JPH09281161A - Voltage sensor - Google Patents

Voltage sensor

Info

Publication number
JPH09281161A
JPH09281161A JP9681196A JP9681196A JPH09281161A JP H09281161 A JPH09281161 A JP H09281161A JP 9681196 A JP9681196 A JP 9681196A JP 9681196 A JP9681196 A JP 9681196A JP H09281161 A JPH09281161 A JP H09281161A
Authority
JP
Japan
Prior art keywords
voltage
current
measured
measurement
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9681196A
Other languages
Japanese (ja)
Inventor
Kiyoshi Nakajima
清 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP9681196A priority Critical patent/JPH09281161A/en
Publication of JPH09281161A publication Critical patent/JPH09281161A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PROBLEM TO BE SOLVED: To largely improve the measuring accuracy in the case of measuring the voltage of a voltage to be measured by stabilizing the value of both a primary measured current and a secondary measured current even if the atmospheric temperature is changed or the temperature of a resistor itself is varied owing to self-heating. SOLUTION: A voltage to be measured is divided by three resistors 6, 7, 8 to generate primary measured divided voltages, which are buffered to secondary measured divided voltages by a voltage buffer 12 formed out of an operational amplifier 10 and transistor 13, then the secondary voltages are voltage/ current-converted by a resistor 15 having a small temperature coefficient and primary coil 16 having small temperature coefficient to generate a primary measured current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、測定対象となる測
定電圧を取り込んで、この測定電圧を電圧/電流変換し
た後、この電流の値を測定して、前記測定電圧の値を判
定する電圧センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention takes in a measurement voltage to be measured, converts this measurement voltage into a voltage / current, and then measures the value of this current to determine the value of the measurement voltage. Regarding sensors.

【0002】[0002]

【従来の技術】測定対象となる測定電圧を取り込んで、
電圧/電流変換するとともに、零磁束法(サーボ型)や
磁束測定法などによって、前記電圧/電流変換動作で得
られた2次測定電流の大きさを測定する電圧センサとし
て、従来、図5に示すものが知られている。
2. Description of the Related Art Taking in a measurement voltage to be measured,
Conventionally, as a voltage sensor for converting the voltage / current and measuring the magnitude of the secondary measurement current obtained by the voltage / current conversion operation by the zero magnetic flux method (servo type) or the magnetic flux measuring method, it is conventionally shown in FIG. The ones shown are known.

【0003】この図に示す電圧センサ101は、測定対
象となっている測定電圧を受ける第1入力端子102、
及び第2入力端子103と、これら第1、第2入力端子
102、103に入力された測定電圧を電圧/電流変換
して1次測定電流を生成する電圧/電流変換回路104
と、磁気センサ(図示は省略する)を使用した零磁束法
(サーボ型)や磁束測定法などによって、電圧/電流変
換回路104で得られた1次測定電流と対応する2次測
定電流を発生して、前記測定電圧の大きさを測定する電
流値測定回路105とを備えており、測定対象となる測
定電圧を取り込んで、電圧/電流変換するとともに、零
磁束法(サーボ型)や磁束測定法などによって前記電圧
/電流変換動作で得られた1次電流の大きさを測定し
て、前記測定電圧の電圧値を示す信号を出力する。
A voltage sensor 101 shown in this figure has a first input terminal 102 for receiving a measurement voltage to be measured,
And a second input terminal 103, and a voltage / current conversion circuit 104 for converting a measurement voltage input to the first and second input terminals 102 and 103 into a voltage / current to generate a primary measurement current.
And a secondary measurement current corresponding to the primary measurement current obtained by the voltage / current conversion circuit 104 by a zero magnetic flux method (servo type) using a magnetic sensor (not shown) or a magnetic flux measurement method. And a current value measuring circuit 105 for measuring the magnitude of the measured voltage, which takes in a measured voltage to be measured and converts it into a voltage / current, and a zero magnetic flux method (servo type) or magnetic flux measurement. The magnitude of the primary current obtained by the voltage / current conversion operation is measured by a method or the like, and a signal indicating the voltage value of the measured voltage is output.

