JPH09280633A - Method for automatically setting address of air conditioning system - Google Patents

Method for automatically setting address of air conditioning system

Info

Publication number
JPH09280633A
JPH09280633A JP8086551A JP8655196A JPH09280633A JP H09280633 A JPH09280633 A JP H09280633A JP 8086551 A JP8086551 A JP 8086551A JP 8655196 A JP8655196 A JP 8655196A JP H09280633 A JPH09280633 A JP H09280633A
Authority
JP
Japan
Prior art keywords
indoor
outdoor
indoor unit
address
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8086551A
Other languages
Japanese (ja)
Other versions
JP3691156B2 (en
Inventor
Kazutoyo Kagami
一豊 鏡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP08655196A priority Critical patent/JP3691156B2/en
Publication of JPH09280633A publication Critical patent/JPH09280633A/en
Application granted granted Critical
Publication of JP3691156B2 publication Critical patent/JP3691156B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable an address to be accurately set by a method wherein an operating time of a compressor is changed in response to a surrounding air temperature when an address is set in an indoor device in response to a cooperative relation between the indoor device where a temperature of a heat exchanger shows a variation more than a predetermined temperature difference across an operation of the compressor and an outdoor device performed the operation. SOLUTION: Control systems of each of the outdoor devices 1 to 3 and the indoor devices 4 to 16 are connected by a communication line 17 and they can be controlled by remote controllers 18 to 27. When an address is set to each of the indoor devices, an optional outdoor device, for example, the outdoor device 2 is operated for heating operation when an air conditioning system is installed, refrigerant is circulated to the indoor heat exchangers of each of the indoor devices 5 to 8 belonging to the refrigerant system of the outdoor device 2 so as to detect a variation in temperature in the device. Then, an address is assigned to each of the indoor devices storing the heat exchanger indicating a predetermined variation in temperature. In this case, a variation value of temperature at the heat exchanger corresponding to the surrounding air temperature is applied for discriminating a variation in temperature of the heat exchanger in setting address so as to enable a more accurate address setting to be attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、1台または複数台
の室外機および複数台の室内機からなり、制御系が同一
の通信配線を介して接続された空気調和システムに係
り、より詳しくは各室内機に当該室内機の属性を表すア
ドレスを自動設定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioning system including one or a plurality of outdoor units and a plurality of indoor units, and a control system connected to each other through the same communication wiring. The present invention relates to a method of automatically setting an address indicating an attribute of the indoor unit in each indoor unit.

【0002】[0002]

【従来の技術】一般に、大型ビル等の空気調和システム
には、複数の室外機およびその各室外機にさらに複数の
室内機を組み合わせた構成が用いられる。これらの各室
外機および室内機は互いに独立あるいは協働して運転さ
れるため、制御系を連動させる必要がある。そのため
に、各室外機および室内機の制御系に通信線を配線して
必要なデータを各制御系に送信することが行われる。
2. Description of the Related Art Generally, an air conditioning system for a large building or the like uses a plurality of outdoor units and a configuration in which each of the outdoor units is further combined with a plurality of indoor units. Since these outdoor units and indoor units are operated independently or in cooperation with each other, it is necessary to interlock the control system. Therefore, communication lines are wired to the control systems of the outdoor units and the indoor units to transmit necessary data to the control systems.

【0003】しかし、従来のシステムでは各室外機ごと
の単位で(すなわち、冷媒系統ごとに)室外機と室内機
との間に通信線を配線しており、各冷媒系統ごとに通信
線を配線することは配線数の増加や複雑化を招来し、シ
ステム設置時の配線ミス等を誘発する原因となる。そこ
で、一本の通信線で各室外機および室内機の制御系を接
続したシステムが提案されている。
However, in the conventional system, a communication line is wired between the outdoor unit and the indoor unit for each outdoor unit (that is, for each refrigerant system), and the communication line is wired for each refrigerant system. Doing so leads to an increase in the number of wirings and complication, which causes wiring mistakes and the like during system installation. Therefore, a system has been proposed in which the control system of each outdoor unit and indoor unit is connected by one communication line.

【0004】このようなシステムでは、一本の通信線に
複数の室外機および室内機が接続されるため、室外機と
室内機の対応関係を明確にする必要があり、この対応関
係の明確化のために、各室内機に対して当該室内自身を
特定する識別符号であるアドレスを設定することが行わ
れる。通常、このアドレスの設定はシステムの設置時に
行われるが、設置員による手動設定では設定ミスが発生
する場合があるため、自動設定が求められる。
In such a system, since a plurality of outdoor units and indoor units are connected to one communication line, it is necessary to clarify the correspondence between the outdoor unit and the indoor units, and to clarify this correspondence. Therefore, an address, which is an identification code for identifying the room itself, is set for each indoor unit. Normally, this address is set when the system is installed, but manual setting by an installer may cause a setting error, so automatic setting is required.

【0005】従来、アドレスの自動設定方法として、ア
ドレス設定のために室外機の圧縮機を運転して冷媒を室
内機側に供給し、圧縮機の運転前後で熱交換器温度が所
定温度差以上変化した室内機を検出して各室内機にアド
レスを設定するようにした方式が知られている(特開平
6−147605号公報参照)。
Conventionally, as an automatic address setting method, the compressor of the outdoor unit is operated to supply the refrigerant to the indoor unit side for the address setting, and the heat exchanger temperature before and after the operation of the compressor exceeds a predetermined temperature difference. A method is known in which a changed indoor unit is detected and an address is set in each indoor unit (see Japanese Patent Laid-Open No. 6-147605).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記方
式でのアドレス設定において検出すべき熱交換器温度の
変化は、季節もしくは外気温度、または室内機の配置位
置もしくは各室内機ごとの冷媒配管の長さの違い等のシ
ステム構成による影響を受け、検出すべき温度差に達す
るまでに要する時間が必ずしも各室内機において一律で
はなく、それぞれ異なることを考慮して冷媒供給時間
(すなわち、圧縮機の運転時間)を制御することが求め
られる。
However, the change of the heat exchanger temperature to be detected in the address setting in the above-mentioned method depends on the season or the outside air temperature, the position of the indoor unit, or the length of the refrigerant pipe for each indoor unit. The time required to reach the temperature difference to be detected is not necessarily uniform in each indoor unit due to the influence of the system configuration such as the difference in temperature, etc. Time) is required to be controlled.

【0007】このように、アドレスの自動設定に際して
は、外気温度等を加味したきめの細かな制御を行うこと
が望まれている。
As described above, in the automatic setting of the address, it is desired to perform fine control in consideration of the outside air temperature and the like.

