JPH09281317A - Optical member having wavelength selectivity - Google Patents

Optical member having wavelength selectivity

Info

Publication number
JPH09281317A
JPH09281317A JP11539996A JP11539996A JPH09281317A JP H09281317 A JPH09281317 A JP H09281317A JP 11539996 A JP11539996 A JP 11539996A JP 11539996 A JP11539996 A JP 11539996A JP H09281317 A JPH09281317 A JP H09281317A
Authority
JP
Japan
Prior art keywords
wavelength
green
base material
blue
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11539996A
Other languages
Japanese (ja)
Other versions
JP3911046B2 (en
Inventor
Kazuhiro Yamada
和広 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP11539996A priority Critical patent/JP3911046B2/en
Publication of JPH09281317A publication Critical patent/JPH09281317A/en
Application granted granted Critical
Publication of JP3911046B2 publication Critical patent/JP3911046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical member having wavelength selectivity without damaging the hue of a base material such as a dyed lens for glasses due to reflected light. SOLUTION: The dyed lens 1 has such spectral transmittance that the absorptance for a blue component in the shorter wavelength region than the border wavelength between blue and green is lower than the absorptance for a green and red component in the longer wavelength region and that the transmittance for the blue component is relatively high. The antireflection film 2 has such spectral reflectance that the reflectance for the blue component in the shorter wavelength region than the border wavelength between blue and green is higher than the reflectance for the green and red component in the longer wavelength region.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、例えば染色され
た眼鏡レンズのような透過光束の波長を選択する機能を
有する光学部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical member such as a dyed spectacle lens having a function of selecting a wavelength of a transmitted light beam.

【0002】[0002]

【従来の技術】この種の眼鏡用染色レンズは、レンズを
形成するプラスチックの基材に特定の色成分を吸収する
ような染料を浸透させることにより作製される。眼鏡レ
ンズが基材のみで構成される場合には、眼鏡レンズの装
用者の眼に入る透過光の色刺激と、眼側から眼鏡レンズ
を透過して装用者以外の者の眼に入る透過光の色刺激、
すなわち、レンズの色として認識される色刺激とは等し
い。
2. Description of the Related Art A dyed lens for spectacles of this type is manufactured by impregnating a plastic base material forming a lens with a dye capable of absorbing a specific color component. When the spectacle lens is composed of only the base material, the color stimulus of the transmitted light entering the eye of the spectacle lens wearer, and the transmitted light entering the eye of the person other than the wearer through the spectacle lens from the eye side. Color stimulation,
That is, it is equal to the color stimulus recognized as the color of the lens.

【0003】一方、眼鏡レンズには、レンズ表面での反
射を防止するため、一般にレンズ表面に反射防止膜がコ
ーティングされる。反射防止膜は、通常複数の誘電体層
から構成される干渉膜であり、基準となる中心波長につ
いては反射光の発生をほぼ完全に防ぐことができるが、
可視域の全波長において反射率を0%にすることはでき
ない。従来は、基材の色に拘わりなく緑色成分の反射率
が相対的に高いような分光反射率分布を有する反射防止
膜が一般に用いられていた。
On the other hand, an eyeglass lens is generally coated with an antireflection film on the lens surface in order to prevent reflection on the lens surface. The antireflection film is an interference film that is usually composed of a plurality of dielectric layers, and it is possible to almost completely prevent the generation of reflected light with respect to the reference center wavelength.
The reflectance cannot be 0% at all wavelengths in the visible range. Conventionally, an antireflection film having a spectral reflectance distribution such that the reflectance of the green component is relatively high regardless of the color of the substrate has been generally used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来は
眼鏡レンズの基材の透過光の色刺激と反射防止膜による
反射光の色刺激との関係に何ら注意が払われないため、
反射防止膜からの反射光により、眼鏡レンズが本来意図
していた基材の色とは異なる色に見え、特に両者の色刺
激のバランスが悪い場合には濁った色に見えるため、眼
鏡レンズのファッション性が損なわれるという問題があ
る。
However, conventionally, no attention is paid to the relationship between the color stimulus of the transmitted light of the base material of the spectacle lens and the color stimulus of the reflected light by the antireflection film.
Due to the reflected light from the anti-reflection film, the spectacle lens looks like a color different from the originally intended color of the base material, and particularly when the color stimuli of both are unbalanced, it looks cloudy. There is a problem that the fashionability is impaired.

【0005】この発明は、上記の課題に鑑みてなされた
ものであり、反射光により付される色により染色された
眼鏡レンズ等の基材の色合いを損なうことがない波長選
択性を有する光学部材を提供することを目的とする。
The present invention has been made in view of the above problems, and an optical member having a wavelength selectivity that does not impair the hue of a base material such as a spectacle lens dyed with a color imparted by reflected light. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】この発明にかかる波長選
択性を有する光学部材は、上記の目的を達成させるた
め、可視波長域の特定の波長域の成分を主として透過さ
せる基材と、基材の表面に施されたコーティング層とか
ら構成される光学部材において、波長による吸収率の違
いにより生じる基材の分光透過率分布と、コーティング
層の分光反射率分布とをほぼ一致させるようにしたこと
を特徴とする。
In order to achieve the above-mentioned object, an optical member having wavelength selectivity according to the present invention has a base material which mainly transmits a component in a specific wavelength range of a visible wavelength range, and a base material. In the optical member composed of the coating layer applied to the surface of the substrate, the spectral transmittance distribution of the base material caused by the difference in the absorptance depending on the wavelength and the spectral reflectance distribution of the coating layer should be made to substantially match. Is characterized by.

【0007】すなわち、基材が青−緑境界波長より短波
長側の青色成分に対する吸収率が長波長側の緑、赤色成
分に対する吸収率より低く、青色成分の透過率が相対的
に高い分光透過率分布を有する場合には、コーティング
層は、青−緑境界波長より短波長側の青色成分に対する
反射率が長波長側の緑、赤色成分に対する反射率より高
くなるような分光反射率分布を有する。
That is, the substrate has a lower absorption rate for blue components on the shorter wavelength side than the blue-green boundary wavelength than that for green and red components on the long wavelength side, and a relatively high transmittance for the blue component. When the coating layer has a reflectance distribution, the coating layer has a spectral reflectance distribution such that the reflectance for the blue component on the short wavelength side of the blue-green boundary wavelength is higher than the reflectance for the green and red components on the long wavelength side. .