【0004】この場合、電圧/電流変換回路104は、
一端が第1入力端子102に接続されるドロップ用の抵
抗106と、一端が抵抗106の他端に接続されるドロ
ップ用の抵抗107と、一端が抵抗107の他端に接続
され、他端が第2入力端子103に接続される1次コイ
ル108と、磁気コア(図示は省略する)によって1次
コイル108と磁気的に結合され、1次コイル108に
流れる1次測定電流に応じた2次測定電流を発生する2
次コイル109とを備えており、第1、第2入力端子1
02、103に入力された測定電圧を取り込んで、抵抗
106、107の抵抗値および1次コイル108の抵抗
値に応じた1次測定電流を生成するとともに、この1次
コイル108と磁気結合された2次コイル109に2次
測定電流を発生させ、これを電流値測定回路105に供
給する。
In this case, the voltage / current conversion circuit 104 is
A drop resistor 106 having one end connected to the first input terminal 102, a drop resistor 107 having one end connected to the other end of the resistor 106, one end connected to the other end of the resistor 107, and the other end The primary coil 108 connected to the second input terminal 103 is magnetically coupled to the primary coil 108 by a magnetic core (not shown), and the secondary coil corresponding to the primary measurement current flowing through the primary coil 108. Generates measurement current 2
A second coil 109, and the first and second input terminals 1
The measurement voltage input to 02 and 103 is taken in to generate a primary measurement current according to the resistance values of the resistors 106 and 107 and the resistance value of the primary coil 108, and magnetically coupled to the primary coil 108. A secondary measurement current is generated in the secondary coil 109 and is supplied to the current value measuring circuit 105.

【0005】電流値測定回路105は、磁気センサなど
を利用した零磁束法(サーボ型)や磁束測定法などによ
って電圧/電流変換回路104から出力される2次測定
電流の大きさを測定し、この測定結果を予め設定された
信号形式で出力する。
The current value measuring circuit 105 measures the magnitude of the secondary measurement current output from the voltage / current conversion circuit 104 by the zero magnetic flux method (servo type) utilizing a magnetic sensor or the like, or the magnetic flux measuring method, The measurement result is output in a preset signal format.

【0006】この際、零磁束法によって電圧/電流変換
回路104から出力される2次測定電流の大きさを測定
するときには、2次コイル109に流れる2次測定電流
と逆方向の補償電流を流して、前記磁気コアのスリット
内に介挿された磁気センサ(図示は省略する)で測定さ
れる前記磁気コア中の磁束が零になるときの、補償電流
の値を前記2次測定電流の値と判定し、この判定結果を
前記測定電圧の電圧として、予め設定されている形式の
信号で出力する。
At this time, when measuring the magnitude of the secondary measurement current output from the voltage / current conversion circuit 104 by the zero magnetic flux method, a compensation current in the opposite direction to the secondary measurement current flowing through the secondary coil 109 is passed. Then, the value of the compensation current when the magnetic flux in the magnetic core measured by a magnetic sensor (not shown) inserted in the slit of the magnetic core becomes zero is the value of the secondary measurement current. Then, the result of this determination is output as a signal of the preset voltage as the voltage of the measured voltage.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た従来の電圧センサ101においては、次に述べるよう
な問題があった。
However, the above-mentioned conventional voltage sensor 101 has the following problems.

【0008】すなわち、図5に示す電圧センサ101で
は、電圧/電流変換回路104に設けられた各抵抗10
6、107の値と、1次コイル108の抵抗値とに応じ
て、次式に示す如くオームの法則で規定される電流値の
1次測定電流を発生させている。
That is, in the voltage sensor 101 shown in FIG. 5, each resistor 10 provided in the voltage / current conversion circuit 104 is connected.
According to the values of 6 and 107 and the resistance value of the primary coil 108, a primary measurement current having a current value defined by Ohm's law is generated as shown in the following equation.

【0009】[0009]

【数1】 I1 =V1 /(R1 +R2 +R3 ) …(1) 但し、I1 :一次測定電流の値 V1 :測定電圧の値 R1 :抵抗106の値 R2 :抵抗107の値 R3 :1次コイル108の抵抗値 この際、測定電圧の値が高いとき、2つの抵抗106、
107として、酸化金属皮膜抵抗などの耐高電圧仕様の
抵抗を使用しなければならないが、このような抵抗は、
一般的に温度係数が高いため、雰囲気温度や自己発熱の
影響を受けて、抵抗値が変化してしまう。
[Formula 1] I 1 = V 1 / (R 1 + R 2 + R 3 ) ... (1) where I 1 is the value of the primary measurement current V 1 : the value of the measurement voltage R 1 : the value of the resistor 106 R 2 : the resistance 107 values R 3: in this case the resistance value of the primary coil 108, when the value of the measured voltage is high, two resistors 106,
A high-voltage resistant resistor such as a metal oxide film resistor must be used as 107.
Generally, since the temperature coefficient is high, the resistance value changes due to the influence of the ambient temperature and self-heating.

【0010】このため、測定電圧の値が同じ場合でも、
雰囲気温度などが変化すると、抵抗106、107の抵
抗値が変化して、図6に示す如く1次測定電流の値が変
化してしまい、これに応じて図7に示す如く2次測定電
流の値が変化して、測定精度が悪くなってしまうという
問題があった。
Therefore, even if the measured voltage values are the same,
When the ambient temperature or the like changes, the resistance values of the resistors 106 and 107 change, and the value of the primary measurement current changes as shown in FIG. 6, and accordingly, the secondary measurement current of the secondary measurement current changes as shown in FIG. There is a problem in that the value changes and the measurement accuracy deteriorates.