【0008】本発明の目的は、外気温度等の変動要素を
考慮し、正確にアドレス設定を行いうる空気調和システ
ムのアドレス自動設定方法を提供することにある。
An object of the present invention is to provide an automatic address setting method for an air conditioning system which can accurately set an address in consideration of a variable element such as the outside air temperature.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の発明
は、1台または複数台の室外機および複数台の室内機を
有し、前記各室外機および室内機の制御系が同一の通信
配線を介して接続された空気調和システムにおいて、前
記室外機内の圧縮機を運転して冷媒を室内機側に供給し
たとき、前記圧縮機の運転前後で熱交換器温度が所定温
度差以上変化した室内機と前記運転を行った室外機との
対応関係に基づいて前記室内機にアドレスを設定する方
法において、前記圧縮機の運転時間を外気温度に応じて
変更することを特徴とする。この請求項1に記載の発明
によれば、圧縮機の運転時間を外気温度に応じて変更す
ることで、外気温度の変化に影響されることなく検出す
べき熱交換器温度の変化を確実に検出することが可能と
なり、アドレス設定の信頼性を向上しうる。
The invention according to claim 1 has one or a plurality of outdoor units and a plurality of indoor units, and the same control system for each of the outdoor units and the indoor units is used for communication. In the air conditioning system connected via wiring, when the compressor in the outdoor unit was operated and the refrigerant was supplied to the indoor unit side, the heat exchanger temperature changed by a predetermined temperature difference or more before and after the operation of the compressor. In the method of setting an address to the indoor unit based on the correspondence between the indoor unit and the outdoor unit that has performed the operation, the operating time of the compressor is changed according to the outside air temperature. According to the first aspect of the present invention, by changing the operating time of the compressor according to the outside air temperature, it is possible to reliably change the heat exchanger temperature to be detected without being affected by the change in the outside air temperature. It becomes possible to detect, and the reliability of address setting can be improved.

【0010】請求項2に記載の発明は、1台または複数
台の室外機および複数台の室内機を有し、前記各室外機
および室内機の制御系が同一の通信配線を介して接続さ
れた空気調和システムにおいて、前記室外機内の圧縮機
を運転して冷媒を室内機側に供給したとき、前記圧縮機
の運転前後で熱交換器温度が所定温度差以上変化した室
内機と前記運転を行った室外機との対応関係に基づいて
前記室内機にアドレスを設定る方法において、前記圧縮
機の起動後に、強制的に圧縮機の高圧側に必要な高圧が
発生するよう前記室外送風機または室内送風機の回転数
を外気温度に応じて変更することを特徴とする。この請
求項2に記載の発明によれば、例えばガスヒートポンプ
方式の空気調和システムのように高圧側の圧力センサを
有しておらず、必要な高圧が発生しているか否か判断で
きない場合に、室外送風機または室内送風機の回転数
(または、送風量)を外気温度に応じて変更すること
で、理論上高圧を発生させるよう制御モードに強制的に
入れることができる。
The invention according to claim 2 has one or a plurality of outdoor units and a plurality of indoor units, and the control systems of the respective outdoor units and indoor units are connected via the same communication wiring. In the air conditioning system, when the compressor in the outdoor unit is operated and the refrigerant is supplied to the indoor unit side, the indoor unit in which the heat exchanger temperature changes by a predetermined temperature difference or more before and after the operation of the compressor and the operation are In the method of setting an address to the indoor unit based on the correspondence relationship with the outdoor unit, the outdoor blower or the indoor unit so that the necessary high pressure is forcibly generated on the high pressure side of the compressor after the compressor is started. It is characterized in that the number of revolutions of the blower is changed according to the outside air temperature. According to the invention as set forth in claim 2, for example, when the pressure sensor on the high pressure side is not provided and it is not possible to determine whether or not the required high pressure is generated, as in a gas heat pump type air conditioning system, By changing the number of revolutions (or the amount of blown air) of the outdoor blower or the indoor blower according to the outside air temperature, it is possible to theoretically force the control mode to generate high pressure.

【0011】請求項3に記載の発明は、1台または複数
台の室外機および複数台の室内機を有し、前記各室外機
および室内機の制御系が同一の通信配線を介して接続さ
れた空気調和システムにおいて、前記室外機内の圧縮機
を運転して冷媒を室内機側に供給したとき、前記圧縮機
の運転前後で熱交換器温度が所定温度差以上変化した室
内機と前記運転を行った室外機との対応関係に基づいて
前記室内機にアドレスを設定することを特徴とする。こ
の請求項3に記載の発明によれば、圧縮能力制御ができ
ないような室外機を用いた空気調和システムの場合に、
前記室外機および/または室内機の送風機の制御モード
を外気温度に応じて決定することで、特に真夏時での暖
房運転によるアドレス設定時における圧縮機内の圧力
(高圧側)の過上昇を抑制することができ、安全性なら
びに信頼性が確保される。
The invention according to claim 3 has one or a plurality of outdoor units and a plurality of indoor units, and the control systems of the respective outdoor units and indoor units are connected via the same communication wiring. In the air conditioning system, when the compressor in the outdoor unit is operated and the refrigerant is supplied to the indoor unit side, the indoor unit in which the heat exchanger temperature changes by a predetermined temperature difference or more before and after the operation of the compressor and the operation are It is characterized in that an address is set to the indoor unit based on the correspondence with the outdoor unit. According to the invention of claim 3, in the case of the air conditioning system using the outdoor unit in which the compression capacity cannot be controlled,
By determining the control mode of the blower of the outdoor unit and / or the indoor unit according to the outside air temperature, it is possible to suppress an excessive rise of the pressure (high pressure side) in the compressor at the time of address setting due to heating operation especially in midsummer. It is possible to secure safety and reliability.