【0008】また、基材が、赤−緑境界波長より長波長
側の赤色成分に対する吸収率が短波長側の緑、青色成分
に対する吸収率より低く、赤色成分の透過率が相対的に
高い分光透過率分布を有する場合には、コーティング層
は、赤−緑境界波長より長波長側の赤色成分に対する反
射率が短波長側の緑、青色成分に対する反射率より高く
なるような分光反射率を有する。
In addition, the substrate has a spectral absorption factor in which the absorption rate for the red component on the long wavelength side of the red-green boundary wavelength is lower than that for the green and blue components on the short wavelength side and the transmittance of the red component is relatively high. When it has a transmittance distribution, the coating layer has a spectral reflectance such that the reflectance for the red component on the long wavelength side of the red-green boundary wavelength is higher than the reflectance for the green and blue components on the short wavelength side. .

【0009】このような構成により、反射防止膜等のコ
ーティング層を設けた場合にも、反射光の色刺激が基材
を透過する光の色刺激にほぼ一致し、例えば眼鏡レンズ
を対象にした場合には、白色光を入射させた場合に装用
者に見える透過光の色刺激と、表面で反射された光によ
る装用者以外の者から見えるレンズの色刺激とを一致さ
せることができる。
With such a structure, even when a coating layer such as an antireflection film is provided, the color stimulus of the reflected light substantially matches the color stimulus of the light transmitted through the base material, and the target is, for example, a spectacle lens. In this case, it is possible to match the color stimulus of the transmitted light seen by the wearer when white light is made incident with the color stimulus of the lens seen by a person other than the wearer by the light reflected by the surface.

【0010】基材を透過する光とコーティング層での反
射光との色刺激を一致させる場合、主波長、若しくは補
色主波長の値をほぼ等しい範囲とすることが望ましい。
主波長および補色主波長は、色度から純度を除いた要素
であり、対象となる光の色度が無彩色刺激とCIE色度
座標のスペクトル軌跡上の単色光刺激との加法混色によ
り等色される場合の単色光刺激の波長が主波長、対象と
なる光と単色色刺激との加法混色により特定の無彩色刺
激に等色される場合の単色光刺激の波長が補色主波長で
ある。
When the color stimuli of the light transmitted through the base material and the light reflected by the coating layer are made to coincide with each other, it is desirable that the values of the dominant wavelength or the dominant wavelength of the complementary color are substantially in the same range.
The dominant wavelength and the complementary wavelength are the elements obtained by removing the purity from the chromaticity, and the chromaticity of the target light is equalized by the additive color mixture of the achromatic stimulus and the monochromatic light stimulus on the spectrum locus of the CIE chromaticity coordinates. In this case, the wavelength of the monochromatic light stimulus is the dominant wavelength, and the wavelength of the monochromatic light stimulus in the case where the target light and the monochromatic stimulus are equalized to a specific achromatic stimulus by the additive color mixture is the complementary dominant wavelength.

【0011】[0011]

【発明の実施の形態】以下、この発明にかかる波長選択
性を有する光学部材の実施形態を説明する。発明の波長
選択性を有する光学部材は、例えば図1(A)に示すよう
な眼鏡レンズとして、あるいは図1(B)に示すようなパ
ワーを持たない平板状で、ショーウィンドウやショーケ
ースのガラス板として使用される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of an optical member having wavelength selectivity according to the present invention will be described below. The optical member having wavelength selectivity of the invention is, for example, a spectacle lens as shown in FIG. 1A, or a flat plate having no power as shown in FIG. Used as a board.

【0012】図1(A)において、符号1は可視波長域の
特定の波長域の成分を主として透過させる基材としての
染色レンズであり、2は染色レンズ1の表面に施された
コーティング層としての反射防止膜である。染色レンズ
1は、吸収率に波長依存性を有するよう、すなわち、染
色レンズ1を透過した白色光に特定の色が付くよう染料
を浸透、あるいは混合して形成されている。一方、反射
防止膜2は、誘電体を積層して構成される干渉膜であ
り、染色レンズ1の分光透過率分布に合わせ、透過光と
反射光との色刺激とが互いにほぼ等しくなるよう各層の
屈折率、膜厚等が決定されている。
In FIG. 1 (A), reference numeral 1 is a dyed lens as a base material that mainly transmits a component in a specific wavelength range of the visible wavelength range, and 2 is a coating layer applied to the surface of the dyed lens 1. Is an antireflection film. The dyeing lens 1 is formed by penetrating or mixing a dye so that the absorptance has wavelength dependency, that is, the white light transmitted through the dyeing lens 1 has a specific color. On the other hand, the antireflection film 2 is an interference film formed by laminating dielectrics, and each layer is matched with the spectral transmittance distribution of the dyeing lens 1 so that the color stimuli of the transmitted light and the reflected light are substantially equal to each other. The refractive index, the film thickness, etc. of are determined.

【0013】この例の染色レンズ1は、青−緑境界波長
より短波長側の青色成分に対する吸収率が長波長側の
緑、赤色成分に対する吸収率より低く、青色成分の透過
率が相対的に高い分光透過率を有し、反射防止膜2は、
青−緑境界波長より短波長側の青色成分に対する反射率
が長波長側の緑、赤色成分に対する反射率より高くなる
ような分光反射率を有する。
In the dyed lens 1 of this example, the absorptivity for the blue component on the short wavelength side of the blue-green boundary wavelength is lower than the absorptivity for the green and red components on the long wavelength side, and the transmittance of the blue component is relatively large. The antireflection film 2 has a high spectral transmittance,
It has a spectral reflectance such that the reflectance for the blue component on the shorter wavelength side than the blue-green boundary wavelength is higher than the reflectance for the green and red components on the longer wavelength side.

