditions such as the residual magnetic flux density of the medium, the film thickness, the flying height, the gap length, and the recording current flowing in the thin film induction type recording head, each of them is 300 in the vicinity of the medium facing surface. ~ 400 O
A medium magnetic field and recording magnetic field of about e leak to the permanent magnet film. MR or S by medium magnetic field or lateral bias magnetic field
Regarding the magnetic field generated by the change in the magnetization state of the AL film, a magnetic field of about 500 to 600 Oe leaks to the permanent magnet film near the track width boundary. Since the magnetization state of the permanent magnet film near the track width boundary has the greatest effect on the generation of longitudinal bias,
As a coercive force of the permanent magnet film, a value of about 1000 Oe, preferably about 1200 Oe is desired.

【0008】ヘッドの記録再生時に発生する上述のよう
な磁界に対して永久磁石膜の保磁力が不十分な場合は、
縦方向バイアス磁界を強めに設定しなければならず、出
力振幅が減少する。縦方向バイアス磁界増加に伴う再生
出力の減少は、信号の記録波長(線記録密度)が短くな
る程顕著となった。また、トラック幅が狭くなるにつれ
て、MRヘッドからの再生出力はますます減少し、信号
検出が困難になる傾向がある。この傾向は縦方向バイア
ス磁界が強い程顕著となる。
When the coercive force of the permanent magnet film is insufficient with respect to the above-mentioned magnetic field generated during recording / reproducing of the head,
The longitudinal bias field must be set strong, which reduces the output amplitude. The decrease in the reproduction output due to the increase in the longitudinal bias magnetic field became more remarkable as the signal recording wavelength (linear recording density) became shorter. Also, as the track width becomes narrower, the reproduction output from the MR head decreases more and more, and signal detection tends to be difficult. This tendency becomes more remarkable as the vertical bias magnetic field is stronger.

【0009】また、線記録密度が高くなるにつれ、ギャ
ップ長(上下のシールド膜の間隔)も狭くなる。MR膜
及びSAL膜とシールド膜との電気的絶縁という観点か
らは絶縁膜厚は各0.1μm程度必要であり、ギャップ長が
狭くなるにつれてMR膜及び永久磁石膜はより薄膜化し
なければならない。ところが、従来の永久磁石膜に用い
られているCoPt膜等では、膜厚50nm程度で保磁力は最大
値となり、50nm以下では保磁力が急減してしまう。従来
の永久磁石膜でも組成を変えることにより、ある程度保
磁力の向上を図ることができる。しかし、組成比によっ
て保磁力を上げると残留磁束密度Brが下がってしまう。
縦方向バイアス磁界は磁石膜の残留磁束密度Brと膜厚t
との積にほぼ比例するので、保磁力を上げるとMR膜の
多磁区化を防ぐのに十分な縦方向バイアス磁界の印加が
困難となる。
Further, as the linear recording density increases, the gap length (distance between the upper and lower shield films) also decreases. From the viewpoint of electrical insulation between the MR film and the SAL film and the shield film, each insulating film needs to have a thickness of about 0.1 μm, and the MR film and the permanent magnet film must be made thinner as the gap length becomes narrower. However, in the CoPt film or the like used in the conventional permanent magnet film, the coercive force reaches its maximum value at a film thickness of about 50 nm, and the coercive force sharply decreases below 50 nm. Even in the conventional permanent magnet film, the coercive force can be improved to some extent by changing the composition. However, when the coercive force is increased depending on the composition ratio, the residual magnetic flux density Br decreases.
The longitudinal bias magnetic field is the residual magnetic flux density Br of the magnet film and the film thickness t.
Since it is almost proportional to the product of and, increasing the coercive force makes it difficult to apply a longitudinal bias magnetic field sufficient to prevent the MR film from becoming multi-domain.

【0010】一方、MR素子の素子高さを低くし過ぎる
と素子高さ方向の反磁界が強くなるため、適切な横方向
バイアスが得られず出力が低下する。素子高さ方向の反
磁界は素子高さ1.0μm付近で急激に強くなるため、1.0
μm付近で最も出力が高くなる。この最適素子高さに対
して高密度化を実現するためにトラック幅を狭くしてい
くと、MR膜及びSAL膜のアスペクト比(=トラック
幅/素子高さ)は減少し、磁化状態が不安定となり単磁
区状態を保つのが困難となる。従って、トラック幅が狭
くなる程、縦方向バイアス磁界を必要強度印加して、M
R素子の単磁区状態を保つことが重要となる。
On the other hand, if the element height of the MR element is too low, the demagnetizing field in the element height direction becomes strong, so that an appropriate lateral bias cannot be obtained and the output decreases. The demagnetizing field in the element height direction rapidly increases near the element height of 1.0 μm, so 1.0
The output is highest around μm. When the track width is narrowed in order to achieve higher density with respect to this optimum element height, the aspect ratio (= track width / element height) of the MR film and the SAL film decreases, and the magnetization state becomes It becomes stable and it becomes difficult to maintain the single domain state. Therefore, as the track width becomes narrower, the required strength of the longitudinal bias magnetic field is applied, and
It is important to maintain the single magnetic domain state of the R element.

【0011】したがって、本発明は、縦方向バイアス磁
界及び横方向バイアス磁界が存在する狭トラックMR素
子において、振幅が大きい出力信号を再現性良く検出
し、かつバルクハウゼンノイズの発生しにくいMRヘッ
ドを提供するものである。
Therefore, according to the present invention, in a narrow track MR element in which a longitudinal bias magnetic field and a lateral bias magnetic field exist, an MR head capable of detecting an output signal having a large amplitude with good reproducibility and hardly causing Barkhausen noise. It is provided.

【0012】[0012]

【課題を解決するための手段】本発明は、前記永久磁石
膜として保磁力1000Oe以上の交換スプリング磁石膜を用
いることにより、従来のヘッドより再生出力振幅が大き
い信号を再現性良く検出し、バルクハウゼンノイズの充
分抑制されるMRヘッドを提供するものである。
According to the present invention, by using an exchange spring magnet film having a coercive force of 1000 Oe or more as the permanent magnet film, a signal having a reproduction output amplitude larger than that of a conventional head is detected with good reproducibility, and a bulk An MR head in which Hausen noise is sufficiently suppressed is provided.