【0012】請求項4に記載の発明は、1台または複数
台の室外機および複数台の室内機を有し、前記各室外機
および室内機の制御系が同一の通信配線を介して接続さ
れた空気調和システムにおいて、前記室外機内の圧縮機
を運転して冷媒を室内機側に供給したとき、前記圧縮機
の運転前後で熱交換器温度が所定温度差以上変化した室
内機と前記運転を行った室外機との対応関係に基づいて
前記室内機にアドレスを設定する方法において、アドレ
ス設定開始時に前記室内機のメカ弁開度を外気温度に応
じて決定することを特徴とする。この請求項3に記載の
発明によれば、室内機のメカ弁開度を外気温度に応じて
決定することで、圧縮能力制御ができないような室外機
を用いた空気調和システムに対して、特に真夏時での暖
房運転によるアドレス設定時における圧縮機内の圧力
(高圧側)の過上昇を抑制することができ、安全性なら
びに信頼性が確保される。
The invention according to claim 4 has one or a plurality of outdoor units and a plurality of indoor units, and the control systems of the respective outdoor units and indoor units are connected via the same communication wiring. In the air conditioning system, when the compressor in the outdoor unit is operated and the refrigerant is supplied to the indoor unit side, the indoor unit in which the heat exchanger temperature changes by a predetermined temperature difference or more before and after the operation of the compressor and the operation are In the method of setting an address in the indoor unit based on the performed correspondence with the outdoor unit, the mechanical valve opening of the indoor unit is determined according to the outside air temperature at the start of address setting. According to the third aspect of the present invention, by determining the mechanical valve opening degree of the indoor unit according to the outside air temperature, particularly for an air conditioning system using the outdoor unit in which the compression capacity cannot be controlled, It is possible to suppress an excessive rise in the pressure (high pressure side) in the compressor at the time of address setting due to the heating operation in midsummer, and ensure safety and reliability.

【0013】請求項5に記載の発明は、請求項4に記載
のアドレス設定方法において、前記室内機のメカ弁開度
を圧縮機の吐出温度に応じて決定することを特徴とす
る。この請求項5に記載の発明によれば、室内機のメカ
弁開度の制御を圧縮機の吐出温度に応じて決定する態様
が示される。
According to a fifth aspect of the present invention, in the address setting method according to the fourth aspect, the mechanical valve opening of the indoor unit is determined according to the discharge temperature of the compressor. According to the invention as set forth in claim 5, a mode is shown in which the control of the mechanical valve opening degree of the indoor unit is determined according to the discharge temperature of the compressor.

【0014】請求項6に記載の発明は、1台または複数
台の室外機および複数台の室内機を有し、前記各室外機
および室内機の制御系が同一の通信配線を介して接続さ
れた空気調和システムにおいて、前記室外機内の圧縮機
を運転して冷媒を室内機側に供給したとき、前記圧縮機
の運転前後で熱交換器温度が所定温度差以上変化した室
内機と前記運転を行った室外機との対応関係に基づいて
前記室内機にアドレスを設定する方法において、前記熱
交換器温度の所定温度差を外気温度に応じて変更するこ
とを特徴とする。この請求項6に記載の発明によれば、
熱交換器温度の所定温度差を外気温度に応じて変更する
ので、熱交換器の温度が上昇したとの判断を明確にする
ことができる。つまり、外気温度が低い場合に、冷媒管
が長く、かつ室内外容量比が100%を超えるような空
調システムでは、高圧が上昇しにくいので、熱交換器温
度の上昇の有無判断を外気温度に応じて場合分けするこ
とにより、上昇判断が明確化され、外気温度の変化に影
響されることなく検出すべき熱交換器温度の変化を確実
に検出することが可能となり、アドレス設定の信頼性を
向上しうる。
The invention according to claim 6 has one or a plurality of outdoor units and a plurality of indoor units, and the control systems of the respective outdoor units and indoor units are connected through the same communication wiring. In the air conditioning system, when the compressor in the outdoor unit is operated and the refrigerant is supplied to the indoor unit side, the indoor unit in which the heat exchanger temperature changes by a predetermined temperature difference or more before and after the operation of the compressor and the operation are In the method of setting an address to the indoor unit based on the performed correspondence with the outdoor unit, a predetermined temperature difference of the heat exchanger temperature is changed according to the outside air temperature. According to the invention of claim 6,
Since the predetermined temperature difference of the heat exchanger temperature is changed according to the outside air temperature, it is possible to clarify the determination that the temperature of the heat exchanger has risen. In other words, when the outside air temperature is low, in an air conditioning system in which the refrigerant pipe is long and the indoor / outdoor capacity ratio exceeds 100%, the high pressure is difficult to rise, so it is determined whether the heat exchanger temperature has risen to the outside air temperature. Depending on the case, the rise judgment is clarified, and it becomes possible to reliably detect the change of the heat exchanger temperature that should be detected without being affected by the change of the outside air temperature, and the reliability of the address setting is improved. Can improve.

【0015】請求項7に記載の発明は、1台または複数
台の室外機および複数台の室内機を有し、前記各室外機
および室内機の制御系が同一の通信配線を介して接続さ
れた空気調和システムにおいて、前記室外機内の圧縮機
を運転して冷媒を室内機側に供給したとき、前記圧縮機
の運転前後で熱交換器温度が所定温度差以上変化した室
内機と前記運転を行った室外機との対応関係に基づいて
前記室内機にアドレスを設定する方法において、前記熱
交換器温度が変化した室内機のメカ弁開度を、変化して
いない室内機のメカ弁開度よりも絞ることを特徴とす
る。この請求項7に記載の発明によれば、熱交換器温度
が変化した室内機のメカ弁開度を変化していない室内機
のメカ弁開度よりも絞るので、室内機の馬力の大小差等
により、冷媒の分流不良が生じることを想定して、熱交
換器温度が上昇した室内機のメカ弁は、他の室内機のメ
カ弁よりも少し開度を絞ることにより、流れにくい室内
機へ冷媒を流すことができる。これにより、冷媒循環の
均質化を図ることができ冷媒配管等の構造上の違いに影
響されることなく検出すべき熱交換器温度の変化を確実
に検出することが可能となり、アドレス設定の信頼性を
向上しうる。
The invention according to claim 7 has one or a plurality of outdoor units and a plurality of indoor units, and the control systems of the respective outdoor units and indoor units are connected via the same communication wiring. In the air conditioning system, when the compressor in the outdoor unit is operated and the refrigerant is supplied to the indoor unit side, the indoor unit in which the heat exchanger temperature changes by a predetermined temperature difference or more before and after the operation of the compressor and the operation are In the method of setting an address to the indoor unit based on the correspondence relationship with the outdoor unit, the mechanical valve opening degree of the indoor unit where the heat exchanger temperature has changed is the mechanical valve opening degree of the indoor unit that has not changed. It is characterized by narrowing down rather than. According to the invention of claim 7, the mechanical valve opening degree of the indoor unit in which the heat exchanger temperature has changed is narrowed down more than the mechanical valve opening degree of the indoor unit in which the heat exchanger temperature has not changed. The mechanical valve of the indoor unit where the temperature of the heat exchanger has risen is supposed to cause poor flow distribution of the refrigerant due to the The refrigerant can be flowed to. This makes it possible to homogenize the refrigerant circulation and reliably detect changes in the heat exchanger temperature that should be detected without being affected by structural differences in the refrigerant piping, etc. Can improve the sex.

