JPH09281329A - Polarizer and its production - Google Patents

Polarizer and its production

Info

Publication number
JPH09281329A
JPH09281329A JP11971196A JP11971196A JPH09281329A JP H09281329 A JPH09281329 A JP H09281329A JP 11971196 A JP11971196 A JP 11971196A JP 11971196 A JP11971196 A JP 11971196A JP H09281329 A JPH09281329 A JP H09281329A
Authority
JP
Japan
Prior art keywords
polarizer
particle dispersion
dispersion liquid
glass substrate
ultrafine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11971196A
Other languages
Japanese (ja)
Inventor
Tadao Katsuragawa
忠雄 桂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP11971196A priority Critical patent/JPH09281329A/en
Publication of JPH09281329A publication Critical patent/JPH09281329A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polarizer which is low in insertion loss, facilitates the formation to a larger area and is less deteriorated in polarization characteristic and a process for producing the same. SOLUTION: A superfine particle dispersion prepd. by dispersing particles of metals or semiconductor of <=100Å grain size into an org. solvent is applied in the surface of a glass substrate 2 by dropping the dispersion to plural rows linearly at equal intervals and is then fired, by which the plural wire-shape bodies consisting of the metals or semiconductors are formed on the surface of the glass substrate 2. The arbitrary adjustment of the width of the wire-shape bodies formed on the surface of the glass substrate 2 is made possible by changing the width of the coating liquid and, therefore, the extremely fine wire-shaped bodies of <=500Å are easily formed linearly over the wide area. The polarizer of the large area which is low in the insertion loss is thus easily produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、300nm以上の
波長の光を直線偏光とする偏光子とその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizer for converting light having a wavelength of 300 nm or more into linearly polarized light and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来より、2.5μmより長波長の光に
対する偏光子として、臭化銀やポリエチレンなどの透明
の基板の表面に微少な間隔で金やアルミなどの金属細線
(ワイヤ)を配置してなるワイヤグリッド偏光子が知ら
れている。中赤外用(2.5μmから25μm)のもの
としては臭化銀基板に0.3μmの間隔で金属細線を設
けたものが、遠赤外用(16〜1000μm)としては
ポリエチレン板の表面に0.7μmの間隔でアルミニウ
ム細線を設けたものがある。偏光度は97%程度といわ
れる。また、0.8μm以上の長波長の光に対する偏光
子として、金属膜と誘電体膜とを交互に積層してなる積
層型偏光子が知られている。この偏光子は、厚さ数百n
mの誘電体基板上に真空蒸着法などの薄膜技術を用いて
金属膜を生成したものを複数枚重ねた後、図3に示すよ
うに切断してなり、現在0.9nm程度の大きさものが
実用化されている。積層型偏光子は小型であり、かつ高
消光比60dB以上、低挿入損失0.1dB以下の性能
が期待でき、偏光比率が大きいという特徴がある。ま
た、別の偏光子として、一方向に延伸した高分子のシー
トにヨードを含浸させてなるフィルム型偏光子が知られ
ている。フィルム型偏光子は、大面積化が容易であり、
液層表示装置の偏光子として一般に使用されている。
2. Description of the Related Art Conventionally, metal thin wires (wires) such as gold and aluminum are arranged at minute intervals on the surface of a transparent substrate such as silver bromide or polyethylene as a polarizer for light with a wavelength longer than 2.5 μm. A wire grid polarizer made of is known. For the medium infrared (2.5 μm to 25 μm), a silver bromide substrate provided with metal fine lines at intervals of 0.3 μm is used for the far infrared (16 to 1000 μm). There is one in which thin aluminum wires are provided at intervals of 7 μm. The polarization degree is said to be about 97%. Further, as a polarizer for light having a long wavelength of 0.8 μm or more, a laminated polarizer in which a metal film and a dielectric film are alternately laminated is known. This polarizer has a thickness of several hundred n
A metal film is formed on the dielectric substrate of m by using a thin film technique such as a vacuum deposition method, and a plurality of metal films are stacked and then cut as shown in FIG. Has been put to practical use. The laminated polarizer is characterized in that it is small in size and can be expected to have a high extinction ratio of 60 dB or more and a low insertion loss of 0.1 dB or less and a large polarization ratio. Further, as another polarizer, a film-type polarizer obtained by impregnating a polymer sheet stretched in one direction with iodine is known. The film type polarizer is easy to increase in area,
It is generally used as a polarizer of a liquid layer display device.