【0014】したがって、図中左側となる反射防止膜2
側から白色光Li(w)が入射した場合、殆どの光束は反射
防止膜2の作用により反射されずに染色レンズ1に入射
するが、青色成分の光束のみが僅かに反射光Lr(b)とし
て反射する。染色レンズ1を透過した光束Lt(b)の分光
分布は、染色レンズ1内での緑、赤色成分の吸収により
青色成分の輝度が相対的に大きなものとなる。染色レン
ズ1内での波長による吸収率の差は、反射防止膜2の波
長による反射率の差より格段に大きく設定されている。
したがって、反射防止膜2により染色レンズ1に入射す
る光束の青色成分の輝度が緑、赤色成分より僅かに低下
させられるものの、この反射防止膜2の作用による分光
分布の変化は透過光Lt(b)の分光分布には殆ど影響せ
ず、透過光Lt(b)の分光分布は主として染色レンズ1の
分光透過率分布のみに依存して決定され、青色成分の輝
度が相対的に高くなる。
Therefore, the antireflection film 2 on the left side in the figure
When the white light Li (w) is incident from the side, most of the light flux is not reflected by the action of the antireflection film 2 and is incident on the dyeing lens 1, but only the blue light flux is slightly reflected light Lr (b). As reflected. In the spectral distribution of the light flux Lt (b) that has passed through the dyeing lens 1, the brightness of the blue component becomes relatively large due to the absorption of the green and red components in the dyeing lens 1. The difference in the absorption coefficient depending on the wavelength in the dyeing lens 1 is set to be significantly larger than the difference in the reflection coefficient of the antireflection film 2 depending on the wavelength.
Therefore, although the brightness of the blue component of the light flux incident on the dyeing lens 1 is slightly lowered by the antireflection film 2 as compared with the green and red components, the change in the spectral distribution due to the action of the antireflection film 2 causes the transmitted light Lt (b The spectral distribution of the transmitted light Lt (b) is determined mainly by only the spectral transmittance distribution of the dyeing lens 1, and the brightness of the blue component becomes relatively high.

【0015】上記のように構成される染色レンズを使用
すれば、眼鏡レンズとしてはレンズを透過して装用者の
眼に入る光の色刺激と、レンズでの反射光を見た装用者
以外の者から見えるレンズの色刺激とを一致させること
ができる。
If the dyed lens constructed as described above is used, as a spectacle lens, a color stimulus of light that passes through the lens and enters the eye of the wearer, and a person other than the wearer who sees the light reflected by the lens is used. It is possible to match the color stimulus of the lens seen by a person.

【0016】図1(B)において、符号10は平板状の基
材としてのガラス板であり、特定波長域の成分の透過率
が他の成分に対して大きくなるよう染色されている。符
号20は、ガラス板10上に施されたコーティング層と
しての反射防止膜であり、ガラス板10の分光透過率分
布に合わせ、透過光と反射光との色刺激とが互いにほぼ
等しくなるよう構成されている。白色光Li(w)を入射さ
せた場合の作用は図1(A)に示した眼鏡レンズの例と同
様であり、反射防止膜20からの反射光Lr(b)は青色成
分の輝度が相対的に高く、ガラス板10を透過した光束
Lr(b)も青色成分の輝度が相対的に高い。
In FIG. 1B, reference numeral 10 is a glass plate as a flat base material, which is dyed so that the transmittance of a component in a specific wavelength range is larger than that of other components. Reference numeral 20 is an antireflection film as a coating layer provided on the glass plate 10, and is configured so that the color stimuli of the transmitted light and the reflected light are substantially equal to each other in accordance with the spectral transmittance distribution of the glass plate 10. Has been done. The operation when white light Li (w) is incident is similar to the example of the spectacle lens shown in FIG. 1 (A), and the reflected light Lr (b) from the antireflection film 20 has a relative blue component luminance. Since the luminous flux Lr (b) transmitted through the glass plate 10 is relatively high, the luminance of the blue component is relatively high.

【0017】なお、上記の2つの実施形態では、反射
光、透過光の分光分布において青色成分の輝度が相対的
に高くなるよう構成しているが、同様にして赤色成分の
輝度が相対的に高くなるよう構成することもできる。
In the above two embodiments, the blue component has a relatively high luminance in the spectral distribution of the reflected light and the transmitted light, but similarly, the red component has a relatively high luminance. It can also be configured to be high.

【0018】[0018]

【実施例】次に、上記の実施形態に基づく波長選択性を
有する光学部材の具体的な実施例を説明する。ここで
は、青色に染色された基材であるプラスチック製の染色
レンズ上に青色成分に対する反射率が相対的に高い反射
防止膜を付した実施例1、そして、赤色に染色されたプ
ラスチック製の染色レンズ上に赤色成分に対する反射率
が相対的に高い反射防止膜を付した実施例2について順
に説明する。なお、この明細書では、CIE 1931
標準表色系を用いて各光学素子の色特性を表示してお
り、この際の白色光源としては、相関色温度が約677
4Kとなる標準光源Cを用いている。
EXAMPLES Next, specific examples of the optical member having wavelength selectivity based on the above embodiment will be described. Here, Example 1 in which an antireflection film having a relatively high reflectance with respect to a blue component is provided on a plastic dyeing lens which is a base dyed in blue, and a dyeing made of plastic dyed in red Example 2 in which an antireflection film having a relatively high reflectance for the red component is provided on the lens will be described in order. In this specification, CIE 1931
The color characteristics of each optical element are displayed using the standard color system, and the white light source at this time has a correlated color temperature of about 677.
A standard light source C of 4K is used.

【0019】以下の表1は、実施例1の反射防止膜の膜
構成を示す。第1層が染色レンズに接する層、第7層が
空気に接する層である。
Table 1 below shows the film constitution of the antireflection film of Example 1. The first layer is a layer in contact with the dyed lens, and the seventh layer is a layer in contact with air.