【0011】本発明は上記の事情に鑑みてなされたもの
であり、その目的は、雰囲気温度が変化したり、自己発
熱によって抵抗自身の温度が変化しても、1次測定電流
の値を安定化させて、2次測定電流を安定化させること
ができ、これによって測定電圧の電圧を測定する際、測
定精度を大幅に向上させることができる電圧センサを提
供することにある。
The present invention has been made in view of the above circumstances, and its object is to stabilize the value of the primary measurement current even if the ambient temperature changes or the temperature of the resistor itself changes due to self-heating. The present invention is to provide a voltage sensor that can stabilize the secondary measurement current and thereby significantly improve the measurement accuracy when measuring the voltage of the measurement voltage.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1の発明は、測定対象となっている測定電
圧を取り込んで、電圧/電流変換し、これによって得ら
れた電流に基づき、前記測定電圧の電圧値を測定する電
圧センサにおいて、温度係数が揃えられた複数の抵抗を
有し、前記測定電圧が入力されたとき、これを分圧し
て、測定分圧電圧を生成する分圧部と、温度係数が小さ
い抵抗を有し、前記分圧部から出力される測定分圧電圧
を電圧/電流変換して測定電流を生成する電圧/電流変
換部と、この電圧電流変換部で生成された測定電流の電
流値に基づき、前記測定電圧の電圧値を測定する電流値
測定部と、を備えたことを特徴とするものである。
In order to achieve the above object, the invention of claim 1 takes in a measured voltage to be measured, converts it into a voltage / current, and converts it into a current obtained. Based on the above, in the voltage sensor for measuring the voltage value of the measurement voltage, the voltage sensor has a plurality of resistors having a uniform temperature coefficient, and when the measurement voltage is input, the voltage is divided to generate a measurement divided voltage. A voltage dividing unit, a voltage / current converting unit that has a resistor with a small temperature coefficient, converts the measured divided voltage output from the voltage dividing unit into a voltage / current, and generates a measuring current; And a current value measuring unit that measures the voltage value of the measurement voltage based on the current value of the measurement current generated in (1).

【0013】請求項2の発明は、請求項1に記載の電圧
センサにおいて、前記電圧/電流変換部の抵抗として炭
素皮膜抵抗を使用し、この炭素皮膜抵抗と前記電圧/電
流変換部を構成する1次コイルとによって前記分圧部か
ら出力される測定分圧電圧を電圧/電流変換するととも
に、電流値測定部によって前記1次コイルと磁気的に結
合された2次コイルを使用した零磁束法(サーボ型)ま
たは磁束測定法によって、前記電圧/電流変換動作で得
られた測定電流の電流値を判定し、この判定結果に基づ
き、前記測定電圧の電圧値を判定することを特徴とする
ものである。
According to a second aspect of the present invention, in the voltage sensor according to the first aspect, a carbon film resistor is used as a resistance of the voltage / current converter, and the carbon film resistor and the voltage / current converter are constituted. A zero magnetic flux method using a secondary coil, which converts a measured divided voltage output from the voltage dividing unit by a primary coil into a voltage / current, and uses a secondary coil magnetically coupled to the primary coil by a current value measuring unit. (Servo type) or magnetic flux measurement method is used to determine the current value of the measurement current obtained by the voltage / current conversion operation, and the voltage value of the measurement voltage is determined based on the determination result. Is.

【0014】ている。It is.

【0015】上記の構成により、請求項1では、測定対
象となっている測定電圧を取り込んで、電圧/電流変換
し、これによって得られた電流に基づき、前記測定電圧
の電圧値を測定する電圧センサにおいて、温度係数が揃
えられた複数の抵抗を有する分圧部によって、測定電圧
が入力されたとき、これを分圧して、測定分圧電圧を生
成し、温度係数が小さい抵抗をする電圧/電流変換部に
よって、前記分圧部から出力される測定分圧電圧を電圧
/電流変換して測定電流を生成しながら、電流値測定部
によって前記測定電流の電流値に基づき、前記測定電圧
の電圧値を測定することにより、雰囲気温度が変化した
り、自己発熱によって抵抗自身の温度が変化しても、1
次測定電流の値を安定化させて、2次測定電流を安定化
させ、これによって測定電圧の電圧を測定する際、測定
精度を大幅に向上させる。
According to the above structure, in the first aspect, the voltage for measuring the voltage value of the measurement voltage is obtained by taking in the measurement voltage to be measured, converting the voltage / current, and obtaining the current. In the sensor, when a measurement voltage is input by a voltage dividing unit having a plurality of resistors having a uniform temperature coefficient, this voltage is divided to generate a measurement divided voltage, and a voltage having a resistance with a small temperature coefficient Based on the current value of the measured current by the current value measuring unit, the voltage of the measured voltage is generated by the current value measuring unit while voltage / current converting the measured divided voltage output from the voltage dividing unit by the current converter to generate the measured current. By measuring the value, even if the ambient temperature changes or the temperature of the resistor itself changes due to self-heating, 1
The value of the secondary measurement current is stabilized to stabilize the secondary measurement current, thereby significantly improving the measurement accuracy when measuring the voltage of the measurement voltage.