【0003】[0003]

【発明が解決しようとする課題】上述した従来の偏光子
にはそれぞれ次のような欠点がある。ワイヤグリッド型
偏光子は、金属細線が円柱状であるため支持体であるポ
リエチレン基板などとの接着性が悪く、金属細線が基板
から剥がれて変形しやすいという欠点がある。金属細線
が変形すると偏光子としての機能が損なわれることにな
る。また、0.1μm以下の径金属細線は作りにくく、
また切れやすいため、ワイヤグリッド型偏光子は大面積
化することが困難である。また、積層型偏光子は、上述
したように高消光比、低挿入損失であり性能的には優れ
ているものの、誘電体膜と金属膜とを積層してなる構造
上、大面積化は極めて困難であり、小型光学要素として
の用途しか望めない。また、フィルム型偏光子は、シー
ト状の大きなものを作成することができ、大面積化には
適しているが、高分子を一方向に延伸することにより生
じる複屈折と複吸収ともいうべき偏光による吸収損失の
差を利用する吸収型の偏光子であるため光の透過率が悪
く、さらに高分子の不整やそれによる散乱などが性能に
悪影響を及ぼすため、最高でも50%程度の透過率しか
望めない。本発明の目的は、上述した従来の技術の課題
を解消し、挿入損失が小さく、大面積化が容易で、偏光
特性の劣化が少ない偏光子とその製造方法を提供するこ
とにある。
The above-mentioned conventional polarizers have the following drawbacks. The wire grid type polarizer has a drawback that the metal thin wire has a columnar shape and thus has poor adhesion to a polyethylene substrate, which is a support, and the metal thin wire is easily peeled off from the substrate and deformed. If the thin metal wire is deformed, the function as a polarizer will be impaired. Also, it is difficult to make fine metal wires with a diameter of 0.1 μm or less,
Moreover, since it is easy to cut, it is difficult to increase the area of the wire grid polarizer. In addition, the laminated polarizer has a high extinction ratio, a low insertion loss as described above, and is excellent in performance, but has a structure in which a dielectric film and a metal film are laminated, and thus it is extremely large in area. It is difficult and can only be used as a small optical element. In addition, a film-type polarizer can be made into a large sheet, and is suitable for increasing the area. However, it is also known as birefringence and biabsorption caused by stretching a polymer in one direction. Since it is an absorption-type polarizer that uses the difference in absorption loss due to, the transmittance of light is poor, and since irregularities in the polymer and scattering due to it adversely affect the performance, the transmittance is only about 50% at maximum. I can't hope. An object of the present invention is to solve the above-mentioned problems of the conventional technique, to provide a polarizer having a small insertion loss, a large area, and less deterioration in polarization characteristics, and a manufacturing method thereof.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る偏光子の製造方法は、請求項1に記載
するように、粒径が100Å以下の金属又は半導体の粒
子を有機溶剤中に分散させてなる超微粒子分散液を可視
光に対して透明な支持板の表面に直線状に且つ互いに等
間隔に複数列滴下塗布した後、焼成することにより、当
該支持板の表面部に金属又は半導体からなる複数の線状
体を各々直線状にかつ互いに等間隔に形成するようにし
たことを特徴とする。上記の製造方法によれば、超微粒
子分散液を支持板の表面に滴下塗布する際の塗布液の幅
を変えることにより、支持板の表面部に形成される線状
体の幅を任意に調整できるので、例えば500Å以下の
極細の線状体を広い面積に亘って直線状に容易に形成で
き、挿入損失が小さく、大面積の偏光子を容易に製造す
ることができる。この製造方法により支持板の表面部に
形成される線状体は焼成処理によって支持板と良好に密
着するので、線状体が簡単に支持板から剥がれることは
なく、従来のグリッド型偏光子のように線状体(金属細
線)が変形して機能が損なわれるということがないので
常に良好な偏光特性を発揮する。
In order to solve the above-mentioned problems, the method for producing a polarizer according to the present invention is characterized in that, as described in claim 1, organic particles of metal or semiconductor having a particle size of 100 Å or less are used. Ultrafine particle dispersion liquid dispersed in a solvent is applied to the surface of a support plate transparent to visible light in a linear manner in a plurality of rows at equal intervals, followed by firing, thereby baking the surface portion of the support plate. In addition, a plurality of linear bodies made of metal or semiconductor are formed linearly and at equal intervals. According to the above-mentioned manufacturing method, the width of the linear body formed on the surface portion of the support plate is arbitrarily adjusted by changing the width of the coating liquid when the ultrafine particle dispersion liquid is applied dropwise to the surface of the support plate. Therefore, it is possible to easily form an extremely fine linear body of, for example, 500 Å or less in a linear shape over a wide area, reduce the insertion loss, and easily manufacture a large-area polarizer. Since the linear body formed on the surface portion of the support plate by this manufacturing method is well adhered to the support plate by the firing treatment, the linear body is not easily peeled from the support plate, and the conventional grid-type polarizer As described above, the linear body (thin metal wire) is not deformed and its function is not impaired, so that good polarization characteristics are always exhibited.