【0016】請求項8に記載の発明は、請求項1乃至7
に記載の空気調和システムの自動アドレス設定方法にお
いて、圧縮機の運転の発停前後における室内熱交換器の
温度変化が大きい場合、又は圧縮機運転後における室内
熱交換器の温度が所定値(58℃)以上となるアドレス
を設定する条件とする方法を提供する。
The invention described in claim 8 is the invention according to claims 1 to 7
In the automatic address setting method for an air conditioning system described in (3), when the temperature change of the indoor heat exchanger before and after the start and stop of the operation of the compressor is large, or the temperature of the indoor heat exchanger after the operation of the compressor is a predetermined value (58). A method of setting a condition for setting an address equal to or higher than ℃) is provided.

【0017】[0017]

【発明の実施の形態】次に、本発明の好適な実施の形態
を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments of the present invention will be described with reference to the drawings.

【0018】(I)空気調和システムの構成 図1に、本発明に係る空調システムの構成を示す。この
空気調和システムは、複数(図1では3台)の室外機1
〜3と、複数(図1では13台)の室内機4〜16とで
構成されている。さらに、空気調和システムは各室外機
1〜3ごとにグルーピングされており、室外機1と室内
機4からなる冷媒系、室外機2と室内機5〜8からなる
冷媒系、および室外機3と室内機9〜16からなる冷媒
系が構築されている。
(I) Configuration of Air Conditioning System FIG. 1 shows the configuration of the air conditioning system according to the present invention. This air conditioning system includes a plurality (three in FIG. 1) of outdoor units 1.
To 3 and a plurality (13 in FIG. 1) of indoor units 4 to 16. Further, the air conditioning system is grouped for each of the outdoor units 1 to 3, and includes a refrigerant system including the outdoor unit 1 and the indoor unit 4, a refrigerant system including the outdoor unit 2 and the indoor units 5 to 8, and the outdoor unit 3. A refrigerant system including the indoor units 9 to 16 is constructed.

【0019】各室外機1〜3および室内機4〜16の制
御系は、1本の通信線17により接続されており、信号
伝送方式にはバス方式が採用されている。
The control systems of the outdoor units 1 to 3 and the indoor units 4 to 16 are connected by a single communication line 17, and a bus system is adopted as a signal transmission system.

【0020】符号18〜27はリモートコントローラで
あり、リモートコントローラ18は室外機1と室内機4
から成る空気調和システムの運転を制御し、リモートコ
ントローラ19は室外機2と室内機5〜8から成る空気
調和システムの運転を制御し、リモートコントローラ2
0〜27はそれぞれ室内機9〜16の運転を制御する。
Reference numerals 18 to 27 are remote controllers, and the remote controller 18 includes the outdoor unit 1 and the indoor unit 4.
The remote controller 19 controls the operation of the air conditioning system including the outdoor unit 2 and the indoor units 5 to 8, and controls the operation of the air conditioning system including the remote controller 2
0 to 27 control the operation of the indoor units 9 to 16, respectively.

【0021】図2に、一つの冷媒系の詳細構成例とし
て、室外機2と室内機5〜8からなる冷媒系の構成を示
す。図2に示すように、室外機2の熱交換器40の一端
側が、四方弁41と圧縮機42を介して、室内機5〜室
内機8の各室内熱交換器50の一端側に冷媒管77によ
り接続されている。
FIG. 2 shows the configuration of a refrigerant system including the outdoor unit 2 and the indoor units 5 to 8 as an example of the detailed configuration of one refrigerant system. As shown in FIG. 2, one end side of the heat exchanger 40 of the outdoor unit 2 is connected to one end side of each indoor heat exchanger 50 of the indoor unit 5 to the indoor unit 8 via the four-way valve 41 and the compressor 42. It is connected by 77.

【0022】室外機2は、室外熱交換器40に送風する
ファン44と、外気温度を測定する外気温度センサ45
と、制御手段としてのCPU(マイクロコンピュータ)
43を有する。CPU43は外気温度センサ45の検出
温度信号および通信配線17を介して送られるデータ等
を受信し、ファン44のモータの駆動および室外機2内
の動作を統括的に制御する。
The outdoor unit 2 has a fan 44 for blowing air to the outdoor heat exchanger 40 and an outdoor air temperature sensor 45 for measuring the outdoor air temperature.
And a CPU (microcomputer) as control means
43. The CPU 43 receives the detected temperature signal of the outside air temperature sensor 45, the data sent via the communication wiring 17, and the like, and comprehensively controls the driving of the motor of the fan 44 and the operation inside the outdoor unit 2.

【0023】室内機5〜8はそれぞれ同じ構成であるも
のとして、同一部分には同一の符号を付して説明する。
各室内機5〜8は、室内熱交換器50の温度を検出する
温度検出センサ59、CPU(制御系を構成するマイク
ロコンピュータ)53、室内熱交換器50に送風するフ
ァン54、および室外機2からの冷媒循環量を調節する
メカ弁58を有する。CPU53は、温度検出センサ5
9の検出温度信号および通信配線17を介して送られる
データ等を受信し、ファン54のモータの駆動およびメ
カ弁58の開度等の室内機5〜8内を統括的に制御す
る。メカ弁58は、弁開度調節が可能であり、それぞれ
の室内熱交換器50と室外熱交換器40の間に配された
冷媒管51に接続されている。
It is assumed that the indoor units 5 to 8 have the same structure, and the same parts are designated by the same reference numerals.
Each of the indoor units 5 to 8 includes a temperature detection sensor 59 that detects the temperature of the indoor heat exchanger 50, a CPU (microcomputer that constitutes a control system) 53, a fan 54 that blows air to the indoor heat exchanger 50, and the outdoor unit 2. It has a mechanical valve 58 for adjusting the amount of refrigerant circulation from the. The CPU 53 is the temperature detection sensor 5
The temperature detection signal of 9 and the data sent via the communication wiring 17 are received, and the indoor units 5 to 8 such as the drive of the motor of the fan 54 and the opening of the mechanical valve 58 are comprehensively controlled. The mechanical valve 58 is capable of adjusting the valve opening degree, and is connected to a refrigerant pipe 51 arranged between the indoor heat exchanger 50 and the outdoor heat exchanger 40.