【0020】[0020]

【表1】中心波長λ=550nm 層番号 物質名 光学膜厚 1 SiO2 0.150λ/4 2 TiO2 0.237λ/4 3 SiO2 0.392λ/4 4 TiO2 0.759λ/4 5 SiO2 0.145λ/4 6 TiO2 0.678λ/4 7 SiO2 1.066λ/4[Table 1] Center wavelength λ = 550 nm Layer number Material name Optical thickness 1 SiO2 0.150 λ / 4 2 TiO2 0.237 λ / 4 3 SiO2 0.392 λ / 4 4 TiO2 0.759 λ / 4 5 SiO2 0.145 λ / 4 6 TiO2 0.678 λ / 4 7 SiO2 1.066 λ / 4

【0021】上記の膜構成による実施例1の反射防止膜
の光学特性について説明する。上記の反射防止膜の反射
率を可視域全域で総合的にみると、入射した光束に対す
る反射光束の比である視感反射率は3%である。反射光
の色度は、CIE色度座標上ではx=0.1790,y
=0.1913の点として表される。この色刺激は、無
彩色刺激とCIE色度座標のスペクトル軌跡上の主波長
477.5nmの単色光刺激との加法混色により等色さ
れ、主波長の単色光刺激に対する反射光の色度の刺激純
度は62.69%である。なお、反射光の色刺激と混色
されることにより無彩色刺激に等色する単色光刺激の波
長を示す補色主波長は、577.4nmである。実施例
1の反射防止膜の分光反射率分布は図2、反射光のCI
E色度座標中での位置は図6に示される。
The optical characteristics of the antireflection film of Example 1 having the above film structure will be described. Comprehensively looking at the reflectance of the antireflection film in the entire visible region, the luminous reflectance, which is the ratio of the reflected light flux to the incident light flux, is 3%. The chromaticity of the reflected light is x = 0.1790, y on the CIE chromaticity coordinate.
= 0.1913. This color stimulus is color-matched by additive color mixing with an achromatic stimulus and a monochromatic light stimulus with a dominant wavelength of 477.5 nm on the spectrum locus of the CIE chromaticity coordinates. The purity is 62.69%. In addition, the complementary main color wavelength showing the wavelength of the monochromatic light stimulus that is color-matched with the achromatic stimulus by being mixed with the color stimulus of the reflected light is 577.4 nm. The spectral reflectance distribution of the antireflection film of Example 1 is shown in FIG.
The position in the E chromaticity coordinate is shown in FIG.

【0022】また、実施例1で用いられる染色レンズの
光学特性は、視感反射率が59.7%、透過光の色度が
CIE色度座標でx=0.2709,y=0.288
0、主波長が481.6nm、補色主波長が582.1
nm、主波長に対する透過光の色度の刺激純度は17.
29%である。実施例1の染色レンズ自体の分光透過率
分布は、図3に実線で示されており、透過光のCIE色
度座標中での位置は図6に示される。また、染色レンズ
に反射防止膜を施した場合の両者の特性を考慮に入れた
総合的な透過光の分光分布は、図3中に破線で示されて
いる。
As for the optical characteristics of the dyed lens used in Example 1, the luminous reflectance is 59.7%, and the chromaticity of transmitted light is CIE chromaticity coordinates x = 0.209, y = 0.288.
0, dominant wavelength is 481.6 nm, complementary dominant wavelength is 582.1
nm, the stimulus purity of the chromaticity of transmitted light with respect to the dominant wavelength is 17.
29%. The spectral transmittance distribution of the dyed lens itself of Example 1 is shown by the solid line in FIG. 3, and the position of the transmitted light in the CIE chromaticity coordinate is shown in FIG. Further, a comprehensive spectral distribution of transmitted light in consideration of both characteristics when the anti-reflection film is applied to the dyed lens is shown by a broken line in FIG.

【0023】図2に示されるように反射防止膜の反射率
は可視域全体においてほぼ1%以下に抑えられており、
その中で400〜500nmの青色成分の反射率が比較
的高くなっている。反射光の色度を膜の物体色として見
た場合、明度5の状態では膜の色は「青」である。ま
た、染色レンズの透過率は、図3中の実線で示されるよ
うに400〜500nmの青色成分の透過率が比較的高
くなっている。透過光の色度を染色レンズの物体色とし
てみた場合、明度5の状態ではレンズの色は「うすい紫
みの青」である。さらに、図3中の実線と破線とに示さ
れるように、透過光の分光分布はほぼ染色レンズの分光
透過率分布に一致している。したがって、実施例1の構
成によれば、光学部材を透過する光の色刺激と反射され
る光の色刺激とを共に青系統の色に揃えることができ
る。
As shown in FIG. 2, the reflectance of the antireflection film is suppressed to approximately 1% or less in the entire visible range.
Among them, the reflectance of the blue component of 400 to 500 nm is relatively high. When the chromaticity of the reflected light is viewed as the object color of the film, the film color is “blue” when the lightness is 5. As for the transmittance of the dyed lens, as shown by the solid line in FIG. 3, the transmittance of the blue component of 400 to 500 nm is relatively high. When the chromaticity of the transmitted light is regarded as the object color of the dyed lens, the lens color is “light purple blue” when the lightness is 5. Further, as indicated by the solid line and the broken line in FIG. 3, the spectral distribution of the transmitted light substantially matches the spectral transmittance distribution of the dye lens. Therefore, according to the configuration of the first embodiment, both the color stimulus of the light transmitted through the optical member and the color stimulus of the reflected light can be aligned in the bluish color.

【0024】表2は、実施例2の反射防止膜の膜構成を
示す。第1層が染色レンズに接する層、第7層が空気に
接する層である。
Table 2 shows the film constitution of the antireflection film of Example 2. The first layer is a layer in contact with the dyed lens, and the seventh layer is a layer in contact with air.

【0025】[0025]

【表2】中心波長λ=550nm 層番号 物質名 光学膜厚 1 SiO2 0.161λ/4 2 TiO2 0.227λ/4 3 SiO2 0.440λ/4 4 TiO2 0.640λ/4 5 SiO2 0.199λ/4 6 TiO2 0.694λ/4 7 SiO2 0.960λ/4[Table 2] Center wavelength λ = 550 nm Layer number Material name Optical thickness 1 SiO2 0.161 λ / 4 2 TiO2 0.227 λ / 4 3 SiO2 0.440 λ / 4 4 TiO2 0.640 λ / 4 5 SiO2 0.199 λ / 4 6 TiO2 0.694 λ / 4 7 SiO2 0.960 λ / 4

【0026】上記の膜構成による実施例2の反射防止膜
の光学特性は、視感反射率が3%、反射光の色度がCI
E色度座標でx=0.4400,y=0.3024、主
波長が625.7nm、補色主波長が492.6nm、
主波長に対する反射光の色度の刺激純度は31.09%
である。実施例2の反射防止膜の分光反射率分布は図
4、反射光のCIE色度座標中での位置は図6に示され
る。
The optical characteristics of the antireflection film of Example 2 having the above-mentioned film structure are as follows: luminous reflectance is 3%, and chromaticity of reflected light is CI.
In E chromaticity coordinate, x = 0.4400, y = 0.3024, main wavelength is 625.7 nm, complementary color main wavelength is 492.6 nm,
Stimulus purity of chromaticity of reflected light with respect to the dominant wavelength is 31.09%
It is. The spectral reflectance distribution of the antireflection film of Example 2 is shown in FIG. 4, and the position of the reflected light in the CIE chromaticity coordinate is shown in FIG.