【0005】また、本発明に係る偏光子は、請求項3に
記載するように、可視光に対して透明な支持体の表面部
に金属又は半導体からなる複数の線状体を各々直線状に
かつ互いに等間隔に形成してなる偏光子を前提とし、前
記線状体は、前記支持体の表面に粒径が100Å以下の
金属又は半導体の粒子を有機溶剤中に分散させてなる超
微粒子分散液を前記支持板の表面に滴下塗布した後、焼
成したものであることを特徴とする。上記偏光子は、可
視光に対して透明な支持体の表面部に金属又は半導体か
らなる複数の線状体を各々直線状にかつ互いに等間隔に
形成してなるいわゆるグリッド型偏光子の構造を持ちな
がら、その線状体として超微粒子分散液を支持板の表面
に滴下塗布した後、焼成してなるものを採用したことに
より、線状体と支持板との密着性が良く線状体が簡単に
支持板から剥がれることがないので、大面積化に容易に
対応できる。
Further, in the polarizer according to the present invention, as described in claim 3, a plurality of linear bodies made of metal or semiconductor are linearly formed on the surface of the support which is transparent to visible light. In addition, assuming that the linear bodies are formed at equal intervals, the linear body is an ultrafine particle dispersion obtained by dispersing metal or semiconductor particles having a particle size of 100Å or less on the surface of the support in an organic solvent. It is characterized in that the liquid is applied dropwise onto the surface of the support plate and then baked. The above-mentioned polarizer has a so-called grid-type polarizer structure in which a plurality of linear bodies made of metal or semiconductor are formed linearly and at equal intervals on the surface of a support transparent to visible light. While holding the linear body, by adopting the one obtained by dropping and coating the ultrafine particle dispersion liquid on the surface of the support plate and then firing it, good adhesion between the linear body and the support plate can be obtained. Since it does not easily come off from the support plate, it is possible to easily cope with a large area.

【0006】上記本発明に係る偏光子及びその製造方法
において、前記粒径は50Åであることが最も好まし
い。また、前記線状体の幅は例えば請求項2又は4に示
すように500Å以下とし且つそのばらつきが20%以
内であることが好ましい。また、前記線状体同士の間隔
は0.5〜2.0μmとし且つそのばらつきが20%以
内であることが好ましい。前記線状体の幅が500Åよ
り大きくなると可視光領域でお吸収が大きくなる。ま
た、前記線状体同士の間隔が2.0μmよりも大きくな
ると可視光領域での偏光度が小さくなり、0.5μmよ
りも小さくなると吸収が大きくなりすぎてしまう。
In the above-mentioned polarizer and the method for producing the same according to the present invention, it is most preferable that the particle size is 50Å. Further, it is preferable that the width of the linear body is, for example, 500 Å or less as shown in claim 2 and its variation is within 20%. Further, it is preferable that the interval between the linear bodies is 0.5 to 2.0 μm and the variation is within 20%. When the width of the linear body is larger than 500 Å, the absorption becomes large in the visible light region. If the distance between the linear bodies is larger than 2.0 μm, the degree of polarization in the visible light region is small, and if it is smaller than 0.5 μm, the absorption is too large.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1(a)は本発明の製造
方法により偏光子を製造する際の一工程である超微粒子
分散液塗布工程の実施の形態の一例を示す概略正面図、
図1(b)は概略側断面図、図2は同じく超微粒子分散
液塗布工程を示す概略平面図である。図1において、1
は超微粒子分散液を支持板の表面に滴下するための分散
液滴下装置であり、この分散液滴下装置1は、超微粒子
分散液4の入った容器5と、超微粒子分散液4を支持板
であるガラス基板2の表面2aに滴下するためのステン
レス製の複数の針6、6、・・とを備えている。分散液
滴下装置1は、図示しない支持部材を介して固定部に固
定されている。これに対しガラス基板2は、基板載置部
3上に水平に載置された状態で、図示しない移動手段に
よって図1(b)中の矢印Aの向きに移動されるように
なっている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A is a schematic front view showing an example of an embodiment of an ultrafine particle dispersion liquid coating step, which is one step in manufacturing a polarizer by the manufacturing method of the present invention,
FIG. 1 (b) is a schematic side sectional view, and FIG. 2 is a schematic plan view showing the ultrafine particle dispersion liquid coating step. In FIG. 1, 1
Is a dispersion liquid dropping device for dropping the ultrafine particle dispersion liquid onto the surface of the support plate. This dispersion liquid dropping device 1 includes a container 5 containing the ultrafine particle dispersion liquid 4 and the ultrafine particle dispersion liquid 4. , And a plurality of stainless steel needles 6 for dropping onto the surface 2a of the glass substrate 2. The dispersed droplet lowering device 1 is fixed to a fixing portion via a supporting member (not shown). On the other hand, the glass substrate 2 is horizontally mounted on the substrate mounting portion 3 and is moved in the direction of arrow A in FIG. 1B by a moving unit (not shown).