【0016】また、請求項2では、請求項1に記載の電
圧センサにおいて、前記電圧/電流変換部を構成する抵
抗として、炭素皮膜抵抗を使用し、この炭素皮膜抵抗と
1次コイルとによって前記分圧部から出力される測定分
圧電圧を電圧/電流変換するとともに、電流値測定部に
よって前記1次コイルと磁気的に結合させた2次コイル
を使用した零磁束法(サーボ型)または磁束測定法で、
前記電圧/電流変換処理で得られた測定電流の電流値を
判定し、この判定結果に基づき、前記測定電圧の電圧値
を判定することにより、上述した請求項1と同様に、雰
囲気温度が変化したり、自己発熱によって抵抗自身の温
度が変化しても、1次測定電流の値を安定化させて、2
次測定電流を安定化させ、これによって測定電圧の電圧
を測定する際、測定精度を大幅に向上させる。
According to a second aspect of the present invention, in the voltage sensor according to the first aspect, a carbon film resistor is used as a resistor forming the voltage / current conversion section, and the carbon film resistor and the primary coil are used to form the voltage sensor. Zero-flux method (servo type) or magnetic flux using the secondary coil magnetically coupled with the primary coil by the current value measuring unit while converting the measured divided voltage output from the voltage dividing unit into voltage / current In the measurement method,
By determining the current value of the measurement current obtained by the voltage / current conversion process and determining the voltage value of the measurement voltage based on the determination result, the ambient temperature changes as in claim 1 described above. Even if the temperature of the resistor itself changes due to self-heating, the value of the primary measurement current is stabilized and
The next measurement current is stabilized, which greatly improves the measurement accuracy when measuring the voltage of the measurement voltage.

【0017】[0017]

【発明の実施の形態】図1は本発明による電圧センサの
一実施の形態を示す回路図である。
1 is a circuit diagram showing an embodiment of a voltage sensor according to the present invention.

【0018】この図に示す電圧センサ1は、測定対象と
なっている測定電圧を受ける第1、第2入力端子2、3
と、これら第1、第2入力端子2、3に入力された測定
電圧を電圧/電流変換して2次測定電流を生成する電圧
/電流変換回路4と、磁気センサを使用したサーボ型や
磁束測定法などによって、電圧/電流変換回路4から出
力される2次測定電流の大きさを測定する電流値測定回
路5とを備えており、測定対象となる測定電圧を取り込
んで、電圧/電流変換するとともに、零磁束法(サーボ
型)や磁束測定法などによって前記電圧/電流変換動作
で得られた2次測定電流の大きさを測定する。
The voltage sensor 1 shown in this figure has first and second input terminals 2, 3 for receiving a measurement voltage to be measured.
And a voltage / current conversion circuit 4 for converting a measurement voltage input to these first and second input terminals 2 and 3 into a secondary measurement current by voltage / current conversion, and a servo type or magnetic flux using a magnetic sensor. It is provided with a current value measuring circuit 5 that measures the magnitude of the secondary measurement current output from the voltage / current conversion circuit 4 according to a measurement method or the like. At the same time, the magnitude of the secondary measurement current obtained by the voltage / current conversion operation is measured by the zero magnetic flux method (servo type) or the magnetic flux measurement method.