【0013】このような永久磁石膜として、軟磁性相
(磁化の大きさが0.9T以上である軟磁性相)及び硬磁
性相(5〜20at%のR(RはYを含む希土類元素の内少
なくとも1種)、0〜25at%のX(B、C、N等)、残部
遷移金属(TMはFeまたはCoまたはNiあるいはこれ
らの合金)及び不可避的な不純物を含む硬磁性相)を1
層または2層以上積層した希土類磁石系交換スプリング
磁石膜を用いることにより、保磁力1000Oe以上かつ残
留磁束密度0.2〜1.5Tの膜が得られる。
As such a permanent magnet film, a soft magnetic phase (soft magnetic phase having a magnitude of magnetization of 0.9 T or more) and a hard magnetic phase (5 to 20 at% R (R is a rare earth element containing Y) At least one), 0 to 25 at% of X (B, C, N, etc.), the balance transition metal (TM is Fe or Co or Ni or an alloy thereof) and a hard magnetic phase containing unavoidable impurities) 1
By using a rare earth magnet type exchange spring magnet film in which two or more layers are laminated, a film having a coercive force of 1000 Oe or more and a residual magnetic flux density of 0.2 to 1.5 T can be obtained.

【0014】交換スプリング磁石膜の軟磁性相及び硬磁
性相を積層した多層膜の少なくとも一方に3nm以上50nm
以下の膜厚の保護層(Cr,Ti,W,Mo,Cu,Ta,
FeMn,NiMn,NiO,FeO,CoO,Co−Pt,Fe
−Ptのうち1種または2種以上からなる層)を形成する
ことにより、比較的広い組成範囲で面内保磁力1000Oe
以上の膜が得られる。これは、保護層が軟磁性相または
硬磁性相の酸化及び基板との反応を抑制するためであ
る。
3 nm or more and 50 nm or more in at least one of the multilayer films in which the soft magnetic phase and the hard magnetic phase of the exchange spring magnet film are laminated.
Protective layers (Cr, Ti, W, Mo, Cu, Ta,
FeMn, NiMn, NiO, FeO, CoO, Co-Pt, Fe
-By forming a layer consisting of one or more of Pt), the in-plane coercive force is 1000 Oe in a relatively wide composition range.
The above film is obtained. This is because the protective layer suppresses the oxidation of the soft magnetic phase or the hard magnetic phase and the reaction with the substrate.

【0015】[0015]

【作用】本発明によれば、縦方向バイアス磁界及び横方
向バイアス磁界が存在するMRヘッドにおいて、MR膜
及びSAL膜の多磁区化を防止して多磁区化に起因する
ヘッドノイズ発生を抑制できる範囲内で永久磁石膜から
漏れる磁界を弱くし、振幅が大きい信号を再現性良く検
出することができる。
According to the present invention, in the MR head in which the longitudinal bias magnetic field and the lateral bias magnetic field exist, it is possible to prevent the MR film and the SAL film from becoming multi-domain and to suppress the generation of head noise due to the multi-domain. Within the range, the magnetic field leaking from the permanent magnet film can be weakened, and a signal with a large amplitude can be detected with good reproducibility.

【0016】本発明は、前記永久磁石膜として、軟磁性
相(磁化の大きさが0.9T以上である軟磁性相)及び硬
磁性相(5〜20at%のR(RはYを含む希土類元素の内
少なくとも1種)、0〜25at%のX(B、C、N等)、残
部遷移金属(FeまたはCoまたはNiあるいはこれらの
合金)及び不可避的な不純物を含む硬磁性相)を1層ま
たは2層以上積層した希土類磁石系交換スプリング磁石
膜を用いることにより、この永久磁石膜から漏れる磁界
をノイズ発生を抑制する程度に弱くし、出力振幅が大き
い信号を再現性良く得られる磁気抵抗効果型ヘッドを提
供するものである。
In the present invention, as the permanent magnet film, a soft magnetic phase (a soft magnetic phase having a magnitude of magnetization of 0.9 T or more) and a hard magnetic phase (5 to 20 at% R (R is a rare earth element containing Y) are used. At least one), 0 to 25 at% X (B, C, N, etc.), the balance transition metal (Fe or Co or Ni or alloys thereof) and a hard magnetic phase containing inevitable impurities) as a single layer Alternatively, by using a rare earth magnet type exchange spring magnet film laminated with two or more layers, the magnetic field leaking from this permanent magnet film is weakened to the extent that noise generation is suppressed, and a magnetoresistive effect that can obtain a signal with a large output amplitude with good reproducibility. A mold head is provided.

【0017】交換スプリング磁石膜は、図1の様に磁化
の大きい軟磁性相と保磁力の大きい硬磁性相とを組み合
わせ、これらを交換相互作用により磁気的に結合させて
高いエネルギー積を得るものである。一般に永久磁石材
において、硬磁性相と交換結合する軟磁性相があると、
逆磁界下で軟磁性相から先に磁化反転が始まり、保磁力
低下の主要因となる。しかし、軟磁性相のサイズを磁壁
幅以下に抑えると、逆磁界下における不均一磁化反転が
抑制される。その結果、保磁力は主に硬磁性相の磁気異
方性に支配され低下は抑えられる。一方、軟磁性相から
より高い磁束密度を得るためには、軟磁性相の体積比を
上げる必要があり、このためには一つの硬磁性相のサイ
ズをできる限り小さくすればよい。すなわち、より高い
保磁力を得るためには硬磁性相の膜厚を厚くし、より高
い磁束密度を得るためには軟磁性相の膜厚を厚くするこ
とが設計指針となる。硬磁性相のサイズはやはり磁壁幅
以下であればよいが、あまり狭いと保磁力を維持するの
が困難になるため磁壁幅程度に抑えるのが好ましい。硬
磁性相をNd2Fe14Bとすると、そのサイズは5nm〜30
nm程度となる。このような交換スプリング磁石膜は、硬
磁性相と軟磁性相を多層化する代わりに、図2の様に平
均結晶粒径が各数〜数十nmの硬磁性相と軟磁性相を複合
組織にすることによっても得られる。上述の理由から、
硬磁性相の平均結晶粒径が5nm以上30nm以下であること
が望ましい。多層構造と同様に、より高い保磁力を得る
ためには硬磁性相の組成比を増し、より高い磁束密度を
得るためには軟磁性相の組成比を増すことが設計指針と
なる。
The exchange spring magnet film is obtained by combining a soft magnetic phase having a large magnetization and a hard magnetic phase having a large coercive force as shown in FIG. 1 and magnetically combining them to obtain a high energy product. Is. Generally, in a permanent magnet material, if there is a soft magnetic phase that exchange-couples with a hard magnetic phase,
The magnetization reversal begins first in the soft magnetic phase under a reverse magnetic field, which is the main cause of the decrease in coercive force. However, if the size of the soft magnetic phase is suppressed to the domain wall width or less, the non-uniform magnetization reversal under the reverse magnetic field is suppressed. As a result, the coercive force is mainly controlled by the magnetic anisotropy of the hard magnetic phase, and the decrease is suppressed. On the other hand, in order to obtain a higher magnetic flux density from the soft magnetic phase, it is necessary to increase the volume ratio of the soft magnetic phase. For this purpose, the size of one hard magnetic phase should be made as small as possible. That is, the design guideline is to increase the film thickness of the hard magnetic phase in order to obtain a higher coercive force and to increase the film thickness of the soft magnetic phase in order to obtain a higher magnetic flux density. The size of the hard magnetic phase may be equal to or less than the domain wall width, but if it is too narrow, it becomes difficult to maintain the coercive force. When the hard magnetic phase is Nd 2 Fe 14 B, its size is 5 nm to 30
It will be about nm. Such an exchange spring magnet film has a composite structure of a hard magnetic phase and a soft magnetic phase having an average crystal grain size of several to several tens of nm as shown in FIG. Can also be obtained by For the reasons mentioned above,
The average crystal grain size of the hard magnetic phase is preferably 5 nm or more and 30 nm or less. As with the multilayer structure, the design guideline is to increase the composition ratio of the hard magnetic phase to obtain a higher coercive force and increase the composition ratio of the soft magnetic phase to obtain a higher magnetic flux density.