【0008】各針6、6、・・の基端部6b、6b、・
・は、容器5の上部開口部8の縁部8aに固定されてい
る。各針6、6、・・は、容器5の底部にガラス基板2
の移動方向と直交する方向に並設された貫通孔7、7、
・・を通して容器5内の下方に突出し、針先6a、6
a、・・をガラス基板2の上面2a近傍に位置させて保
持されている。また、各針6、6、・・は、図1(b)
示すように、針先6a、6a、・・側をガラス基板2の
移動する向きに約30度傾けるようにして、且つ図2に
示すように、針先6a、6a、・・の位置をガラス基板
2の移動方向に5mmづつずらした状態で保持されてい
る。なお、各針6、6、・・の長さは約2cmである。
超微粒子分散液4に分散される超微粒子の材料には、A
u、Al、Cu、Fe、Ni、Co等の金属又はこれら
の合金、或いはGe、Si、Se、Te等の半導体が用
いられる。この種の超微粒子の製法としては、ゾルゲル
法等の湿式法やアーク放電法やガス中蒸着法があるが、
この発明において使用する超微粒子の製法としてはガス
中蒸着法が最も適している。ガス中蒸着法では、るつぼ
内に入れた金属又は半導体を高周波誘導加熱により加熱
し、Heガス中で蒸発させ、Heガス分子と衝突させて
冷却し凝縮させて粒子を形成しつつ、孤立状態にある粒
子に有機溶剤の蒸気を供給することにより、粒子表面を
有機溶剤で覆って粒子の2次凝集を阻止しつつ超微粒子
を形成する。有機溶剤としてはαーテルピネオールが使
用される。粒子の粒径はHeガスの圧力と蒸発源の温度
とにより制御される。
.. of the needles 6, 6, ..
Is fixed to the edge 8a of the upper opening 8 of the container 5. The needles 6, 6, ... Are attached to the glass substrate 2 at the bottom of the container 5.
Through holes 7, 7 arranged side by side in a direction orthogonal to the moving direction of
... Protruding downward through container 5 through needle points 6a, 6
are positioned and held near the upper surface 2a of the glass substrate 2. Further, each of the needles 6, 6, ... Is shown in FIG.
As shown in Fig. 2, the needle tips 6a, 6a, ... are tilted in the direction in which the glass substrate 2 is moved, and as shown in Fig. 2, the needle tips 6a, 6a ,. It is held in a state of being shifted by 5 mm in the moving direction of the substrate 2. The length of each needle 6, 6, ... Is about 2 cm.
The material of the ultrafine particles dispersed in the ultrafine particle dispersion liquid 4 is A
Metals such as u, Al, Cu, Fe, Ni and Co or alloys thereof, or semiconductors such as Ge, Si, Se and Te are used. As a method for producing ultrafine particles of this type, there are a wet method such as a sol-gel method, an arc discharge method and a vapor deposition method in a gas,
The vapor deposition method in gas is most suitable as the method for producing the ultrafine particles used in the present invention. In the vapor deposition method in a gas, a metal or a semiconductor placed in a crucible is heated by high frequency induction heating, evaporated in He gas, collided with He gas molecules to cool and condense to form particles, and become an isolated state. By supplying the vapor of the organic solvent to a certain particle, the surface of the particle is covered with the organic solvent to prevent the secondary aggregation of the particle and form ultrafine particles. Α-Terpineol is used as the organic solvent. The particle size of the particles is controlled by the pressure of He gas and the temperature of the evaporation source.

【0009】上記分散液滴下装置1を使用して超微粒子
分散液4の塗布処理を行うに際し、分散液滴下装置1の
針6、6、・・は十分研磨し付着物を除去しておく。ま
た、分散液滴下装置1の容器5に入れる超微粒子分散液
4は、各針6、6、・・を伝って一定の流量で滴下でき
る所定の粘性になるよう溶媒によって所定の濃度に希釈
しておく。溶媒には、トルエン等を用いる。そして、分
散液滴下装置1の容器5に希釈した超微粒子分散液4を
適量入れ蓋9を閉める。上記準備ができたら、ガラス基
板2を基板載置部3上に載置する。このとき基板載置部
3は初期位置に移動させておき、ガラス基板2の塗布開
始部が分散液滴下装置1の針先6a、6a、・・の下方
に位置するようにガラス基板2をセットする。
When performing the coating process of the ultrafine particle dispersion liquid 4 using the above-mentioned dispersion liquid drop device 1, the needles 6, 6, ... Of the dispersion liquid drop device 1 are sufficiently polished to remove the deposits. Further, the ultrafine particle dispersion liquid 4 to be put in the container 5 of the dispersion liquid lowering device 1 is diluted with a solvent to a predetermined concentration so as to have a predetermined viscosity which can be dropped at a constant flow rate through each of the needles 6, 6 ,. Keep it. Toluene or the like is used as the solvent. Then, an appropriate amount of the diluted ultrafine particle dispersion liquid 4 is put into the container 5 of the apparatus 1 for lowering dispersed droplets and the lid 9 is closed. When the above preparation is completed, the glass substrate 2 is placed on the substrate platform 3. At this time, the substrate mounting portion 3 is moved to the initial position, and the glass substrate 2 is set so that the coating start portion of the glass substrate 2 is located below the needle tips 6a, 6a, ... To do.