【0024】(II)室内機のアドレス設定方法 次に、上記空気調和システムの各室内機に対するアドレ
スの自動設定方法を説明する。
(II) Indoor Unit Address Setting Method Next, an automatic address setting method for each indoor unit of the air conditioning system will be described.

【0025】〈A〉基本手順 図3に、この実施の形態におけるアドレス設定の基本的
な手順を示す。すなわち、空気調和システムの設置時に
おいて、任意の室外機(例えば、室外機2)を暖房運転
し(ステップS100)、この室外機2の冷媒系に属す
る各室内機(例えば、5〜8)の室内熱交換器50に冷
媒を循環させることにより、室内熱交換器50の温度変
化を検出する(ステップS101)。このとき、所定の
温度変化を示す室内熱交換器50を内蔵する室内機に対
して当該室内機と特定するための識別符号であるアドレ
スの割当てを行う(ステップS102)。この手順を一
つの冷媒系内において全室外機に対して繰り返し実行す
る(ステップS103)。以下同様にステップS100
〜103の手順を順次各冷媒系について実行する。以上
のアドレス設定手順は、任意の室外機のCPU内に格納
されたアドレス設定プログラムにより自動的に行われ
る。なお、アドレス設定に際して行われる運転モードと
して暖房運転を用いる理由は、冷房運転時に比べて暖房
運転の方が熱交換器の温度変化幅を大きく、したがって
温度変化の有無の確定が明確であり、アドレス設定の信
頼性が高いからである。しかしながら、温度変化幅が大
きくとれる場合には冷房運転モードでアドレス設定する
ことは可能であり、特に本発明の範囲を限定するもので
はない。
<A> Basic Procedure FIG. 3 shows a basic procedure for address setting in this embodiment. That is, at the time of installation of the air conditioning system, an arbitrary outdoor unit (for example, the outdoor unit 2) is heated (step S100), and each indoor unit (for example, 5 to 8) belonging to the refrigerant system of the outdoor unit 2 is heated. By circulating the refrigerant through the indoor heat exchanger 50, the temperature change of the indoor heat exchanger 50 is detected (step S101). At this time, an address that is an identification code for identifying the indoor unit that has the indoor heat exchanger 50 showing a predetermined temperature change is assigned (step S102). This procedure is repeatedly executed for all the outdoor units in one refrigerant system (step S103). Similarly, the following steps S100
The procedures of No. 103 to No. 103 are sequentially executed for each refrigerant system. The above address setting procedure is automatically performed by the address setting program stored in the CPU of any outdoor unit. The reason why the heating operation is used as the operation mode when setting the address is that the heating operation has a larger temperature change range than the cooling operation, and therefore it is clear that the presence or absence of the temperature change is fixed. This is because the setting is highly reliable. However, when the temperature change width can be wide, it is possible to set the address in the cooling operation mode, and the range of the present invention is not particularly limited.

【0026】〈B〉詳細手順 図4および図5に本発明に係るアドレス設定方法の詳細
な手順を示す。
<B> Detailed Procedure FIGS. 4 and 5 show detailed procedures of the address setting method according to the present invention.

【0027】まず、上記アドレス設定手順を実行するに
際し、本発明の特徴的なことは、主にアドレス設定にお
ける室内熱交換器の温度の変化の判定に、外気温度に応
じた熱交換器温度の変化値を採用する点である。この実
施の形態では、外気温度を反映させる制御方法としては
次の〜に挙げられるものを含む。
First, when the above-mentioned address setting procedure is executed, what is characteristic of the present invention is that the temperature change of the heat exchanger temperature according to the outside air temperature is mainly used for the determination of the temperature change of the indoor heat exchanger in the address setting. This is the point where the change value is adopted. In this embodiment, the following control methods are included as control methods for reflecting the outside air temperature.

【0028】外気温度に応じて圧縮機の運転時間を変
更する(ステップS3、図6参照)。 アドレス設定制御中における室外送風機または室内送
風機の回転数を外気温度に応じて変更する(ステップS
32、S17、S35、S37、S32、図8参照)。
The operating time of the compressor is changed according to the outside air temperature (step S3, see FIG. 6). The number of rotations of the outdoor blower or the indoor blower during the address setting control is changed according to the outside air temperature (step S
32, S17, S35, S37, S32, see FIG. 8).

【0029】アドレス設定制御開始時の室内機送風モ
ードを決定する(ステップS7、図7参照)。
The indoor unit blowing mode at the start of the address setting control is determined (step S7, see FIG. 7).

【0030】アドレス設定制御開始時における室内機
のメカ弁開度を決定する(ステップS2、図7)。
The mechanical valve opening of the indoor unit at the start of the address setting control is determined (step S2, FIG. 7).

【0031】 熱交換器 温度の所定温度差を変更す
る。
Heat Exchanger Changes a predetermined temperature difference.

【0032】次に、図4を参照して、アドレスの自動設
定手順を説明する。アドレスの自動設設定が開始される
と、室外機のCPUは外気温度センサによる外気温度の
検出を行う(ステップS1)。この外気温度に基づいて
室外機のCPUは、運転条件として、冷媒が循環したこ
とを示す室内熱交換器温度の変化すなわち「判断する温
度差ΔT」とともに「室内機送風モード」、「室内機メ
カ弁パルスの数(パルスモータのステップ数=弁開
度)」を決定し、通信線17を介して室内機のCPUに
送信する。このとき、「室内機送風モード」、「室内機
メカ弁パルスの数のデータは、室内熱交換器の温度が上
昇した場合と上昇しない場合の2種類のデータを送信す
る。
Next, an automatic address setting procedure will be described with reference to FIG. When the automatic setting of the address is started, the CPU of the outdoor unit detects the outside air temperature by the outside air temperature sensor (step S1). Based on the outside air temperature, the CPU of the outdoor unit determines, as operating conditions, a change in the temperature of the indoor heat exchanger that indicates that the refrigerant has circulated, that is, a “determined temperature difference ΔT”, an “indoor unit blowing mode”, and an “indoor unit mechanism”. The number of valve pulses (step number of pulse motor = valve opening degree) ”is determined and transmitted to the CPU of the indoor unit via the communication line 17. At this time, as the data of the "indoor unit air blowing mode" and "the number of indoor unit mechanical valve pulses, two types of data are transmitted when the temperature of the indoor heat exchanger rises and when it does not rise.

【0033】次に、室外機のCPUは検出した外気温度
に応じて自動アドレスの設定に費やす運転時間を決定す
る。具体的には、圧縮機の運転時間を外気温度に応じて
決定する(ステップS3)。
Next, the CPU of the outdoor unit determines the operating time spent for setting the automatic address according to the detected outside air temperature. Specifically, the operating time of the compressor is determined according to the outside air temperature (step S3).