【0018】上述の各相のサイズ制御以外にも、交換ス
プリング磁石膜として高い保磁力を得る条件として、硬
磁性相の保磁力を十分引き出すことと、硬磁性相と軟磁
性相との交換相互作用を十分強くすることの2点が必要
である。ところが、希土類磁石からなる硬磁性相は耐食
性が悪く、十分に酸化を抑制しないとR2TM14X
(TMは遷移金属)が生成しにくく硬磁性相の保磁力が
低下するため、交換スプリング磁石膜の保磁力も劣化す
る可能性が強い。そこで、薄膜化による酸化抑制のため
の保護膜として交換スプリング磁石膜の軟磁性相及び硬
磁性相を積層した多層膜の少なくとも一方に3nm以上50n
m以下の膜厚の保護層(Cr,Ti,W,Mo,Cu,Ta,
FeMn,NiMn,NiO,FeO,CoO,Co−Pt,Fe
−Ptのうち1種または2種以上からなる層)を形成し
た。このような保護膜により、比較的広い組成範囲で面
内保磁力1000Oe以上かつ残留磁束密度0.2〜1.5Tの膜
が得られる。これは、保護層が軟磁性相または硬磁性相
の酸化及び基板との反応を抑制した結果、硬磁性相と軟
磁性相の交換結合が強くなり、磁気特性の優れた多層膜
を得ることができるためである。
In addition to the size control of each phase described above, as a condition for obtaining a high coercive force as an exchange spring magnet film, the coercive force of the hard magnetic phase is sufficiently drawn out and the mutual exchange of the hard magnetic phase and the soft magnetic phase is performed. Two points are necessary to make the action sufficiently strong. However, the hard magnetic phase composed of a rare earth magnet has poor corrosion resistance, and if the oxidation is not sufficiently suppressed, R2TM14X
Since (TM is a transition metal) is hard to be generated and the coercive force of the hard magnetic phase is lowered, the coercive force of the exchange spring magnet film is likely to be deteriorated. Therefore, as a protective film for suppressing oxidation due to thinning, at least 3 nm or more and 50 n or more are formed on at least one of the multilayer films of the soft magnetic phase and the hard magnetic phase of the exchange spring magnet film.
Protective layer (Cr, Ti, W, Mo, Cu, Ta,
FeMn, NiMn, NiO, FeO, CoO, Co-Pt, Fe
-A layer consisting of one or more of Pt) was formed. With such a protective film, a film having an in-plane coercive force of 1000 Oe or more and a residual magnetic flux density of 0.2 to 1.5 T can be obtained in a relatively wide composition range. This is because the protective layer suppresses the oxidation of the soft magnetic phase or the hard magnetic phase and the reaction with the substrate, and as a result, the exchange coupling between the hard magnetic phase and the soft magnetic phase becomes strong, and a multilayer film having excellent magnetic properties can be obtained. Because you can.

【0019】硬磁性相の保磁力を十分引き出すにはR2
TM14Bの多結晶を得るための熱処理が必要である。
硬磁性相の保磁力を最大限に引き出すという観点からは
熱処理温度500℃以上が適当であるが、MRヘット゛の耐熱
性からは300℃以下が望ましい。上述のように保護層で
酸化を抑制することにより、熱処理温度250℃でも1000
Oe以上の保磁力が得られる。
To bring out the coercive force of the hard magnetic phase sufficiently, R2
A heat treatment is required to obtain a polycrystal of TM14B.
A heat treatment temperature of 500 ° C or higher is suitable from the viewpoint of maximizing the coercive force of the hard magnetic phase, but 300 ° C or lower is preferable from the heat resistance of the MR head. By suppressing the oxidation in the protective layer as described above, 1000 even at a heat treatment temperature of 250 ° C.
A coercive force of Oe or more is obtained.

【0020】図3に従来のヘッドの出力信号の振幅及び
バルクハウゼンノイズ発生確率を○印で示す。永久磁石
膜としてはCoPt膜及びCoCrPt系膜を用いた。膜厚t
あるいはCoCrPt系膜の組成比によりBrを変えた各20
セットのサンプルヘッドについて、記録再生過程を20回
繰り返して再生波形をオシロスコープで観察した。セン
ス電流は13mAとした。
In FIG. 3, the amplitude of the output signal of the conventional head and the Barkhausen noise occurrence probability are indicated by a circle. A CoPt film and a CoCrPt-based film were used as the permanent magnet film. Film thickness t
Alternatively, each Br was changed depending on the composition ratio of the CoCrPt-based film.
With respect to the sample head of the set, the recording / reproducing process was repeated 20 times and the reproduced waveform was observed with an oscilloscope. The sense current was 13 mA.