【0010】その後、図示しない移動手段を作動させて
基板載置部3を矢印Aの向きに移動開始させるととも
に、分散液滴下装置1により超微粒子分散液4の滴下を
開始する。基板載置部3の移動速度は一定とする。これ
により矢印Aの向きに一定速度で移動するガラス基板2
上に分散液滴下装置1の各針6、6、・・を伝って超微
粒子分散液4が滴下され、図2に示すように、ガラス基
板2の表面2aに直線状に且つ互いに等間隔に複数列塗
布される。超微粒子分散液4の塗布幅は、ガラス基板2
の移動速度と、超微粒子分散液4を滴下させる流量とを
制御することにより調節できる。上記のようにしてガラ
ス基板2の表面2aに超微粒子分散液4を滴下塗布した
後、ガラス基板2を電気炉内に移して所定の温度で所定
時間加熱することにより、ガラス基板2の表面2aに塗
布した超微粒子分散液4を乾燥、焼成させる。その結
果、超微粒子分散液4中の金属又は半導体の粒子が焼成
により連続化し、ガラス基板2の表面2aに金属又は半
導体からなる複数の線状体が各々直線状にかつ互いに等
間隔に形成される。
After that, the moving means (not shown) is actuated to start moving the substrate mounting portion 3 in the direction of the arrow A, and the dispersion liquid dropping device 1 starts dropping the ultrafine particle dispersion liquid 4. The moving speed of the substrate platform 3 is constant. As a result, the glass substrate 2 moving in the direction of arrow A at a constant speed
The ultrafine particle dispersion liquid 4 is dripped on the needles 6, 6, ... Of the dispersion droplet lowering device 1, and linearly and equidistantly on the surface 2a of the glass substrate 2 as shown in FIG. It is applied in multiple rows. The coating width of the ultrafine particle dispersion liquid 4 is the glass substrate 2
Can be adjusted by controlling the moving speed of the liquid and the flow rate at which the ultrafine particle dispersion liquid 4 is dropped. After the ultrafine particle dispersion liquid 4 is applied dropwise to the surface 2a of the glass substrate 2 as described above, the glass substrate 2 is transferred into an electric furnace and heated at a predetermined temperature for a predetermined time, whereby the surface 2a of the glass substrate 2 is heated. The ultrafine particle dispersion liquid 4 applied to the above is dried and baked. As a result, the particles of the metal or semiconductor in the ultrafine particle dispersion liquid 4 are made continuous by firing, and a plurality of linear bodies made of the metal or semiconductor are formed linearly at equal intervals on the surface 2a of the glass substrate 2. It

【0011】上記製造方法によれば、分散液滴下装置1
によって超微粒子分散液4をガラス板2の表面2aに滴
下塗布する際の塗布幅を変えることにより、ガラス板2
の表面2a部に形成される線状体の幅を任意に調整でき
るので、例えば500Å以下の極細の線状体を広い面積
に亘って直線状に容易に形成でき、挿入損失が小さく、
大面積の偏光子を容易に製造することができる。この製
造方法によりガラス板2の表面2a部に形成される線状
体は焼成処理によってガラス板2と良好に密着するた
め、線状体が簡単にガラス板2から剥がれることはな
く、従来のグリッド型偏光子のように線状体が変形して
機能が損なわれるということがない。したがってこの製
造方法で製造した偏光子は常に良好な偏光特性を発揮す
る。なお、超微粒子分散液4中の金属又は半導体の粒子
が焼成により連続化されていない場合でも偏光子として
の機能は発揮できる。また、超微粒子分散液4にPbを
添加しておくことにより、ガラス板2に対する線状体の
付着強度を更に高めることができる。これは添加したP
b元素がガラスと反応し密着力が増大するためと考えら
れる。
According to the above manufacturing method, the dispersed droplet lowering device 1
By changing the coating width when the ultrafine particle dispersion liquid 4 is dropped and applied onto the surface 2a of the glass plate 2,
Since the width of the linear body formed on the surface 2a portion of the can be arbitrarily adjusted, for example, an extremely fine linear body of 500 Å or less can be easily formed linearly over a wide area, and the insertion loss is small.
A large-area polarizer can be easily manufactured. The linear body formed on the surface 2a of the glass plate 2 by this manufacturing method adheres well to the glass plate 2 by the firing treatment, so that the linear body does not easily peel off from the glass plate 2 and the conventional grid is used. There is no possibility that the linear body will be deformed and its function will be impaired as in the case of the type polarizer. Therefore, the polarizer manufactured by this manufacturing method always exhibits good polarization characteristics. The function as a polarizer can be exhibited even when the metal or semiconductor particles in the ultrafine particle dispersion liquid 4 are not continuous by firing. Further, by adding Pb to the ultrafine particle dispersion liquid 4, the adhesion strength of the linear body to the glass plate 2 can be further increased. This is the added P
It is considered that the element b reacts with the glass to increase the adhesion.