【0019】この場合、電圧/電流変換回路4は、一端
が第1入力端子2に接続される分圧用の抵抗6と、一端
が抵抗6の他端に接続される分圧用の抵抗7と、一端が
抵抗7の他端に接続され、他端が第2入力端子3に接続
される分圧用の抵抗8と、非反転入力端子が抵抗7、8
の接続点9に接続される演算増幅器10と、ベースが演
算増幅器10の出力端子に接続され、コレクタが定電圧
ライン11に接続され、エミッタが演算増幅器10の反
転入力端子に接続され、演算増幅器10と協調して、電
圧バッファ回路12として動作するトランジスタ13
と、カソードがトランジスタ13のベースに接続され、
アノードがトランジスタ13のエミッタに接続され、ト
ランジスタ13が逆バイアスされるのを防止するダイオ
ード14と、一端がトランジスタ13のエミッタに接続
される分圧用の抵抗15と、一端が抵抗15の他端に接
続され、他端が接地される1次コイル16と、各端が電
流値測定回路5の各入力端子に接続される2次コイル1
7と、これら1次コイル16、2次コイル17を磁気的
に結合する磁気コア(図示は省略する)とを備えてい
る。
In this case, the voltage / current conversion circuit 4 has a voltage dividing resistor 6 having one end connected to the first input terminal 2 and a voltage dividing resistor 7 having one end connected to the other end of the resistor 6. One end is connected to the other end of the resistor 7 and the other end is connected to the second input terminal 3 for voltage division 8, and the non-inverting input terminal is the resistors 7, 8
, An operational amplifier having a base connected to the output terminal of the operational amplifier 10, a collector connected to the constant voltage line 11, and an emitter connected to the inverting input terminal of the operational amplifier 10. Transistor 13 operating as voltage buffer circuit 12 in cooperation with 10.
And the cathode is connected to the base of transistor 13,
The diode 14 has an anode connected to the emitter of the transistor 13 and prevents the transistor 13 from being reverse biased, a resistor 15 for voltage division having one end connected to the emitter of the transistor 13, and one end connected to the other end of the resistor 15. A primary coil 16 which is connected and whose other end is grounded, and a secondary coil 1 whose each end is connected to each input terminal of the current value measuring circuit 5.
7 and a magnetic core (not shown) that magnetically couples the primary coil 16 and the secondary coil 17.

【0020】そして、第1、第2入力端子2、3に入力
された測定電圧を取り込んで、抵抗6、7、8の抵抗値
に応じた分圧比で、前記測定電圧を分圧して測定分圧電
圧を生成するとともに、演算増幅器10およびトランジ
スタ13によって構成される電圧バッファ回路12によ
って前記測定分圧電圧をバッファリングしながら、抵抗
15の抵抗値および1次コイル16の抵抗値に応じた1
次測定電流を生成し、この1次コイル16と磁気的に結
合された2次コイル17に2次測定電流を発生させ、こ
れを電流値測定回路5に供給する。
Then, the measured voltage input to the first and second input terminals 2 and 3 is taken in, and the measured voltage is divided by a voltage division ratio according to the resistance value of the resistors 6, 7 and 8, and the measured voltage is divided. A voltage corresponding to the resistance value of the resistor 15 and the resistance value of the primary coil 16 is generated while generating the piezo voltage and buffering the measured divided voltage by the voltage buffer circuit 12 including the operational amplifier 10 and the transistor 13.
The secondary measurement current is generated, the secondary measurement current is generated in the secondary coil 17 magnetically coupled to the primary coil 16, and the secondary measurement current is supplied to the current value measuring circuit 5.

【0021】電流値測定回路5は、磁気センサなどを利
用した零磁束法(サーボ型)や磁束測定法などによって
電圧/電流変換回路4から出力される2次測定電流の大
きさを測定し、この測定結果を予め設定された信号形式
で出力する。
The current value measurement circuit 5 measures the magnitude of the secondary measurement current output from the voltage / current conversion circuit 4 by the zero magnetic flux method (servo type) using a magnetic sensor or the like, or the magnetic flux measurement method, The measurement result is output in a preset signal format.

【0022】この際、零磁束法によって電圧/電流変換
回路4から出力される2次測定電流の大きさを測定する
ときには、2次コイル17に流れる2次測定電流と逆方
向の補償電流を流して、前記磁気コアのスリット内に介
挿された磁気センサ(図示は省略する)で測定される前
記磁気コア中の磁束が零になるときの、補償電流の値を
前記2次測定電流の値と判定し、この判定結果を前記測
定電圧の電圧として、予め設定されている形式の信号で
出力する。
At this time, when measuring the magnitude of the secondary measurement current output from the voltage / current conversion circuit 4 by the zero magnetic flux method, a compensation current in the opposite direction to the secondary measurement current flowing through the secondary coil 17 is passed. Then, the value of the compensation current when the magnetic flux in the magnetic core measured by a magnetic sensor (not shown) inserted in the slit of the magnetic core becomes zero is the value of the secondary measurement current. Then, the result of this determination is output as a signal of the preset voltage as the voltage of the measured voltage.

【0023】そして、電圧/電流変換回路4では、各抵
抗6、7、8として、酸化金属皮膜抵抗などの耐高電圧
仕様で、温度係数が近い抵抗が使用され、また抵抗15
として、温度係数が小さい炭素皮膜抵抗などが使用され
る。
In the voltage / current conversion circuit 4, as the resistors 6, 7 and 8, resistors having a high temperature resistance such as metal oxide film resistors and having a close temperature coefficient are used.
For example, a carbon film resistor having a small temperature coefficient is used.