【0021】前記の繰り返し測定中に目視観察で明らか
な程度のピーク値の変動、波形のジャンプ、ベースライ
ンシフトのいずれかが現れた場合、そのサンプルヘッド
についてバルクハウゼンノイズが発生したとみなした。
When any of the peak value fluctuation, the waveform jump, and the baseline shift, which are obvious by visual observation, appeared during the above repeated measurement, it was considered that Barkhausen noise had occurred in the sample head.

【0022】再生波形には信号以外にも様々なノイズが
発生するため、出力振幅が低いと信号とノイズの判別が
困難となる。出力振幅は永久磁石膜のBrと膜厚tとの積
が12.5Tnm付近で最大値を持った。Br・t=10Tnm以下
では縦方向バイアス磁界が不十分なためMR膜が単磁区
状態を保てず、バルクハウゼンノイズは急増している。
一方Br・t≧12.5Tnmでは、Br・tが強くなると再生振
幅は減少し30Tnm以上で再生振幅の減少が著しい。これ
は、縦方向バイアス磁界はBr・tにほぼ比例して増加す
るため、Br・tの増加に伴い媒体信号に対するMR膜の
磁化状態の変化は減少するためである。出力振幅が比較
的大きくバルクハウゼンノイズがほぼ抑制できる領域
が、MRヘッドの永久磁石膜として望ましいBr・tの範
囲である。このような範囲はトラック幅等によって変わ
ると推察されるが、図3の条件では12.5〜25Tnmであ
る。
Since various noises are generated in the reproduced waveform in addition to the signal, it is difficult to distinguish between the signal and the noise when the output amplitude is low. The output amplitude had the maximum value when the product of Br and film thickness t of the permanent magnet film was around 12.5 Tnm. When Br · t = 10 Tnm or less, the longitudinal bias magnetic field is insufficient, so that the MR film cannot maintain a single domain state, and Barkhausen noise is rapidly increasing.
On the other hand, when Br · t ≧ 12.5 Tnm, the reproducing amplitude decreases as Br · t becomes stronger, and the reproducing amplitude decreases remarkably at 30 Tnm or more. This is because the longitudinal bias magnetic field increases almost in proportion to Br · t, and thus the change in the magnetization state of the MR film with respect to the medium signal decreases as Br · t increases. A region where the output amplitude is relatively large and Barkhausen noise can be substantially suppressed is a range of Br · t desirable as a permanent magnet film of an MR head. It is assumed that such a range changes depending on the track width and the like, but it is 12.5 to 25 Tnm under the conditions of FIG.

【0023】また、各Br・tに対して出力振幅の平均値
を○印で、測定バラツキをエラーバーで示した。出力振
幅はBr・tに関わらずかなりのバラツキを示した。これ
は、MRまたはSAL膜の磁化状態がばらついていたた
めと思われる。MR及びSAL膜の磁化状態は縦方向バ
イアス磁界の影響を強く受け、従来のヘッドの特性バラ
ツキの原因は永久磁石膜からの縦方向バイアス磁界が変
動したためと思われる。これは、従来のヘッドの永久磁
石膜の保磁力Hcが800Oe程度と小さく、記録再生過程時
に永久磁石膜に漏洩する磁界(媒体からの磁界、記録部
からの記録磁界、媒体磁界または横バイアス磁界による
MRまたはSAL膜の磁化状態の変動により発生する磁
界等)に起因する永久磁石膜の磁化状態の変動を抑制で
きなかったためと考えられる。
Further, the average value of the output amplitude for each Br · t is indicated by a circle, and the measurement variation is indicated by an error bar. The output amplitude showed a considerable variation regardless of Br · t. This is probably because the magnetization state of the MR or SAL film varied. The magnetization states of the MR and SAL films are strongly affected by the longitudinal bias magnetic field, and it is considered that the cause of the characteristic variation of the conventional head is that the longitudinal bias magnetic field from the permanent magnet film fluctuates. This is because the coercive force Hc of the permanent magnet film of the conventional head is as small as about 800 Oe, and the magnetic field leaks to the permanent magnet film during the recording / reproducing process (the magnetic field from the medium, the recording magnetic field from the recording section, the medium magnetic field or the lateral bias magnetic field). It is considered that the change in the magnetization state of the permanent magnet film due to the magnetic field generated by the change in the magnetization state of the MR or SAL film due to (4) could not be suppressed.

【0024】図4は高記録密度対応ヘッドとして、図3
よりもトラック幅及びギャップ長をを狭めた例である。
○印で示した従来のヘッドでは、図3と比べ出力が減少
しバルクハウゼンノイズ出現確率が増加してしまう。こ
れは、ギャップ長を狭めたのに伴い永久磁石膜を30nmと
薄くしたので、従来磁石膜では300Oe程度の保磁力しか
得られず、MR膜及びSAL膜の多磁区化を防止するの
に十分な縦方向バイアス磁界が得られなかったためと、
推察される。
FIG. 4 shows a head for high recording density as shown in FIG.
This is an example in which the track width and the gap length are narrower than the above.
In the conventional head indicated by a circle, the output is reduced and the Barkhausen noise appearance probability is increased as compared with FIG. This is because the permanent magnet film is thinned to 30 nm as the gap length is narrowed, so that the conventional magnet film can only obtain a coercive force of about 300 Oe, which is sufficient to prevent the MR and SAL films from becoming multi-domain. Because a strong longitudinal bias magnetic field was not obtained,
Inferred.

【0025】図5に本発明で用いた交換スプリング磁石
膜の保磁力の膜厚依存性を示す。従来CoPt磁石膜におい
ては、保磁力が800Oe程度と小さく膜厚50nm以下で保磁
力が急減している。これに対し、本発明で用いた交換ス
プリング磁石膜では保磁力が1500Oe程度と、シミュレー
ションから予測される望ましい保磁力1000Oeより十分高
い。また、本発明で用いた交換スプリング磁石膜では膜
厚が薄くなっても保磁力が減少せず、高線記録密度対応
ヘッドの材料として有望である。
FIG. 5 shows the film thickness dependence of the coercive force of the exchange spring magnet film used in the present invention. In the conventional CoPt magnet film, the coercive force is as small as about 800 Oe, and the coercive force sharply decreases at a film thickness of 50 nm or less. On the other hand, the exchange spring magnet film used in the present invention has a coercive force of about 1500 Oe, which is sufficiently higher than the desired coercive force of 1000 Oe predicted by simulation. Further, the exchange spring magnet film used in the present invention does not decrease the coercive force even when the film thickness becomes thin, and is promising as a material for a head compatible with high linear recording density.