【0012】[0012]

【実施例】次に、本発明の実施例について説明する。EXAMPLES Next, examples of the present invention will be described.

【0013】平均粒子径35Åの金(Au)超微粒子を
αーテルピネオール中に分散させた超微粒子分散液4を
トルエンで希釈して金濃度を約20重量%とした。希釈
した超微粒子分散液4を上記分散液滴下装置1を用いて
面積144cm2 (縦12cm、横12cm)、厚さ
0.5mmのガラス板2の表面2aに滴下塗布した後、
ガラス板2を電炉の中に入れ、300℃の温度で15分
間加熱して、ガラス板2の表面2aに金超微粒子からな
る線状体すなわち金線を形成した。金線の幅は200
Å、間隔は1μmとした。ガラス板2の表面2aの金線
部分を指でこすっても金線は剥がれることなく安定であ
った。
Ultrafine particle dispersion 4 in which ultrafine gold (Au) particles having an average particle diameter of 35Å are dispersed in α-terpineol was diluted with toluene to a gold concentration of about 20% by weight. After the diluted ultrafine particle dispersion liquid 4 was dropped onto the surface 2a of the glass plate 2 having an area of 144 cm 2 (length 12 cm, width 12 cm) and a thickness of 0.5 mm by using the above dispersion droplet dropping device 1,
The glass plate 2 was put in an electric furnace and heated at a temperature of 300 ° C. for 15 minutes to form a linear body made of ultrafine gold particles, that is, a gold wire, on the surface 2 a of the glass plate 2. The width of the gold wire is 200
Å, the interval was 1 μm. Even when the gold wire portion on the surface 2a of the glass plate 2 was rubbed with a finger, the gold wire was stable without peeling.

【0014】上記12cm×12cmサイズの偏光子を
2枚作成し、光学特性を測定したところ、偏光度(ρ)
は99.997%であり、現在市販されているフィルム
型偏光子の99.67%と比較して十分良好な特性が得
られた。また、単体透過率は94%であり、フィルム型
偏光子の40%と比較し2倍以上であった。また、直交
透過率(YC )と平行透過率(YP )との比(YC /Y
P )はフィルム型偏光子の310と比べ8500という
十分大きな値が得られた。また、挿入損失は6%であり
10%以下という良好な結果となった。上記の製造方法
によればA4サイズ程度の偏光子は容易に作成すること
ができ、また理論的にはそれ以上の大面積の偏光子を作
成することも可能である。なお、上記実施例ではAu超
微粒子分散液を用いた場合の測定結果のみを示したが、
その他の金属又は合金、或いは半導体の超微粒子分散液
を用いて偏光子を作成した場合でも、上記と同様の優れ
た光学特性及びガラス板2に対する線状体の付着強度を
得ることができる。
Two pieces of the above-mentioned 12 cm × 12 cm size polarizer were prepared and the optical characteristics were measured. The degree of polarization (ρ)
Is 99.997%, which is a sufficiently good characteristic as compared with 99.67% of film-type polarizers currently on the market. The single substance transmittance was 94%, which was more than double that of the film type polarizer of 40%. Further, the ratio (Y C / Y) of the orthogonal transmittance (Y C ) and the parallel transmittance (Y P ).
P ) was 8500, which was a sufficiently large value as compared with 310 of the film-type polarizer. The insertion loss was 6%, which was a good result of 10% or less. According to the above manufacturing method, a polarizer of about A4 size can be easily prepared, and theoretically, a polarizer having a larger area can be prepared. In the above examples, only the measurement results using the Au ultrafine particle dispersion are shown.
Even when a polarizer is formed by using an ultrafine particle dispersion liquid of another metal or alloy or semiconductor, it is possible to obtain the same excellent optical characteristics and the adhesive strength of the linear body to the glass plate 2 as described above.