【0027】また、実施例2で用いられる染色レンズの
光学特性は、視感反射率が49.2%、透過光の色度が
CIE色度座標でx=0.3566,y=0.323
0、主波長が601.9nm、補色主波長が489.1
nm、主波長に対する透過光の色度の刺激純度は14.
28%である。実施例2の染色レンズ自体の分光透過率
分布は、図5に実線で示されており、透過光のCIE色
度座標中での位置は図6に示される。また、染色レンズ
に反射防止膜を施した場合の両者の特性を考慮に入れた
総合的な透過光の分光分布は、図5中に破線で示されて
いる。
As for the optical characteristics of the dyed lens used in Example 2, the luminous reflectance was 49.2%, and the chromaticity of transmitted light was CIE chromaticity coordinates at x = 0.35666, y = 0.323.
0, the main wavelength is 601.9 nm, and the complementary color main wavelength is 489.1.
nm, the stimulus purity of the chromaticity of transmitted light with respect to the dominant wavelength is 14.
28%. The spectral transmittance distribution of the dyed lens itself of Example 2 is shown by the solid line in FIG. 5, and the position of the transmitted light in the CIE chromaticity coordinate is shown in FIG. Further, a comprehensive spectral distribution of transmitted light in consideration of both characteristics when the anti-reflection film is applied to the dyed lens is shown by a broken line in FIG.

【0028】図4に示されるように反射防止膜の反射率
は可視域全体においてほぼ2%以下に抑えられており、
その中で700nmに近い領域の赤色成分の反射率が比
較的高くなっている。反射光の色度を膜の物体色として
見た場合、膜の色は明度5の状態では「紫みの赤」であ
る。また、染色レンズの透過率は、図5中の実線で示さ
れるように620〜700nmの赤色成分の透過率が比
較的高くなっている。透過光の色度を染色レンズの物体
色として見た場合、レンズの色は明度5の状態では「う
すい紫みの赤」である。さらに、図5中の実線と破線と
に示されるように、透過光の分光分布はほぼ染色レンズ
の分光透過率分布に一致している。したがって、実施例
2の構成によれば、光学部材を透過する光の色刺激と反
射される光の色刺激とを共に赤系統の色に揃えることが
できる。
As shown in FIG. 4, the reflectance of the antireflection film is suppressed to about 2% or less in the entire visible range.
Among them, the reflectance of the red component in the region near 700 nm is relatively high. When the chromaticity of the reflected light is viewed as the object color of the film, the film color is “purple red” when the lightness is 5. As for the transmittance of the dyed lens, the transmittance of the red component of 620 to 700 nm is relatively high as shown by the solid line in FIG. When the chromaticity of the transmitted light is viewed as the object color of the dyed lens, the color of the lens is “light purple red” when the lightness is 5. Further, as indicated by the solid line and the broken line in FIG. 5, the spectral distribution of the transmitted light substantially matches the spectral transmittance distribution of the dyed lens. Therefore, according to the configuration of the second embodiment, both the color stimulus of the light transmitted through the optical member and the color stimulus of the reflected light can be aligned in a reddish color.

【0029】なお、上記の反射防止膜の光学特性の説明
は、いずれも光束のコーティング層に対する入射角度が
0deg.(度)の場合を前提にしている。しかしながら、実
施形態のような眼鏡レンズ等を実際に使用する場合に
は、光はあらゆる方向から膜に入射するため、見る方向
によって反射光の色刺激が大きく変化しないようにする
ためには、入射角度の変化に対する反射光の主波長の変
化を小さく抑えることが望ましい。
The above description of the optical characteristics of the antireflection film is based on the assumption that the incident angle of the light flux with respect to the coating layer is 0 deg. However, when the spectacle lens or the like as in the embodiment is actually used, the light is incident on the film from all directions. It is desirable to suppress the change in the dominant wavelength of the reflected light with respect to the change in the angle to be small.

【0030】一般に、反射防止膜等の干渉膜に対する光
の入射角度が大きくなると、反射光の分光分布は短波長
側にシフトする。ただし、従来の緑色成分を主として反
射させる分光反射率分布を有する反射防止膜と比較する
と、実施例1に示した青色成分を主として反射させる分
光反射率分布を有する反射防止膜の方が入射角度の変化
に対する反射光の色度の変化が小さい。
Generally, when the angle of incidence of light on an interference film such as an antireflection film increases, the spectral distribution of reflected light shifts to the short wavelength side. However, in comparison with the conventional antireflection film having the spectral reflectance distribution that mainly reflects the green component, the antireflection film having the spectral reflectance distribution that mainly reflects the blue component shown in Example 1 has a smaller incident angle. The change in chromaticity of reflected light with respect to the change is small.

【0031】緑色成分を主として反射させる場合、主た
る反射成分の範囲を限定するためには、可視域内で長波
長側、短波長側の両側の境界波長が存在しなければなら
ない。入射角度が大きくなって分光分布が短波長側にシ
フトすると、主たる反射成分の帯域幅は殆ど変化せず
に、これを限定している短波長側、長波長側の境界波長
が共に短波長側にシフトすることとなる。したがって、
主波長が短波長側に移動する。
When the green component is mainly reflected, the boundary wavelengths on both the long wavelength side and the short wavelength side must exist in the visible region in order to limit the range of the main reflection component. When the incident angle becomes large and the spectral distribution shifts to the short wavelength side, the bandwidth of the main reflection component hardly changes, and the boundary wavelength on the short wavelength side and the long wavelength side that limit this are both on the short wavelength side. Will be shifted to. Therefore,
The dominant wavelength moves to the short wavelength side.