【0026】本発明で用いた交換スプリング磁石膜に対
して、硬磁性相と軟磁性相の膜厚比を変えて保磁力を制
御した例を図6に示す。磁石膜の膜厚は40nmとした。B
r・tについては、従来磁石膜も本発明で用いた交換スプ
リング磁石膜も、図3の条件で望ましいBr・tの範囲1
2.5〜25Tnmを満たしている。しかし保磁力について
は、交換スプリング磁石膜はシミュレーションから予測
される保磁力1000Oeを十分満たしているが、従来磁石膜
では800Oeの保磁力しか得られなかった。
FIG. 6 shows an example of controlling the coercive force of the exchange spring magnet film used in the present invention by changing the film thickness ratio of the hard magnetic phase and the soft magnetic phase. The thickness of the magnet film was 40 nm. B
Regarding r · t, both the conventional magnet film and the exchange spring magnet film used in the present invention have a desirable Br · t range 1 under the conditions of FIG.
It satisfies 2.5 to 25 Tnm. Regarding the coercive force, the exchange spring magnet film sufficiently satisfied the coercive force of 1000 Oe predicted by the simulation, but the conventional magnet film could only obtain the coercive force of 800 Oe.

【0027】永久磁石膜を多層構造とすることによって
保磁力を高める方法は特開平7-210828号公報に開示され
ている。しかしながら前述の公報においては、硬磁性相
と保護層とを積層することによって、永久磁石膜の面内
配向性及び耐食性を改善し保磁力を高めたものであり、
本発明のように硬磁性相と軟磁性相との交換相互作用を
利用して保磁力を高めたものではない。
A method of increasing the coercive force by forming the permanent magnet film into a multilayer structure is disclosed in Japanese Patent Application Laid-Open No. 7-210828. However, in the above publication, by laminating the hard magnetic phase and the protective layer, the in-plane orientation and corrosion resistance of the permanent magnet film are improved and the coercive force is increased.
Unlike the present invention, the coercive force is not increased by utilizing the exchange interaction between the hard magnetic phase and the soft magnetic phase.

【0028】[0028]

【実施例】以下、本発明を実施例を参照しながら詳細に
説明する。 (実施例1)図1および図7に録再分離型ヘッドの構造
図と、端部領域に縦方向バイアス膜として永久磁石膜及
び電極を形成したSALバイアスMRヘッドのMR素子
部の拡大断面図とを示す。
EXAMPLES The present invention will be described in detail below with reference to examples. (Embodiment 1) FIG. 1 and FIG. 7 are structural views of a recording / reproducing separation type head and an enlarged sectional view of an MR element part of a SAL bias MR head in which a permanent magnet film and electrodes are formed as longitudinal bias films in end regions. And indicates.

【0029】本実施例では、下部シールド膜2上に絶縁
膜12を介して、MR膜(Ni-Fe)11、非磁性膜T
(a)(10)をはさんで下地(Ti)膜4及び交換スプ
リング磁石膜(硬磁性相(Nd14Fe779)5、軟磁性
相(NiFe)6)7、SAL膜(Ni-Fe-Cr)9が積層さ
れ、さらに(絶縁性トラック幅規制層8をはさんで電極
(Mo)3を形成した。さらに絶縁膜12を介して上部シ
ールド膜1を形成した。
In this embodiment, the MR film (Ni-Fe) 11 and the non-magnetic film T are formed on the lower shield film 2 with the insulating film 12 interposed therebetween.
(A) (10) is sandwiched between the underlying (Ti) film 4, the exchange spring magnet film (hard magnetic phase (Nd 14 Fe 77 B 9 ) 5, soft magnetic phase (NiFe) 6) 7, SAL film (Ni- Fe-Cr) 9 was laminated, and the electrode (Mo) 3 was further formed (with the insulating track width regulating layer 8 sandwiched therebetween. Further, the upper shield film 1 was formed via the insulating film 12.

【0030】交換スプリング磁石膜の硬磁性相と軟磁性
相との層厚比を変化させることにより、残留磁束密度と
膜厚の積を5〜40Tnmまで制御した。下地膜厚を制御す
ることにより、Hcは1200Oe以上とした。この時、トラ
ック幅規制層のAl2O3膜はウエットエッチング法によっ
て幅2.2μmになるように加工した。MR膜の素子高さは
1.6μm、上下のシールド膜の間隔(ギャップ長)は0.2
8μm、磁石膜の膜厚は50nmである。
The product of the residual magnetic flux density and the film thickness was controlled to 5 to 40 Tnm by changing the layer thickness ratio of the hard magnetic phase and the soft magnetic phase of the exchange spring magnet film. By controlling the underlayer film thickness, Hc was set to 1200 Oe or more. At this time, the Al 2 O 3 film of the track width regulating layer was processed by wet etching to have a width of 2.2 μm. The element height of the MR film is
1.6μm, the gap between the upper and lower shield films (gap length) is 0.2
8 μm, the thickness of the magnet film is 50 nm.

【0031】実際にMR素子上に形成した誘導型ヘッド
13を用いて媒体に記録し、MR素子の再生特性を検討
した。このとき、誘導型ヘッドとしてはトラック幅3μ
m幅のヘッドを用いた。また、バルクハウゼンノイズの
検討としては、記録再生過程を20回繰り返して再生波形
をオシロスコープで観察した。そして、この繰り返し測
定中に目視観察で明らかな程度のピーク値の変動,波形
のジャンプ,ベースラインシフトのいずれかが現れた場
合、そのサンプルヘッドにバルクハウゼンノイズが出現
したと判定した。センス電流は13mAとした。各層厚比
の交換スプリング磁石膜に対してサンプルヘッドを20セ
ット作製し、薄膜誘導型記録ヘッドに記録電流0.3AT
を印加して、上記の繰り返し測定を行った。再生出力は
各層厚比についてそれぞれ平均値とバラツキを図に示し
た。
Recording was performed on the medium by using the inductive head 13 actually formed on the MR element, and the reproducing characteristic of the MR element was examined. At this time, the track width of the inductive head is 3μ.
An m-width head was used. As a study of Barkhausen noise, the recording and reproducing process was repeated 20 times and the reproduced waveform was observed with an oscilloscope. Then, during the repeated measurement, if any of the fluctuation of the peak value, the jump of the waveform, and the baseline shift, which are obvious by visual observation, appeared, it was determined that Barkhausen noise appeared in the sample head. The sense current was 13 mA. 20 sets of sample heads were prepared for the exchange spring magnet film of each layer thickness ratio, and a recording current of 0.3 AT was applied to the thin film induction type recording head.
Was applied and the above repeated measurement was performed. The reproduction output shows the average value and the variation for each layer thickness ratio.