【0015】[0015]

【発明の効果】以上説明したように、本発明に係る偏光
子の製造方法によれば、超微粒子分散液を支持板の表面
に滴下塗布する際の塗布液の幅を変えることにより、支
持板の表面部に形成される線状体の幅を任意に調整でき
るので、例えば500Å以下の極細の線状体を広い面積
に亘って直線状に容易に形成でき、挿入損失が小さく、
大面積の偏光子を容易に製造することができる。この製
造方法により支持板の表面部に形成される線状体は焼成
処理によって板と良好に密着するため、線状体が簡単に
支持板から剥がれることはなく、線状体が変形して機能
が損なわれるということがない。したがってこの製造方
法で製造した偏光子は常に良好な偏光特性を発揮する。
また、本発明に係る偏光子は、可視光に対して透明な支
持体の表面部に金属又は半導体からなる複数の線状体を
各々直線状にかつ互いに等間隔に形成してなるいわゆる
グリッド型偏光子の構造を持ちながら、その線状体とし
て超微粒子分散液を支持板の表面に滴下塗布した後、焼
成してなるものを採用したことにより、線状体と支持板
との密着性が良く線状体が簡単に支持板から剥がれるこ
とがないので、大面積化に容易に対応できる。
As described above, according to the method for manufacturing a polarizer according to the present invention, the width of the coating liquid when the ultrafine particle dispersion liquid is dropped and coated on the surface of the supporting plate is changed. Since the width of the linear body formed on the surface part of the can be adjusted arbitrarily, for example, an ultrafine linear body of 500 Å or less can be easily formed linearly over a wide area, and the insertion loss is small.
A large-area polarizer can be easily manufactured. The linear body formed on the surface portion of the support plate by this manufacturing method adheres well to the plate by the firing treatment, so the linear body does not easily come off from the support plate, and the linear body deforms and functions. Is never compromised. Therefore, the polarizer manufactured by this manufacturing method always exhibits good polarization characteristics.
Further, the polarizer according to the present invention is a so-called grid type in which a plurality of linear bodies made of a metal or a semiconductor are linearly formed at equal intervals to each other on a surface portion of a support transparent to visible light. Adhesion between the linear body and the support plate is improved by adopting a polarizer having a structure of a polarizer, which is formed by dropping and coating the ultrafine particle dispersion liquid on the surface of the support plate as the linear body. Since the linear body does not easily peel off from the support plate, it is possible to easily cope with a large area.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の製造方法により偏光子を製造
する際の一工程である超微粒子分散液塗布工程の実施の
形態の一例を示す概略正面図、(b)は同じく概略側断
面図である。
FIG. 1A is a schematic front view showing an example of an embodiment of an ultrafine particle dispersion liquid coating step, which is one step in manufacturing a polarizer by the manufacturing method of the present invention, and FIG. FIG.

【図2】本発明の製造方法により偏光子を製造する際の
一工程である超微粒子分散液塗布工程の実施の形態の一
例を示す概略平面図である。
FIG. 2 is a schematic plan view showing an example of an embodiment of an ultrafine particle dispersion liquid coating step, which is one step in manufacturing a polarizer by the manufacturing method of the present invention.

【図3】従来の偏光子の構造の一例を示す斜視図であ
る。
FIG. 3 is a perspective view showing an example of a structure of a conventional polarizer.

【符号の説明】[Explanation of symbols]

1 分散液滴下装置 2 ガラス基板(支持板) 2a 表面 3 基板載置部 4 超微粒子分散液 5 容器 6 針 6a 針先 1 Dispersion Droplet Lowering Device 2 Glass Substrate (Support Plate) 2a Surface 3 Substrate Placement Part 4 Ultrafine Particle Dispersion Liquid 5 Container 6 Needle 6a Needle Point