【0024】これにより、雰囲気温度が変化したり、自
己発熱によって抵抗6、7、8自身の温度が変化して
も、これら抵抗6、7、8の温度係数がほぼ同じである
ことから、次式に示す如くこれら抵抗6、7、8の分圧
動作によって得られる1次測定分圧電圧の値と、前記測
定電圧の値とを比例させ、これによって図2に示す如く
これら1次測定分圧電圧の値と、前記測定電圧の値との
関係をリニアにすることができる。
As a result, even if the ambient temperature changes or the temperatures of the resistors 6, 7, 8 themselves change due to self-heating, the temperature coefficients of these resistors 6, 7, 8 are almost the same. As shown in the equation, the value of the primary measurement divided voltage obtained by the voltage dividing operation of the resistors 6, 7, and 8 is made proportional to the value of the measurement voltage, and as a result, as shown in FIG. The relationship between the piezoelectric voltage value and the measured voltage value can be made linear.

【0025】[0025]

【数2】 但し、V1 :測定電圧の電圧値 V2 :1次測定分圧電圧の電圧値 そして、この1次測定分圧電圧が電圧バッファ回路12
によってバッファリングされてトランジスタ13のエミ
ッタから次式に示す電圧値を持つ2次測定分圧電圧が出
力される。
[Equation 2] However, V 1 : voltage value of measurement voltage V 2 : voltage value of primary measurement divided voltage, and this primary measurement divided voltage is the voltage buffer circuit 12
The secondary measurement divided voltage having the voltage value shown in the following equation is output from the emitter of the transistor 13 after being buffered by the.

【0026】[0026]

【数3】V2 =V3 …(3) 但し、V3 :トランジスタ13のエミッタから出力され
る2次測定分圧電圧の値 これによって、温度係数が小さい抵抗15の値と、1次
コイル16の抵抗値とに応じて、次式に示す如くオーム
の法則で規定される、図3に示す如く安定した電流値を
持つ1次測定電流が生成され、図4に示す如く前記1次
測定電流に対応する大きさを持つ2次測定電流の値を安
定させて、電流値測定回路5によって2次測定電流の値
を測定するときの精度が大幅に向上させることができ
る。
Equation 3] V 2 = V 3 ... (3 ) where, V 3: The value of the secondary measurement divided voltage outputted from the emitter of the transistor 13 which, with the value of the resistor 15 temperature coefficient is small, the primary coil The primary measurement current having a stable current value as shown in FIG. 3, which is defined by Ohm's law as shown in the following equation, is generated according to the resistance value of 16 and the primary measurement as shown in FIG. The value of the secondary measurement current having a magnitude corresponding to the current can be stabilized, and the accuracy when the value of the secondary measurement current is measured by the current value measurement circuit 5 can be significantly improved.

【0027】[0027]

【数4】I1 =V3 /(R8 +R9 ) …(4) 但し、I1 :1次測定電流の電流値 V3 :2次測定分圧電圧の値 R8 :抵抗15の値 R9 :1次コイル16の抵抗値 このようにこの実施の形態では、3つの抵抗6、7、8
によって測定電圧を分圧して、1次測定分圧電圧を生成
し、演算増幅器10およびトランジスタ13によって構
成される電圧バッファ回路12によって前記1次測定分
圧電圧をバッファリングして2次測定分圧電圧にした
後、温度係数が小さい抵抗15と、温度係数が小さい1
次コイル16とによって前記2次測定分圧電圧を電圧/
電流変換して、1次測定電流を生成するようにしたの
で、雰囲気温度が変化したり、自己発熱によって抵抗
6、7、8自身の温度が変化しても、1次測定電流の値
を安定化させて、2次測定電流を安定化させることがで
き、これによって電圧の測定精度を大幅に向上させるこ
とができる。
## EQU4 ## I 1 = V 3 / (R 8 + R 9 ) ... (4) where I 1 is the current value of the primary measurement current V 3 is the value of the secondary measurement divided voltage R 8 is the value of the resistor 15 R 9 : Resistance value of the primary coil 16 As described above, in this embodiment, the three resistors 6, 7, 8 are provided.
The measured voltage is divided by to generate a primary measured divided voltage, and the primary measured divided voltage is buffered by the voltage buffer circuit 12 constituted by the operational amplifier 10 and the transistor 13 to generate the secondary measured divided voltage. Resistor 15 with a small temperature coefficient and 1 with a small temperature coefficient after setting the voltage
The secondary coil 16 divides the secondary measured voltage into a voltage /
Since the primary measurement current is generated by converting the current, the primary measurement current value is stable even if the ambient temperature changes or the temperature of the resistors 6, 7, 8 itself changes due to self-heating. The secondary measurement current can be stabilized and the voltage measurement accuracy can be significantly improved.