【0032】この結果、図3に示すように、永久磁石膜
の残留磁束密度Brと膜厚tの積の減少に伴ってMR再生
出力は増加した。各Br・tでの再生出力は従来のCoPt
膜もしくはCoCrPt系を用いた場合とほぼ同様の傾向
を示し、縦方向バイアス磁界の制御は再生出力の増加に
有効であると思われる。従来のCoPt膜もしくはCoCr
Pt系を用いた場合は全体にバラツキが大きかったが、
交換スプリング磁石膜を用いた場合はバラツキがかなり
小さくなり、同一ヘッドに対する出力バラツキは2%弱
に収まった。出力が減少しバルクハウゼンノイズ出現確
率が急増するBr・tの下限値は7.5Tnmと従来のヘッド
より低く、従来のヘッドよりBr・tを小さく設計して大
きな出力信号を得ることが可能と思われる。
As a result, as shown in FIG. 3, the MR reproduction output increased as the product of the residual magnetic flux density Br and the film thickness t of the permanent magnet film decreased. The reproduction output at each Br · t is the conventional CoPt.
It shows almost the same tendency as when using the film or the CoCrPt system, and it seems that the control of the longitudinal bias magnetic field is effective for increasing the reproduction output. Conventional CoPt film or CoCr
When the Pt system was used, there were large variations, but
When using the exchange spring magnet film, the variation was considerably small, and the output variation for the same head was less than 2%. The lower limit of Br · t at which the output decreases and the Barkhausen noise appearance probability increases sharply is 7.5 Tnm, which is lower than that of the conventional head, and it is possible to obtain a large output signal by designing Br · t smaller than that of the conventional head. Be done.

【0033】このように、本実施例では従来のヘッドに
比べ縦方向バイアス磁界を弱く設計して、出力振幅が大
きい信号を再現性良く得られた。これは永久磁石膜に用
いた交換スプリング磁石膜の保磁力が1200Oe以上と従
来のヘッドの800Oeより高く、記録再生過程時に永久磁
石膜に漏洩する磁界(媒体からの磁界、記録部からの記
録磁界、媒体磁界または横バイアス磁界によるMRまた
はSAL膜の磁化状態の変動により発生する磁界等)に
起因する永久磁石膜の磁化状態の変動を十分抑制できた
ためと考えられる。
As described above, in this embodiment, the longitudinal bias magnetic field is designed to be weaker than that of the conventional head, and a signal having a large output amplitude can be obtained with good reproducibility. This is because the exchange spring magnet film used for the permanent magnet film has a coercive force of 1200 Oe or more, which is higher than 800 Oe of the conventional head, and the magnetic field leaking to the permanent magnet film during the recording / reproducing process (the magnetic field from the medium, the recording magnetic field from the recording unit). It is considered that the change of the magnetization state of the permanent magnet film due to the magnetic field generated by the change of the magnetization state of the MR or SAL film due to the medium magnetic field or the lateral bias magnetic field was sufficiently suppressed.

【0034】(実施例2)実施例1と同様の構造のMR
ヘッドを作製し、MRヘッドの再生特性とバルクハウゼ
ンノイズを評価した。ただし、より高密度化対応のヘッ
ドとして、トラック幅1.5μm,MR膜の高さ1μm,ギ
ャップ長0.2μm、磁石膜の膜厚は300Aのヘッドを試作
した。また、記録時の漏洩磁界が比較的大きい場合での
バルクハウゼンノイズ抑制条件を評価するため、誘導型
ヘッドの励磁を0.4ATとした。永久磁石膜としては交
換スプリング磁石膜(硬磁性相Nd12Dy2Fe60Co
188、軟磁性相NiFe)を用い、層厚比を変化させる
ことにより残留磁束密度と膜厚の比を5〜40T・nmま
で制御した。下地膜厚を制御することにより、Hcは150
0Oe以上とした。各層厚に対するサンプルヘッドは20セ
ット作成した。
(Example 2) MR having the same structure as that of Example 1
A head was manufactured and the reproduction characteristics and Barkhausen noise of the MR head were evaluated. However, a head with a track width of 1.5 μm, an MR film height of 1 μm, a gap length of 0.2 μm, and a magnet film thickness of 300 A was prototyped as a head for higher density. Further, in order to evaluate the Barkhausen noise suppression condition when the leakage magnetic field at the time of recording is relatively large, the excitation of the induction type head was set to 0.4 AT. As a permanent magnet film, an exchange spring magnet film (hard magnetic phase Nd 12 Dy 2 Fe 60 Co
18 B 8 , soft magnetic phase NiFe) was used, and the ratio of the residual magnetic flux density to the film thickness was controlled to 5 to 40 T · nm by changing the layer thickness ratio. Hc is set to 150 by controlling the underlayer film thickness.
It was set to 0 Oe or more. 20 sets of sample heads were prepared for each layer thickness.

【0035】この結果、従来磁石膜を用いた場合は図4
に示すように、図3と比べ出力が減少しバルクハウゼン
ノイズ出現確率が増加してしまう。これは、従来磁石膜
では膜厚30nmで300Oe程度の保磁力しか得られず、MR
膜及びSAL膜の多磁区化を防止するのに十分な縦方向
バイアス磁界が得られなかったためと、推察される。一
方、交換スプリング磁石膜を用いた場合は、Br・t≧10
Tnmではバルクハウゼンノイズがほぼ抑制でき、 比較
的低密度な図3と遜色ない大きさの出力振幅が再現性良
く得られた。従って、高線記録密度化及び狭トラック密
度化に際して、交換スプリング磁石膜は従来磁石膜より
有利である。
As a result, as shown in FIG.
As shown in FIG. 3, the output decreases and the Barkhausen noise appearance probability increases as compared with FIG. This is because the conventional magnet film can only obtain a coercive force of about 300 Oe at a film thickness of 30 nm.
It is presumed that the longitudinal bias magnetic field sufficient to prevent the multi-domain structure of the film and the SAL film was not obtained. On the other hand, when the exchange spring magnet film is used, Br · t ≧ 10
At Tnm, Barkhausen noise can be almost suppressed, and an output amplitude comparable to the comparatively low density in FIG. 3 can be obtained with good reproducibility. Therefore, the exchange spring magnet film is more advantageous than the conventional magnet film in achieving high linear recording density and narrow track density.