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年6月21日[Submission date] June 21, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項3[Correction target item name] Claim 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】上記本発明に係る偏光子及びその製造方法
において、前記粒径は50Å以下であることが最も好ま
しい。また、前記線状体の幅は例えば請求項2又は4に
示すように500Å以下とし且つそのばらつきが20%
以内であることが好ましい。また、前記線状体同士の間
隔は0.5〜2.0μmとし且つそのばらつきが20%
以内であることが好ましい。前記線状体の幅が500Å
より大きくなると可視光領域でお吸収が大きくなる。ま
た、前記線状体同士の間隔が2.0μmよりも大きくな
ると可視光領域での偏光度が小さくなり、0.5μmよ
りも小さくなると吸収が大きくなりすぎてしまう。
In the above-mentioned polarizer and the method for producing the same according to the present invention, it is most preferable that the particle size is 50 Å or less. The width of the linear body is, for example, 500 Å or less as shown in claim 2 and its variation is 20%.
It is preferably within the range. Further, the interval between the linear bodies is 0.5 to 2.0 μm and the variation is 20%.
It is preferably within the range. The width of the linear body is 500Å
The larger the value, the larger the absorption in the visible light region. If the distance between the linear bodies is larger than 2.0 μm, the degree of polarization in the visible light region is small, and if it is smaller than 0.5 μm, the absorption is too large.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 粒径が100Å以下の金属又は半導体の
粒子を有機溶剤中に分散させてなる超微粒子分散液を可
視光に対して透明な支持板の表面に直線状に且つ互いに
等間隔に複数列滴下塗布した後、焼成することにより、
当該支持板の表面部に金属又は半導体からなる複数の線
状体を各々直線状にかつ互いに等間隔に形成するように
したことを特徴とする偏光子の製造方法。
1. An ultrafine particle dispersion obtained by dispersing metal or semiconductor particles having a particle size of 100Å or less in an organic solvent is linearly and evenly spaced from each other on the surface of a support plate transparent to visible light. By applying multiple rows of drops and firing,
A method for manufacturing a polarizer, wherein a plurality of linear bodies made of metal or semiconductor are formed linearly and at equal intervals on the surface of the support plate.
【請求項2】 前記線状体の幅は500Å以下であるこ
とを特徴とする請求項1記載の偏光子の製造方法。
2. The method for manufacturing a polarizer according to claim 1, wherein the width of the linear body is 500 Å or less.
【請求項3】 可視光に対して透明な支持体の表面部に
金属又は半導体からなる複数の線状体を各々直線状にか
つ互いに等間隔に形成してなる偏光子であって、 前記線状体は、前記支持体の表面に粒径が500 以下
の金属又は半導体の粒子を有機溶剤中に分散させてなる
超微粒子分散液を前記支持板の表面に滴下塗布した後、
焼成したものであることを特徴とする偏光子。
3. A polarizer formed by linearly forming a plurality of linear bodies made of a metal or a semiconductor on a surface portion of a support transparent to visible light at equal intervals. The particles are obtained by dropping and coating an ultrafine particle dispersion liquid obtained by dispersing metal or semiconductor particles having a particle size of 500 or less in an organic solvent on the surface of the support on the surface of the support plate.
A polarizer characterized by being fired.
【請求項4】 前記線状体の幅は500Å以下であるこ
とを特徴とする請求項3記載の偏光子。
4. The polarizer according to claim 3, wherein the width of the linear body is 500 Å or less.
JP11971196A 1996-04-17 1996-04-17 Polarizer and its production Pending JPH09281329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11971196A JPH09281329A (en) 1996-04-17 1996-04-17 Polarizer and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11971196A JPH09281329A (en) 1996-04-17 1996-04-17 Polarizer and its production

Publications (1)

Publication Number Publication Date
JPH09281329A true JPH09281329A (en) 1997-10-31

Family

ID=14768220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11971196A Pending JPH09281329A (en) 1996-04-17 1996-04-17 Polarizer and its production

Country Status (1)

Country Link
JP (1) JPH09281329A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1106712A1 (en) * 1999-12-01 2001-06-13 Ebara Corporation Method and apparatus of producing thin film of metal or metal compound
JP2007017641A (en) * 2005-07-06 2007-01-25 Sekisui Chem Co Ltd Method for manufacturing wire grid polarizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1106712A1 (en) * 1999-12-01 2001-06-13 Ebara Corporation Method and apparatus of producing thin film of metal or metal compound
JP2007017641A (en) * 2005-07-06 2007-01-25 Sekisui Chem Co Ltd Method for manufacturing wire grid polarizer

Similar Documents

Publication Publication Date Title
US5505996A (en) Method for forming a two-dimensional thin film of particles
Semaltianos Thermally evaporated aluminium thin films
KR930002932B1 (en) Liquid crystal light valve and associated bonding structure
JP2005508569A5 (en)
JPH0931630A (en) Transparent electrically conductive film and its production
JPH09281329A (en) Polarizer and its production
Motohiro et al. Sputter-deposited SiOx films for liquid crystal alignment
JP2848795B2 (en) Method and apparatus for depositing thin metal oxide layer
JP3586870B2 (en) Oriented thin film forming substrate and method for producing the same
Hendaoui Substrate temperature-dependent structural, optical, and electrical properties of thermochromic VO2 (M) nanostructured films grown by a one-step pulsed laser deposition process on smooth quartz substrates
JPH058527B2 (en)
JP2014112137A (en) Method for manufacturing polarizing element
JPH05263219A (en) Production of copper indium selenide thin film
Okuyama et al. Annealing effect in tellurium films
JP3341361B2 (en) Manufacturing method of ultrafine particle dispersion material
Avrekh et al. Transparent, conducting, metallic thin films
JPS6047718B2 (en) Manufacturing method of thin film light emitting device
JPH05117845A (en) Device and method for film forming of compound material
JP2002228798A (en) Method for warping/deforming silicon substrate
JPH054767B2 (en)
JPH0628932A (en) Method for forming indium oxide transparent conductive film doped with tin
JPS61256943A (en) Formation of colored transparent electrically conductive film
JPS61294703A (en) Light transmitting conductive film and manufacture thereof
JPH08328059A (en) Nonlinear optical material and optical switching element using same
JPH04113334A (en) Production of nonlinear optical material