【0028】[0028]

【発明の効果】以上説明したように各請求項の発明によ
れば、雰囲気温度が変化したり、自己発熱によって抵抗
自身の温度が変化しても、1次測定電流の値を安定化さ
せて、2次測定電流を安定化させることができ、これに
よって測定電圧の電圧を測定する際、測定精度を大幅に
向上させることができる。
As described above, according to the invention of each claim, the value of the primary measurement current is stabilized even if the ambient temperature changes or the temperature of the resistor itself changes due to self-heating. It is possible to stabilize the secondary measurement current, which can greatly improve the measurement accuracy when measuring the voltage of the measurement voltage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電圧センサの一実施の形態を示す
回路図である。
FIG. 1 is a circuit diagram showing an embodiment of a voltage sensor according to the present invention.

【図2】図1に示す各抵抗の分圧動作例を示すグラフで
ある。
FIG. 2 is a graph showing an example of voltage dividing operation of each resistor shown in FIG.

【図3】図1に示す抵抗、1次コイルの電圧/電流変換
動作例を示すグラフである。
FIG. 3 is a graph showing an example of voltage / current conversion operation of the resistance and the primary coil shown in FIG.

【図4】図1に示す1次コイルに流れる1次測定電流
と、2次コイルに流れる2次測定電流との関係例を示す
グラフである。
FIG. 4 is a graph showing an example of the relationship between the primary measurement current flowing through the primary coil shown in FIG. 1 and the secondary measurement current flowing through the secondary coil.

【図5】従来から知られている電圧センサの一例を示す
回路図である。
FIG. 5 is a circuit diagram showing an example of a conventionally known voltage sensor.

【図6】図5に示す各抵抗、1次コイルの電圧/電流変
換動作例を示すグラフである。
6 is a graph showing a voltage / current conversion operation example of each resistance and the primary coil shown in FIG.

【図7】図5に示す1次コイルに流れる1次測定電流
と、2次コイルに流れる2次測定電流との関係例を示す
グラフである。
FIG. 7 is a graph showing an example of the relationship between the primary measurement current flowing through the primary coil shown in FIG. 5 and the secondary measurement current flowing through the secondary coil.

【符号の説明】[Explanation of symbols]

1 電圧センサ 2 第1入力端子 3 第2入力端子 4 電圧/電流変換回路 5 電流値測定回路(電流値測定部) 6、7、8 抵抗(分圧部) 9 接続点 10 演算増幅器 11 定電圧ライン 12 電圧バッファ回路 13 トランジスタ 14 ダイオード 15 抵抗(電圧/電流変換部) 16 1次コイル(電圧/電流変換部) 17 2次コイル 1 Voltage Sensor 2 1st Input Terminal 3 2nd Input Terminal 4 Voltage / Current Conversion Circuit 5 Current Value Measuring Circuit (Current Value Measuring Section) 6, 7, 8 Resistance (Voltage Division Section) 9 Connection Point 10 Operational Amplifier 11 Constant Voltage Line 12 Voltage buffer circuit 13 Transistor 14 Diode 15 Resistor (voltage / current converter) 16 Primary coil (voltage / current converter) 17 Secondary coil

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年3月3日[Submission date] March 3, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0010】このため、測定電圧の値が同じ場合でも、
雰囲気温度などが変化すると、抵抗106、107の抵
抗値が変化して、図6に示す如く1次測定電流の値が変
化してしまう。1次電流と2次電流の比は安定している
ため、これに応じて図7に示す如く2次測定電流の値が
変化して、測定精度が悪くなってしまうという問題があ
った。
Therefore, even if the measured voltage values are the same,
When the ambient temperature or the like changes, the resistance values of the resistors 106 and 107 change, and the value of the primary measurement current changes as shown in FIG. Since the ratio of the primary current and the secondary current is stable, the value of the secondary measurement current changes accordingly as shown in FIG. 7, resulting in a problem that the measurement accuracy deteriorates.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図4[Correction target item name] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図4】図1に示す測定電圧と、2次コイルに流れる2
次測定電流との関係を示すグラフである。
FIG. 4 shows the measured voltage shown in FIG. 1 and 2 flowing in the secondary coil.
It is a graph which shows the relationship with the next measurement electric current.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図7[Name of item to be corrected] Figure 7

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図7】図5に示す測定電圧と、2次コイルに流れる2
次測定電流との関係を示すグラフである。
FIG. 7 shows the measured voltage shown in FIG. 5 and 2 flowing in the secondary coil.
It is a graph which shows the relationship with the next measurement electric current.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図4[Correction target item name] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図4】 FIG. 4

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図7[Name of item to be corrected] Figure 7