【0032】これに対して、実施例1のように青色成分
を主として反射させる分光反射率を持つ反射防止膜の場
合、主たる反射成分の範囲を限定しているのは可視域内
では長波長側の境界波長のみであり、入射角度が大きく
なって分光分布が短波長側にシフトした場合にも長波長
側の境界波長が短波長側にシフトするのみであり、主た
る反射成分の帯域幅は狭くなるものの、主波長の変化は
比較的小さい。
On the other hand, in the case of the antireflection film having the spectral reflectance that mainly reflects the blue component as in Example 1, the range of the main reflection component is limited to the long wavelength side in the visible region. It is only the boundary wavelength, and even if the incident angle becomes large and the spectral distribution shifts to the short wavelength side, the boundary wavelength on the long wavelength side only shifts to the short wavelength side, and the bandwidth of the main reflection component becomes narrow. However, the change in the dominant wavelength is relatively small.

【0033】このため、実施例1の構成によれば、従来
の緑色成分を主として反射させる分光反射率分布を有す
る反射防止膜と比較すると、入射角度の変化に対する反
射光の主波長の変化が小さい。表3は、緑色成分の反射
率が相対的に高い従来の代表的な反射防止膜と、実施例
1、2の反射防止膜とにおける、入射角度の変化に対す
る反射光の色度のCIE色度座標上での座標点の変化を
示す。
Therefore, according to the structure of the first embodiment, the change in the dominant wavelength of the reflected light with respect to the change in the incident angle is small as compared with the conventional antireflection film having the spectral reflectance distribution that mainly reflects the green component. . Table 3 shows the CIE chromaticity of the chromaticity of the reflected light with respect to the change of the incident angle between the conventional typical antireflection film having a relatively high reflectance of the green component and the antireflection films of Examples 1 and 2. The change of the coordinate point on the coordinate is shown.

【0034】[0034]

【表3】 角度 緑色成分(従来例) 青色成分(実施例1) 赤色成分(実施例2) (deg.) x y x y x y 0 0.1844 0.3912 0.1790 0.1913 0.4400 0.3024 5 0.1834 0.3865 0.1787 0.1902 0.4443 0.3070 10 0.1813 0.3721 0.1778 0.1873 0.4561 0.3206 15 0.1798 0.3482 0.1770 0.1832 0.4723 0.3419 20 0.1818 0.3160 0.1779 0.1797 0.4869 0.3675 25 0.1905 0.2798 0.1837 0.1802 0.4926 0.3905 30 0.2078 0.2468 0.1994 0.1909 0.4845 0.4039 35 0.2325 0.2245 0.2294 0.2172 0.4637 0.4045 40 0.2603 0.2171 0.2681 0.2554 0.4366 0.3950[Table 3] Angle Green component (conventional example) Blue component (example 1) Red component (example 2) (deg.) Xyxyxy 0 0.1844 0.3912 0.1790 0.1913 0.4400 0.3024 5 0.1834 0.3865 0.1787 0.1902 0.4443 0.3070 10 0.1813 0.3721 0.1778 0.1873 0.4561 0.3206 15 0.1798 0.3482 0.1770 0.1832 0.4723 0.3419 20 0.1818 0.3160 0.1779 0.1797 0.4869 0.3675 25 0.1905 0.2798 0.1837 0.1802 0.4926 0.3905 30 0.2078 0.2468 0.1994 0.1909 0.4845 0.4039 35 0.2325 0.2245 0.2294 0.2172 0.4637 0.4045 40 0.2603 0.2171 0.2681 0.2554 0.4366 0.3950

【0035】図7は、表3に示される座標点をCIE色
度座標中に表示したグラフ、図8はその一部を拡大した
グラフであり、図8では入射角度と座標点との対応が示
されている。これらのグラフに示されるように、従来の
反射防止膜では、入射角度0〜40deg.の範囲で反射光
の純度の変化は比較的小さいが、主波長の変化が約50
0nm〜430nmと比較的広いため、見た目の色の変
化が比較的大きくなる。この変化は、例えば明度5の状
態では、「あざやかな青みの緑」から「明るい青みの
紫」までの変化に相当する。
FIG. 7 is a graph showing the coordinate points shown in Table 3 in CIE chromaticity coordinates, and FIG. 8 is a partially enlarged graph thereof. In FIG. 8, the correspondence between the incident angle and the coordinate points is shown. It is shown. As shown in these graphs, in the conventional antireflection film, the change in purity of the reflected light is relatively small in the incident angle range of 0 to 40 deg., But the change in the dominant wavelength is about 50.
Since it is relatively wide from 0 nm to 430 nm, the change in appearance color is relatively large. This change corresponds to a change from "bright green with a bluish green" to "purple with a bright bluish purple" in the state of lightness 5, for example.

【0036】一方、実施例1の構成では、反射光の主波
長の変化が入射角度0〜40deg.の範囲でほぼ470n
mを中心とした±5nm程度の範囲内に収まるため、純
度の変化はあるものの見た目の色刺激の変化は従来例よ
り小さくなる。この変化は、明度5の状態では、「青」
から「明るい青みの紫」までの変化に相当する。
On the other hand, in the structure of the first embodiment, the change in the dominant wavelength of the reflected light is approximately 470 n in the incident angle range of 0 to 40 deg.
Since it falls within the range of about ± 5 nm centering on m, the change in appearance color stimulus is smaller than that in the conventional example, although there is a change in purity. This change is "blue" when the brightness is 5.
To "bright bluish purple".

【0037】なお、入射角度0deg.での色と40deg.で
の色との色差をCIE1964色差公式により求める
と、従来例が12.7199で最も大きくなり、実施例1では
6.8962、実施例2では4.8577となる。
When the color difference between the color at the incident angle of 0 deg. And the color at the incident angle of 40 deg. Is obtained by the CIE1964 color difference formula, the conventional example is the largest at 12.7199, and the first example is
6.8962, and in Example 2 it is 4.8577.