【0036】[0036]

【発明の効果】本発明によれば、SALバイアス方式M
Rヘッドにおいて最適化した縦方向バイアスを印加する
ことにより、磁気抵抗効果膜の磁化状態を比較的弱い縦
方向バイアス磁界で安定に制御し、出力振幅が大きい信
号を再現性良く得られた。
According to the present invention, the SAL bias method M
By applying an optimized longitudinal bias in the R head, the magnetization state of the magnetoresistive film was stably controlled by a comparatively weak longitudinal bias magnetic field, and a signal with a large output amplitude was obtained with good reproducibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による実施例であるMRヘッドの断面
図。
FIG. 1 is a sectional view of an MR head that is an embodiment according to the present invention.

【図2】本発明による他の実施例であるMRヘッド。FIG. 2 is an MR head according to another embodiment of the present invention.

【図3】本発明による再生出力振幅及びバルクハウゼン
ノイズの出現確率特性。
FIG. 3 shows reproduction output amplitude and Barkhausen noise appearance probability characteristics according to the present invention.

【図4】本発明の他の実施例の諸特性。FIG. 4 is characteristics of another embodiment of the present invention.

【図5】永久磁石膜及び交換スプリング磁石膜の保磁力
の膜厚依存性。
FIG. 5 shows the film thickness dependence of the coercive force of the permanent magnet film and the exchange spring magnet film.

【図6】永久磁石膜と残留磁束密度Brの積と保持力の
関係。
FIG. 6 shows the relationship between the product of the permanent magnet film and the residual magnetic flux density Br and the coercive force.

【図7】従来の録再分離型ヘッドの構造図を示す。FIG. 7 is a structural diagram of a conventional recording / reproducing separation type head.

【符号の説明】[Explanation of symbols]

1 下部磁極兼上部シールド膜、2 下部シールド膜、
3 電極、4 保護層 5 硬磁性相、6 軟磁性相、7 交換スプリング磁石
膜、8 絶縁性トラック幅規制層、9 SAL膜、10
非磁性膜、11 MR膜 12 絶縁膜、13 薄膜
誘導型記録ヘッド、14 磁気抵抗効果型ヘッド 1
5 上部磁極、16 コイル、17 MR素子の素子高
さ、18 基板。
1 lower magnetic pole and upper shield film, 2 lower shield film,
3 electrodes, 4 protective layer 5 hard magnetic phase, 6 soft magnetic phase, 7 exchange spring magnet film, 8 insulating track width regulation layer, 9 SAL film, 10
Non-magnetic film, 11 MR film, 12 insulating film, 13 thin film inductive recording head, 14 magnetoresistive head 1
5 top pole, 16 coils, 17 element height of MR element, 18 substrate.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基板上にMR膜(磁気抵抗効果膜),非
磁性膜,SAL膜(軟磁性膜)及び絶縁膜を順に形成し
た積層体が配置され、前記積層体に隣接して永久磁石膜
により縦方向バイアス磁界が印加される磁気抵抗効果型
ヘッド(MRヘッド)において、前記永久磁石膜は交換
スプリング磁石膜であることを特徴とする磁気抵抗効果
型磁気ヘッド。
1. A laminated body in which an MR film (magnetoresistive film), a nonmagnetic film, a SAL film (soft magnetic film) and an insulating film are sequentially formed on a substrate, and the permanent magnet is adjacent to the laminated body. A magnetoresistive head (MR head) to which a longitudinal bias magnetic field is applied by a film, wherein the permanent magnet film is an exchange spring magnet film.
【請求項2】 請求項1に記載の磁気抵抗効果型ヘッド
において、前記交換スプリング磁石膜は保磁力1000Oe
以上であることを特徴とする磁気抵抗効果型磁気ヘッ
ド。
2. The magnetoresistive head according to claim 1, wherein the exchange spring magnet film has a coercive force of 1000 Oe.
The above is a magnetoresistive effect magnetic head.
【請求項3】 請求項1および2のいずれか1に記載の
磁気抵抗効果型ヘッドにおいて、前記交換スプリング磁
石膜はS層(磁化の大きさが0.9T以上である軟磁性
相)及びH層(5〜20at%のR(RはYを含む希土類元
素の内少なくとも1種)、0〜25at%のX(B、Cまたは
N)、残部遷移金属(FeまたはCoまたはNiあるいは
これらの合金)及び不可避的な不純物を含む硬磁性層)
からなり、 それを1層または2層以上積層した希土類磁
石系交換スプリング磁石膜であることを特徴とする磁気
抵抗効果型磁気ヘッド。
3. The magnetoresistive head according to claim 1, wherein the exchange spring magnet film is an S layer (a soft magnetic phase having a magnetization magnitude of 0.9 T or more) and an H layer. (5 to 20 at% R (R is at least one of rare earth elements including Y), 0 to 25 at% X (B, C or N), balance transition metal (Fe or Co or Ni or alloys thereof)) And a hard magnetic layer containing inevitable impurities)
A magnetoresistive effect magnetic head comprising: a rare earth magnet type exchange spring magnet film, which is composed of one layer or two or more layers.
【請求項4】 請求項1に記載の磁気抵抗効果型ヘッド
において、前記永久磁石膜の絶縁間と接する面の少なく
とも一方に3nm以上50nm以下の膜厚の保護層(Cr,T
i,W,Mo,Cu,Ta,FeMn,NiMn,NiO,Fe
O,CoO,Co−Pt,Fe−Ptのうち1種または2種以
上からなる層)が形成されている希土類磁石系交換スプ
リング磁石膜であることを特徴とする磁気抵抗効果型磁
気ヘッド。
4. The magnetoresistive head according to claim 1, wherein a protective layer (Cr, T) having a film thickness of 3 nm or more and 50 nm or less is provided on at least one of the surfaces of the permanent magnet film which are in contact with the insulation.
i, W, Mo, Cu, Ta, FeMn, NiMn, NiO, Fe
A magnetoresistive effect magnetic head, which is a rare earth magnet type exchange spring magnet film on which one or more layers of O, CoO, Co-Pt, and Fe-Pt are formed.
【請求項5】 請求項1に記載の磁気抵抗効果型ヘッド
において、前記交換スプリング磁石膜はその平均結晶粒
径が各数〜数十nmの軟磁性相(磁化の大きさが0.9T以
上である軟磁性相)及び硬磁性相(5〜20at%のR(R
はYを含む希土類元素の内少なくとも1種)、0〜25at%
のX(B、CまたはN)、残部遷移金属(Fe、Co、N
iあるいはこれらの合金)及び不可避的な不純物を含む
硬磁性相)の複合組織を有した希土類磁石系交換スプリ
ング磁石膜であることを特徴とする磁気抵抗効果型磁気
ヘッド。
5. The magnetoresistive head according to claim 1, wherein the exchange spring magnet film has a soft magnetic phase having an average crystal grain size of several to several tens nm (magnetization magnitude of 0.9 T or more). Certain soft magnetic phase) and hard magnetic phase (5 to 20 at% R (R
Is at least one of rare earth elements including Y), 0 to 25 at%
X (B, C or N), the balance transition metal (Fe, Co, N)
A magnetoresistive effect magnetic head comprising a rare earth magnet type exchange spring magnet film having a composite structure of i or alloys thereof and a hard magnetic phase containing inevitable impurities).
【請求項6】 請求項5に記載の磁気抵抗効果型ヘッド
において、前記交換スプリング磁石膜に含まれる硬磁性
相の平均結晶粒径が5nm以上30nm以下であることを特徴
とする磁気抵抗効果型磁気ヘッド。
6. The magnetoresistive head according to claim 5, wherein an average crystal grain size of the hard magnetic phase contained in the exchange spring magnet film is 5 nm or more and 30 nm or less. Magnetic head.
JP8086212A 1996-04-09 1996-04-09 Magnetoresistance effect head Pending JPH09282612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8086212A JPH09282612A (en) 1996-04-09 1996-04-09 Magnetoresistance effect head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8086212A JPH09282612A (en) 1996-04-09 1996-04-09 Magnetoresistance effect head