【0034】次に、室内機のCPUは、室外機から送信
された運転条件(「判断する温度差ΔT」、「室内機送
風モード」、「室内機メカ弁パルス数」)「をセットす
る(ステップS4)。
Next, the CPU of the indoor unit sets the operating conditions ("temperature difference ΔT to be judged", "indoor unit ventilation mode", "number of indoor unit mechanical valve pulses") transmitted from the outdoor unit (( Step S4).

【0035】次に、室内機のCPUは、このときの室内
熱交換器の温度Tiを取り込み、内蔵メモリに記憶する
(ステップS5)。
Next, the CPU of the indoor unit takes in the temperature Ti of the indoor heat exchanger at this time and stores it in the built-in memory (step S5).

【0036】その後、適当な時間(例えば、3分間)待
機する(ステップS6)。
After that, it waits for an appropriate time (for example, 3 minutes) (step S6).

【0037】次いで、上記待機時経過後、外気温度に応
じて、室内送風機の初期モードを決定する(ステップS
7)。この決定は、例えば図7に示すような態様とす
る。なお、図7中、LLは微風、Lは弱風、Hは強風を
表し、送風ファンの回転数に相当する。
Next, after the standby time has elapsed, the initial mode of the indoor blower is determined according to the outside air temperature (step S).
7). This determination is performed, for example, in the manner shown in FIG. In FIG. 7, LL indicates a light wind, L indicates a weak wind, and H indicates a strong wind, which corresponds to the rotation speed of the blower fan.

【0038】次に、室外機の圧縮機の運転を開始し(ス
テップS8)、その後所定時間(例えば、30秒)を経
過するのを待つ(ステップS9)。この30秒が経過し
た場合はステップS10に進む。一方、この30秒経過
前に保護装置が作動するか否かを確認し(ステップS2
8)、もし保護装置の作動回数が規定回数に達した場合
は警報を表示して処理を終了する(ステップS29、3
0、31)。
Next, the operation of the compressor of the outdoor unit is started (step S8), and then a predetermined time (for example, 30 seconds) is waited for (step S9). When this 30 seconds has elapsed, the process proceeds to step S10. On the other hand, it is confirmed whether or not the protective device is activated before the lapse of 30 seconds (step S2).
8) If the number of times the protective device has been actuated has reached the specified number, an alarm is displayed and the process ends (steps S29, 3).
0, 31).

【0039】次に、室内機のCPUは、当該室内機の室
内熱交換器の温度を取り込み、通信線17を介して室外
機のCPUに送信する(ステップS10)。
Next, the CPU of the indoor unit takes in the temperature of the indoor heat exchanger of the indoor unit and sends it to the CPU of the outdoor unit via the communication line 17 (step S10).

【0040】次いで、室外機のCPUは、室内熱交換器
の温度の上昇状態を確認し(ステップS11)、上昇し
過ぎる場合には室外送風機モードを1モード下降させ
(ステップS32、図8参照)、次に、圧縮機吐出温度
の上昇状態を確認し(ステップS12)、上昇し過ぎる
場合には室内メカ弁パルスを増加させて弁を開き(ステ
ップS33、図8参照)、圧縮機高圧側の圧力上昇を抑
制する。
Next, the CPU of the outdoor unit confirms the rising state of the temperature of the indoor heat exchanger (step S11), and if it rises too much, lowers the outdoor blower mode by one mode (step S32, see FIG. 8). Next, the rising state of the compressor discharge temperature is confirmed (step S12), and if it rises too much, the indoor mechanical valve pulse is increased to open the valve (step S33, see FIG. 8), and the compressor high pressure side Suppress pressure rise.

【0041】次いで、室内機の熱交換器の温度を取り込
み、その温度が所定温度差ΔT以上変化したか否かを判
断する(ステップS13)。所定温度差ΔT以上の温度
変化がない場合は、ステップS14に進む。一方、所定
温度差ΔT以上の温度変化があった場合は、運転条件を
室内熱交換器温度が上昇した場合の運転条件「室内機送
風モード」および「室内機メカ弁パルス数」にセットし
(ステップS34)、ステップS14に進む(接続子1
参照)。
Next, the temperature of the heat exchanger of the indoor unit is taken in and it is judged whether or not the temperature has changed by a predetermined temperature difference ΔT or more (step S13). If there is no temperature change equal to or greater than the predetermined temperature difference ΔT, the process proceeds to step S14. On the other hand, when there is a temperature change equal to or more than the predetermined temperature difference ΔT, the operating conditions are set to the operating conditions “indoor unit ventilation mode” and “indoor unit mechanical valve pulse number” when the indoor heat exchanger temperature rises ( Step S34), the process proceeds to step S14 (connector 1
reference).

【0042】ここで、室内熱交換器温度が上昇した場合
の運転条件中の「室内機メカ弁パルス数」は、未だ温度
上昇していない場合の「室内機メカ弁パルス数」よりも
少なくしたがってメカ弁開度は絞られることになる。す
なわち、各室内機5〜8相互間の馬力の大小、取り付け
位置の高低差、あるいは冷媒配管の長さの違い等により
冷媒の分流不良が生じることを想定し、熱交換器温度が
上昇した室内機5〜8のメカ弁58の開度を他の温度上
昇していない室内機のメカ弁58の開度を絞ることによ
り、冷媒を流れにくい室内機側により多く流すようにす
るためである。
Here, the "indoor unit mechanical valve pulse number" in the operating condition when the indoor heat exchanger temperature rises is smaller than the "indoor unit mechanical valve pulse number" when the temperature has not yet risen. The mechanical valve opening will be reduced. That is, it is assumed that the heat splitting temperature of the indoor units rises due to the fact that the refrigerant diversion failure may occur due to the difference in horsepower between the indoor units 5 to 8, the height difference of the mounting positions, the difference in the length of the refrigerant pipes, and the like. This is because the opening of the mechanical valve 58 of each of the machines 5 to 8 is narrowed to reduce the opening of the mechanical valve 58 of the other indoor unit in which the temperature does not rise so that the refrigerant flows more to the indoor unit side where it is difficult to flow.