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図7】 FIG. 7

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 測定対象となっている測定電圧を取り込
んで、電圧/電流変換し、これによって得られた電流に
基づき、前記測定電圧の電圧値を測定する電圧センサに
おいて、 温度係数が揃えられた複数の抵抗を有し、前記測定電圧
が入力されたとき、これを分圧して、測定分圧電圧を生
成する分圧部と、 温度係数が小さい抵抗を有し、前記分圧部から出力され
る測定分圧電圧を電圧/電流変換して測定電流を生成す
る電圧/電流変換部と、 この電圧電流変換部で生成された測定電流の電流値に基
づき、前記測定電圧の電圧値を測定する電流値測定部
と、 を備えたことを特徴とする電圧センサ。
1. A voltage sensor for measuring a voltage value of a measured voltage by taking in a measured voltage to be measured, converting the voltage / current, and measuring a voltage value of the measured voltage based on a current obtained by the voltage / current conversion. When the measured voltage is input, it has a plurality of resistors and divides the measured voltage to generate a measured divided voltage. The voltage divider has a resistor with a small temperature coefficient and is output from the voltage divider. A voltage / current converter that generates a measurement current by converting the measured divided voltage into a voltage / current, and the voltage value of the measurement voltage is measured based on the current value of the measurement current generated by the voltage-current converter. A voltage sensor, comprising:
【請求項2】 請求項1に記載の電圧センサにおいて、 前記電圧/電流変換部の抵抗として炭素皮膜抵抗を使用
し、この炭素皮膜抵抗と前記電圧/電流変換部を構成す
る1次コイルとによって前記分圧部から出力される測定
分圧電圧を電圧/電流変換するとともに、電流値測定部
によって前記1次コイルと磁気的に結合された2次コイ
ルを使用した零磁束法(サーボ型)または磁束測定法に
よって、前記電圧/電流変換動作で得られた測定電流の
電流値を判定し、この判定結果に基づき、前記測定電圧
の電圧値を判定することを特徴とする電圧センサ。
2. The voltage sensor according to claim 1, wherein a carbon film resistor is used as a resistance of the voltage / current conversion unit, and the carbon film resistance and the primary coil forming the voltage / current conversion unit are used. A zero magnetic flux method (servo type) using a secondary coil magnetically coupled to the primary coil by a current value measuring unit while converting the measured divided voltage output from the voltage dividing unit into a voltage / current, or A voltage sensor characterized in that a current value of a measurement current obtained by the voltage / current conversion operation is determined by a magnetic flux measurement method, and the voltage value of the measurement voltage is determined based on the determination result.
JP9681196A 1996-04-18 1996-04-18 Voltage sensor Pending JPH09281161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9681196A JPH09281161A (en) 1996-04-18 1996-04-18 Voltage sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9681196A JPH09281161A (en) 1996-04-18 1996-04-18 Voltage sensor

Publications (1)

Publication Number Publication Date
JPH09281161A true JPH09281161A (en) 1997-10-31

Family

ID=14174992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9681196A Pending JPH09281161A (en) 1996-04-18 1996-04-18 Voltage sensor

Country Status (1)

Country Link
JP (1) JPH09281161A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005186A1 (en) * 2010-07-07 2012-01-12 Necエナジーデバイス株式会社 Voltage measuring circuit and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005186A1 (en) * 2010-07-07 2012-01-12 Necエナジーデバイス株式会社 Voltage measuring circuit and method
CN103026245A (en) * 2010-07-07 2013-04-03 Nec能源元器件株式会社 Voltage measuring circuit and method
US9395394B2 (en) 2010-07-07 2016-07-19 Nec Energy Devices, Ltd. Voltage measuring circuit and method

Similar Documents

Publication Publication Date Title
US5741074A (en) Linear integrated sensing transmitter sensor
US7775711B2 (en) Temperature measurement device and measurement method
JPS58210530A (en) Resistance thermometer
US4349777A (en) Variable current source
JPH03261869A (en) Apparatus for correcting output signal of hall element
JP4274385B1 (en) Temperature measurement circuit in a flow meter
US4190796A (en) Pressure detecting apparatus having linear output characteristic
US5475623A (en) Method for the conversion of a measured signal, a converter as well as a measurement setup and a pirani measuring circuit
JPH09281161A (en) Voltage sensor
EP0213407A2 (en) Method and apparatus for body temperature measurement with multiple probe types
US4336494A (en) Insulation resistance tester
JP2001343401A (en) Electric current detector
Trott et al. Improved accuracy and linearity of Hall probes and their application to linked scans
JP3766855B2 (en) Current transformer
CN112255583B (en) Error compensation method for direct current transformer
JP3015673B2 (en) Method and apparatus for controlling air-fuel ratio sensor
US3021480A (en) Voltage compensation
CN110987223B (en) Improved high-precision platinum resistor temperature measuring circuit
JP2002006014A (en) Magnetic sensor
JPH0720155A (en) Temperature coefficient measuring method for hall element and temperature compensation method for current detector
JPS6139948Y2 (en)
JP2610736B2 (en) Amplification compensation circuit of semiconductor pressure sensor
JP2517537B2 (en) Humidity measurement circuit
JPH05288785A (en) Circuit of digital resistance measuring equipment
KR930004426Y1 (en) Circuit for detecting resistance temperature detector