Publications (1)

Publication Number Publication Date
JPH09282612A true JPH09282612A (en) 1997-10-31

Family

ID=13880481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8086212A Pending JPH09282612A (en) 1996-04-09 1996-04-09 Magnetoresistance effect head

Country Status (1)

Country Link
JP (1) JPH09282612A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999008265A1 (en) * 1997-08-07 1999-02-18 Tdk Corporation Spin bulb magnetoresistant element and method for designing it
US6144534A (en) * 1997-03-18 2000-11-07 Seagate Technology Llc Laminated hard magnet in MR sensor
JP2005534198A (en) * 2002-07-26 2005-11-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Magnetoresistive layer system and sensor element comprising the layer system
US20120250189A1 (en) * 2011-03-29 2012-10-04 Tdk Corporation Magnetic head including side shield layers on both sides of a mr element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144534A (en) * 1997-03-18 2000-11-07 Seagate Technology Llc Laminated hard magnet in MR sensor
US6351357B1 (en) 1997-03-18 2002-02-26 Seagate Technology Llc Laminated hard magnet in MR sensor
WO1999008265A1 (en) * 1997-08-07 1999-02-18 Tdk Corporation Spin bulb magnetoresistant element and method for designing it
US6144524A (en) * 1997-08-07 2000-11-07 Tdk Corporation Spin valve magnetoresistance device and method of designing the same
JP2005534198A (en) * 2002-07-26 2005-11-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Magnetoresistive layer system and sensor element comprising the layer system
AU2003250761B2 (en) * 2002-07-26 2008-07-24 Robert Bosch Gmbh Magnetoresistive layer system and sensor element comprising said layer system
US7498805B2 (en) 2002-07-26 2009-03-03 Robert Bosch Gmbh Magnetoresistive layer system and sensor element having this layer system
US20120250189A1 (en) * 2011-03-29 2012-10-04 Tdk Corporation Magnetic head including side shield layers on both sides of a mr element

Similar Documents

Publication Publication Date Title
KR100269820B1 (en) Magneto-resistance effect head
JP3188212B2 (en) Thin film magnetic head
KR960002612B1 (en) Magnetic head
JPH0997409A (en) Magnetoresistive magnetic head and magnetic recording and reproducing device
JP3350512B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing device
JP2004348777A (en) Vertical magnetic recording medium and magnetic recording device
JPH10269531A (en) Magneto-resistive playback head
JP2000113418A (en) Magneto-resistive head based on spin valve effect and magnetic recording and reproducing device using the same
US5673162A (en) Magnetoresistive head with soft adjacent layer comprising amorphous magnetic material
JPH0845029A (en) Thin-film magnetic head
US6765769B2 (en) Magnetoresistive-effect thin film, magnetoresistive-effect element, and magnetoresistive-effect magnetic head
JP2006179145A (en) Magneto-resistance effect head and manufacturing method therefor, and recording-reproduction separation type magnetic head
JP2000215421A (en) Spin valve thin film magnetic element, thin film magnetic head, and production of spin valve thin film magnetic element
JPH05135332A (en) Magneto-resistance effect playback head and magnetic recording device using this head
JP2006018876A (en) Perpendicular magnetic recording apparatus
JPH09282612A (en) Magnetoresistance effect head
JP3217625B2 (en) Magnetoresistive head
JP3575672B2 (en) Magnetoresistance effect film and magnetoresistance effect element
JP2001195706A (en) Recording head, method for manufacturing recording head and composite head as well as magnetic recording and reproducing device
JP2001110008A (en) Magnetic head and its production, and magnetic recording and reproducing device
JPH09274712A (en) Magnetic head
JP2002032904A (en) Magnetic head and magnetic information recording/ reproducing device using the same
JP3561026B2 (en) Magnetoresistive head
JPH10320740A (en) Magnetic storage device and intrasurface magnetic recording medium
JP4490720B2 (en) Soft magnetic thin film, manufacturing method thereof, and magnetic head