【0043】次に、図5を参照して、ステップS14に
おいて、フェイルセーフ動作のため、再び保護装置が作
動しているか否かをチェックする(ステップS14)。
保護装置が動作している場合は、ステップS28にジャ
ンプし(接続子T参照)、前述のステップS28〜31
の処理を行う。保護装置が作動していない場合は、ステ
ップS15に進む。
Next, referring to FIG. 5, in step S14, it is checked again whether or not the protective device is in operation for fail-safe operation (step S14).
If the protection device is operating, the process jumps to step S28 (see connector T), and steps S28 to S31 described above.
Is performed. If the protective device is not operating, the process proceeds to step S15.

【0044】ステップS15では、「ステップ1」秒間
が経過したか否かを確認する。この「ステップ1」秒間
経過の確認は暖機運転に相当し、急激な高圧上昇を防止
しつつ室内熱交換器温度を上昇させるためのものであ
り、時間が経過していない場合には、ステップS10に
戻る(接続子A参照)。経過した場合、処理はステップ
S16に進む。
In step S15, it is confirmed whether "step 1" seconds have elapsed. This "step 1" second confirmation corresponds to warm-up operation, and is for increasing the temperature of the indoor heat exchanger while preventing a sudden increase in high pressure. The process returns to S10 (see connector A). When the time has elapsed, the process proceeds to step S16.

【0045】次に、ステップS16において、現在の室
外機送風モードが最大ランクか否かが判断され、最大で
ある場合には室内送風機モードが1ランク下げられる
(ステップS35、図8、H→L参照)。最大でない場
合には室外送風機モード1ランク上げられる(ステップ
S17)。
Next, in step S16, it is judged whether or not the current outdoor unit blow mode is the maximum rank, and if it is the maximum rank, the indoor blower mode is lowered by one rank (step S35, FIG. 8, H → L). reference). If it is not the maximum, the outdoor blower mode is raised by one rank (step S17).

【0046】次いで、室外機CPUは、室内熱交換器温
度が所定温度ΔT以上上昇したか否かを検出する(ステ
ップS18)。ΔT以上の温度変化があった場合は、室
内送風機モードおよびメカ弁パルス数を熱交換器温度が
上昇した場合の運転条件の値にセットし(ステップS3
6)、ステップS19に進む。ΔT以上の温度差が生じ
ない場合には、そのままステップS19に進む。
Next, the outdoor unit CPU detects whether or not the temperature of the indoor heat exchanger has risen by a predetermined temperature ΔT or more (step S18). If there is a temperature change of ΔT or more, the indoor blower mode and the number of mechanical valve pulses are set to the values of the operating conditions when the heat exchanger temperature rises (step S3
6) and proceeds to step S19. When the temperature difference of ΔT or more does not occur, the process directly proceeds to step S19.

【0047】ここで、フェイルセーフ動作のため、再び
保護装置が作動しているか否かをチェックする(ステッ
プS19)。保護装置が動作している場合は、ステップ
S26にジャンプする。ステップS26、27および3
9に付いては後述する。保護装置が動作していない場
合、処理はステップS20に進む。
Here, for fail-safe operation, it is again checked whether or not the protective device is in operation (step S19). If the protection device is operating, jump to step S26. Steps S26, 27 and 3
Item 9 will be described later. If the protection device is not operating, the process proceeds to step S20.

【0048】ステップS20では、「ステップ2」秒間
が経過したか否かを確認する。この「ステップ2」秒間
経過の確認はより自動アドレスを確実に行うために、高
圧を「ステップ1」より上昇させ室内熱交換器温度を上
昇させるためのものであり、時間が経過していない場合
には、ステップS18に戻る(接続子C参照)。経過し
た場合、処理はステップS21に進む。
In step S20, it is confirmed whether "step 2" seconds have elapsed. This “step 2” second confirmation is for increasing the high pressure from “step 1” to raise the indoor heat exchanger temperature in order to perform automatic addressing more reliably, and when the time has not elapsed. To return to step S18 (see connector C). When the time has elapsed, the process proceeds to step S21.

【0049】ステップS21において、現在の室外機送
風モードが最大ランクか否かが判断され、最大である場
合には室内送風機モードが1ランク下げられ(ステップ
S37、図8、H→L参照)、また、最大でない場合に
は室外送風機モード1ランク上げられ(ステップS2
2)、処理はステップS23に進む。
In step S21, it is judged whether or not the current outdoor unit blow mode is the maximum rank, and if it is the maximum rank, the indoor blower mode is lowered by one rank (step S37, see FIG. 8, H → L), If it is not the maximum, the outdoor blower mode is raised by one rank (step S2).
2), the process proceeds to step S23.

【0050】次いで、室外機CPUは、室内熱交換器温
度が所定温度ΔT以上上昇したか否かを検出する(ステ
ップS23)。ΔT以上の温度変化があった場合は、室
内送風機モードおよびメカ弁パルス数を熱交換器温度が
上昇した場合の運転条件の値にセットし(ステップS3
6)、ステップS19に進む。ΔT以上の温度差が生じ
ない場合には、そのままステップS19に進む。
Next, the outdoor unit CPU detects whether the temperature of the indoor heat exchanger has risen by a predetermined temperature ΔT or more (step S23). If there is a temperature change of ΔT or more, the indoor blower mode and the number of mechanical valve pulses are set to the values of the operating conditions when the heat exchanger temperature rises (step S3
6) and proceeds to step S19. When the temperature difference of ΔT or more does not occur, the process directly proceeds to step S19.

【0051】ここで、フェイルセーフ動作のため、再び
保護装置が作動しているか否かをチェックする(ステッ
プS124)。保護装置が動作している場合は、ステッ
プS26にジャンプする。保護装置が動作していない場
合、処理はステップS25に進む。
Here, for fail-safe operation, it is checked again whether or not the protective device is operating (step S124). If the protection device is operating, jump to step S26. If the protection device is not operating, the process proceeds to step S25.

【0052】ステップS25では、「ステップ3」秒間
が経過したか否かを確認する。この「ステップ3」秒間
経過の確認は「ステップ2」よりさらに高圧を上昇さ
せ、より自動アドレスを確実に行うためのものであり、
時間が経過していない場合には、ステップS23に戻っ
て(接続子D参照)、ステップS23、24、38およ
び25の処理を繰り返す。
In step S25, it is confirmed whether "step 3" seconds have elapsed. The confirmation of the passage of this "step 3" seconds is to increase the high voltage further than "step 2" and to perform automatic address more reliably,
If the time has not elapsed, the process returns to step S23 (see connector D) and the processes of steps S23, 24, 38 and 25 are repeated.