【0038】[0038]

【発明の効果】以上説明したように、この発明によれ
ば、青または赤に見えるレンズ等の基材に対して同系色
の反射光が得られるコーティング層を施すことにより、
装用者に見える透過光の色刺激と、表面で反射された光
による装用者以外の者から見えるレンズの色刺激とを一
致させることができる。したがって、例えばこの発明を
眼鏡レンズに適用した場合には、反射光により付される
色により染色された眼鏡レンズ等の基材の色合いを損な
うことがないファッション性に優れた眼鏡レンズを提供
することができる。
As described above, according to the present invention, a base material such as a lens that looks blue or red is provided with a coating layer capable of obtaining reflected light of a similar color,
The color stimulus of the transmitted light seen by the wearer and the color stimulus of the lens seen by a person other than the wearer by the light reflected by the surface can be matched. Therefore, for example, when the present invention is applied to a spectacle lens, it is possible to provide a spectacle lens excellent in fashionability that does not impair the hue of a base material such as a spectacle lens dyed with a color given by reflected light. You can

【0039】また、基材を透過する光の色刺激と、コー
ティング層で反射される光の色刺激とを共に青色に揃え
た場合には、他の色を利用する場合と比較して光の入射
角度の変化に基づくコーティング層の反射光の主波長の
変化を小さく抑えることができ、反射光の色刺激の角度
依存性の少ない光学部材を提供することができる。
When both the color stimulus of the light transmitted through the base material and the color stimulus of the light reflected by the coating layer are aligned in the blue color, the light stimulus of the light is compared with the case of using other colors. A change in the dominant wavelength of the reflected light of the coating layer due to a change in the incident angle can be suppressed to a small value, and an optical member having little angular dependence of the color stimulation of the reflected light can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施形態にかかる光学部材の構成
の概略を示す説明図である。
FIG. 1 is an explanatory diagram showing an outline of a configuration of an optical member according to an embodiment of the present invention.

【図2】 実施例1の反射防止膜の分光反射率分布を示
すグラフである。
FIG. 2 is a graph showing a spectral reflectance distribution of the antireflection film of Example 1.

【図3】 実施例1の染色レンズの分光透過率分布を示
すグラフである。
FIG. 3 is a graph showing a spectral transmittance distribution of the dyed lens of Example 1.

【図4】 実施例2の反射防止膜の分光反射率分布を示
すグラフである。
FIG. 4 is a graph showing a spectral reflectance distribution of the antireflection film of Example 2.

【図5】 実施例2の染色レンズの分光透過率分布を示
すグラフである。
FIG. 5 is a graph showing a spectral transmittance distribution of a dyed lens of Example 2.

【図6】 実施例1、2の反射防止膜の反射光、染色レ
ンズの透過光の色度をCIE色度座標上で示すグラフで
ある。
FIG. 6 is a graph showing the chromaticity of the reflected light of the antireflection film and the transmitted light of the dyed lens of Examples 1 and 2 on the CIE chromaticity coordinate.

【図7】 従来例、実施例1、実施例2の反射防止膜の
入射角度の変化に基づく色度の変化をCIE色度座標中
に示したグラフである。
FIG. 7 is a graph showing changes in chromaticity based on changes in incident angle of the antireflection films of Conventional Example, Example 1 and Example 2 in CIE chromaticity coordinates.

【図8】 図7の主要部分を拡大して示すグラフであ
る。
FIG. 8 is an enlarged graph showing a main part of FIG.

【符号の説明】[Explanation of symbols]

1 染色レンズ(基材) 10 ガラス板(基材) 2、20 反射防止膜(コーティング層) 1 Dye lens (base material) 10 Glass plate (base material) 2, 20 Antireflection film (coating layer)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 可視波長域の特定の波長域の成分を主と
して透過させる基材と、該基材の表面に施されたコーテ
ィング層とから構成される光学部材において、 前記基材は、青−緑境界波長より短波長側の青色成分に
対する吸収率が長波長側の緑、赤色成分に対する吸収率
より低く、青色成分の透過率が相対的に高い分光透過率
分布を有し、 前記コーティング層は、青−緑境界波長より短波長側の
青色成分に対する反射率が長波長側の緑、赤色成分に対
する反射率より高くなるような分光反射率分布を有する
ことを特徴とする波長選択性を有する光学部材。
1. An optical member comprising a base material mainly transmitting components in a specific wavelength range of visible wavelength range and a coating layer applied to the surface of the base material, wherein the base material is blue- Absorption rate for the blue component on the shorter wavelength side than the green boundary wavelength is longer than the green and red components on the long wavelength side, and the transmittance of the blue component has a relatively high spectral transmittance distribution, and the coating layer is , A wavelength-selective optic having a spectral reflectance distribution such that the reflectance for blue components on the short wavelength side of the blue-green boundary wavelength is higher than the reflectance for green and red components on the long wavelength side. Element.
【請求項2】 可視波長域の特定の波長域の成分を主と
して透過させる基材と、該基材の表面に施されたコーテ
ィング層とから構成される光学部材において、 前記基材は、赤−緑境界波長より長波長側の赤色成分に
対する吸収率が短波長側の緑、青色成分に対する吸収率
より低く、赤色成分の透過率が相対的に高い分光透過率
分布を有し、 前記コーティング層は、赤−緑境界波長より長波長側の
赤色成分に対する反射率が短波長側の緑、青色成分に対
する反射率より高くなるような分光反射率分布を有する
ことを特徴とする波長選択性を有する光学部材。
2. An optical member comprising a base material that mainly transmits a component in a specific wavelength range of a visible wavelength range, and a coating layer formed on the surface of the base material, wherein the base material is red- Absorption rate for the red component on the longer wavelength side than the green boundary wavelength is shorter than the absorption rate for the green and blue components on the short wavelength side, and the transmittance of the red component has a relatively high spectral transmittance distribution, and the coating layer is , An optical having a wavelength selectivity, which has a spectral reflectance distribution such that the reflectance for a red component on the long wavelength side of the red-green boundary wavelength is higher than the reflectance for green and blue components on the short wavelength side. Element.
【請求項3】 前記基材を透過する光束の主波長あるい
は補色主波長と、前記コーティング層により反射される
光束の主波長あるいは補色主波長とがほぼ等しい範囲に
あることを特徴とする請求項1または2の何れかに記載
の波長選択性を有する光学部材。
3. The main wavelength or complementary color main wavelength of the light flux transmitted through the base material and the main wavelength or complementary color main wavelength of the light flux reflected by the coating layer are in substantially the same range. An optical member having wavelength selectivity according to any one of 1 and 2.
【請求項4】 前記基材と前記コーティング層との主波
長、あるいは補色主波長の差が、±10nmの範囲にあ
ることを特徴とする請求項3に記載の波長選択性を有す
る光学部材。
4. The optical member having wavelength selectivity according to claim 3, wherein the difference between the dominant wavelength of the base material and the coating layer or the dominant wavelength of the complementary color is in the range of ± 10 nm.
【請求項5】 前記基材は、パワーを持つレンズであ
り、前記コーティング層は、反射防止膜であることを特
徴とする請求項1に記載の波長選択性を有する光学部
材。
5. The optical member having wavelength selectivity according to claim 1, wherein the base material is a lens having power, and the coating layer is an antireflection film.
JP11539996A 1996-04-12 1996-04-12 Optical member having wavelength selectivity Expired - Lifetime JP3911046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11539996A JP3911046B2 (en) 1996-04-12 1996-04-12 Optical member having wavelength selectivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11539996A JP3911046B2 (en) 1996-04-12 1996-04-12 Optical member having wavelength selectivity

Publications (2)

Publication Number Publication Date
JPH09281317A true JPH09281317A (en) 1997-10-31
JP3911046B2 JP3911046B2 (en) 2007-05-09

Family

ID=14661610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11539996A Expired - Lifetime JP3911046B2 (en) 1996-04-12 1996-04-12 Optical member having wavelength selectivity

Country Status (1)

Country Link
JP (1) JP3911046B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107410A (en) * 2001-09-28 2003-04-09 Nidek Co Ltd Dyeing system for spectacle lens
JP2006171569A (en) * 2004-12-17 2006-06-29 Pentax Corp Optical window and optical appliance having the optical window
WO2007077641A1 (en) * 2005-12-28 2007-07-12 Tokai Optical Co., Ltd. Spectacle lens and spectacles
JP2010510535A (en) * 2006-11-17 2010-04-02 エシロール アンテルナシオナル (コンパニー ジェネラレ ドプテイク) Multi-colored ophthalmic lens
KR101273296B1 (en) * 2011-06-29 2013-06-11 (주) 제이앤피 Glasses for optic nerve stimulation
US9927635B2 (en) 2006-03-20 2018-03-27 High Performance Optics, Inc. High performance selective light wavelength filtering providing improved contrast sensitivity
US9995950B2 (en) 2016-01-29 2018-06-12 Carl Zeiss Vision International Gmbh Spectacle lens for car drivers
US11701315B2 (en) 2006-03-20 2023-07-18 High Performance Optics, Inc. High energy visible light filter systems with yellowness index values
EP2902817B2 (en) 2012-09-28 2023-09-27 Nikon-Essilor Co., Ltd. Optical component and method for producing same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107410A (en) * 2001-09-28 2003-04-09 Nidek Co Ltd Dyeing system for spectacle lens
JP2006171569A (en) * 2004-12-17 2006-06-29 Pentax Corp Optical window and optical appliance having the optical window
WO2007077641A1 (en) * 2005-12-28 2007-07-12 Tokai Optical Co., Ltd. Spectacle lens and spectacles
US7926939B2 (en) 2005-12-28 2011-04-19 Tokai Optical Co., Ltd. Spectacle lens and spectacle
JP4796077B2 (en) * 2005-12-28 2011-10-19 東海光学株式会社 Eyeglass lenses and eyeglasses
US10551637B2 (en) 2006-03-20 2020-02-04 High Performance Optics, Inc. High performance selective light wavelength filtering providing improved contrast sensitivity
US11774783B2 (en) 2006-03-20 2023-10-03 High Performance Optics, Inc. High performance selective light wavelength filtering providing improved contrast sensitivity
US9927635B2 (en) 2006-03-20 2018-03-27 High Performance Optics, Inc. High performance selective light wavelength filtering providing improved contrast sensitivity
US11701315B2 (en) 2006-03-20 2023-07-18 High Performance Optics, Inc. High energy visible light filter systems with yellowness index values
JP2010510535A (en) * 2006-11-17 2010-04-02 エシロール アンテルナシオナル (コンパニー ジェネラレ ドプテイク) Multi-colored ophthalmic lens
KR101273296B1 (en) * 2011-06-29 2013-06-11 (주) 제이앤피 Glasses for optic nerve stimulation
EP2902817B2 (en) 2012-09-28 2023-09-27 Nikon-Essilor Co., Ltd. Optical component and method for producing same
US9995950B2 (en) 2016-01-29 2018-06-12 Carl Zeiss Vision International Gmbh Spectacle lens for car drivers

Also Published As

Publication number Publication date
JP3911046B2 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
CA1253367A (en) Thin film optical variable article having substantial color shift with angle and method
CN108474886B (en) Optical filter with color enhancement
US20220365256A1 (en) Textured Glass Layers in Electronic Devices
JP2019528484A (en) Optical element for improving human color vision
KR20200095523A (en) Optical device for enhancing human color vision with improved appearance
US10371967B2 (en) Predefined reflective appearance eyewear lens with balance chroma enhancement visual perception
US8218108B2 (en) Liquid crystal display panel and liquid crystal display device
US10928569B2 (en) Angle-insensitive multi-wavelength optical filters with hue control
US20040191682A1 (en) Scratch masking coatings for optical substrates
JP3911046B2 (en) Optical member having wavelength selectivity
JP2022500690A (en) An optic with a stack of layered packets, and a method for manufacturing the optic.
US20170219849A1 (en) Laser Protection Eyewear Lenses
JPS63175824A (en) Light shielding lens
WO2020025595A1 (en) Method and system for determining a lens of customized color
CA1249495A (en) Anti-reflection coating for visual display screens
CN114730030B (en) Solar lens with hyperchromatic enhancement characteristics
JPH07192660A (en) Image display device
JP2007183412A (en) Optical member having wavelength selectivity
Klug et al. Design and manufacturing of ophthalmic antireflection coatings with low angular color shift
EP4067981A1 (en) Lens cosmetic appearance customization from variable skin reflectance
TWI768385B (en) Display device
JP2004037499A5 (en)
JP2007183411A (en) Optical member having wavelength selectivity
US11675108B2 (en) High performance colour corrective anti-reflection coating for visible wavelength optical elements
JPH1184122A (en) Color filter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070126

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term