【0053】ステップS24でのチェックの結果、保護
装置の動作が検出された場合、およびステップS25の
チェックの結果、「ステップS3」秒経過した場合、処
理はステップS26に進む。
If the operation of the protective device is detected as a result of the check in step S24, or if "step S3" seconds have elapsed as a result of the check in step S25, the process proceeds to step S26.

【0054】ステップS26では、室外熱交換器温度が
上昇した室内機(つまり、温度変化を生じた室内機)の
台数をカウントしており、該当する室内機台数が各室外
機に設定された室内機台数に達したか否か確認される。
この台数が一致しない場合、警報が表示された後(ステ
ップS39)、処理は終了する。一方、温度上昇室内機
台数が室外機に設定された室内機台数に達した場合に
は、規定数の室内機の温度上昇を確認したことになるか
ら、各室内機に対するアドレスの設定を確定し(ステッ
プS27)、一連の処理を終了する。
In step S26, the number of indoor units in which the temperature of the outdoor heat exchanger has risen (that is, the indoor unit in which the temperature has changed) is counted, and the corresponding number of indoor units is set in each outdoor unit. It is confirmed whether the number of aircraft has been reached.
If the numbers do not match, an alarm is displayed (step S39) and the process ends. On the other hand, when the number of indoor units that have risen in temperature has reached the number of indoor units set for the outdoor units, it means that the temperature rise of the specified number of indoor units has been confirmed, so the address settings for each indoor unit are confirmed. (Step S27), a series of processing ends.

【0055】(III)変形例 本発明は以上の実施の形態に限定されるものではなく、
種々の変形が可能である。
(III) Modifications The present invention is not limited to the above embodiment,
Various modifications are possible.

【0056】例えば、上述のアドレス設定手順において
は室内熱交換器の温度変化(上昇)の検出のために、冷
媒供給前の熱交換器温度Tiに冷媒供給後の熱交換器温
度の変化ΔTiを加算する方法をとっているが(ステッ
プS13、18および23参照)、これに代えて、室内
熱交換器の絶対温度が所定値(例えば、58℃)以上に
なったことを判断基準とすることが可能である。この態
様の場合には、ステップS13、S18およびS23に
おいて室内熱交換器の絶対温度を熱交換器温度センサ5
9により検出し、その検出値Tと予め定めた判断基準値
Trefとを比較する(T≧Tref)ように構成す
る。
For example, in the above address setting procedure, in order to detect the temperature change (rise) of the indoor heat exchanger, the change ΔTi in the heat exchanger temperature after the refrigerant is supplied is changed to the heat exchanger temperature Ti before the refrigerant is supplied. Although the addition method is used (see steps S13, 18 and 23), instead of this, use the judgment criterion that the absolute temperature of the indoor heat exchanger has reached a predetermined value (for example, 58 ° C.) or more. Is possible. In the case of this aspect, the absolute temperature of the indoor heat exchanger is determined by the heat exchanger temperature sensor 5 in steps S13, S18 and S23.
9 and compares the detected value T with a predetermined determination reference value Tref (T ≧ Tref).

【0057】[0057]

【発明の効果】以上の通り、請求項1に記載の発明によ
れば、圧縮機の運転時間を外気温度に応じて変更するこ
とで、外気温度の変化に影響されることなく検出すべき
熱交換器温度の変化を確実に検出することが可能とな
り、アドレス設定の信頼性を向上しうる。
As described above, according to the first aspect of the present invention, by changing the operating time of the compressor according to the outside air temperature, the heat to be detected without being affected by the change in the outside air temperature. It becomes possible to reliably detect the change in the temperature of the exchanger, and the reliability of address setting can be improved.

【0058】請求項2に記載の発明によれば、例えばガ
スヒートポンプ方式の空気調和システムのように高圧側
の圧力センサを有しておらず、必要な高圧が発生してい
るか否か判断できない場合に、室外送風機または室内送
風機の回転数(または、送風量)を外気温度に応じて変
更することで、理論上高圧を発生させるよう制御モード
に強制的に入れることができる。
According to the second aspect of the present invention, it is not possible to determine whether or not the required high pressure is generated because the high pressure side pressure sensor is not provided as in the gas heat pump type air conditioning system. In addition, by changing the number of revolutions (or the amount of blown air) of the outdoor blower or the indoor blower according to the outside air temperature, it is possible to theoretically force the control mode to generate high pressure.

【0059】請求項3に記載の発明によれば、圧縮能力
制御ができないような室外機を用いた空気調和システム
の場合に、前記室外機および/または室内機の送風機の
制御モードを外気温度に応じて決定することで、特に真
夏時での暖房運転によるアドレス設定時における圧縮機
内の圧力(高圧側)の過上昇を抑制することができ、安
全性ならびに信頼性が確保される。
According to the third aspect of the invention, in the case of the air conditioning system using the outdoor unit in which the compression capacity cannot be controlled, the control mode of the blower of the outdoor unit and / or the indoor unit is set to the outside air temperature. According to the determination, it is possible to suppress an excessive rise in the pressure (high pressure side) in the compressor at the time of address setting due to the heating operation especially in the midsummer, and ensure safety and reliability.

【0060】請求項4に記載の発明によれば、室内機の
メカ弁開度を外気温度に応じて決定することで、圧縮能
力制御ができないような室外機を用いた空気調和システ
ムに対して、特に真夏時での暖房運転によるアドレス設
定時における圧縮機内の圧力(高圧側)の過上昇を抑制
することができ、安全性ならびに信頼性が確保される。
According to the fourth aspect of the present invention, by determining the mechanical valve opening degree of the indoor unit according to the outside air temperature, the air conditioning system using the outdoor unit in which the compression capacity cannot be controlled. In particular, it is possible to suppress an excessive rise in the pressure (high pressure side) in the compressor at the time of address setting due to the heating operation in the midsummer, and ensure safety and reliability.

【0061】請求項5に記載の発明によれば、室内機の
メカ弁開度の制御を圧縮機の吐出温度に応じて決定する
具体的態様が示される。
According to the fifth aspect of the invention, there is shown a specific mode in which the control of the mechanical valve opening degree of the indoor unit is determined according to the discharge temperature of the compressor.

【0062】請求項6に記載の発明によれば、熱交換器
温度の所定温度差を外気温度に応じて変更するので、熱
交換器の温度が上昇したとの判断を明確にすることがで
きる。つまり、外気温度が低い場合に、冷媒管が長く、
かつ室内外容量比が100%を超えるような空調システ
ムでは、高圧が上昇しにくいので、熱交換器温度の上昇
の有無判断を外気温度に応じて場合分けすることによ
り、上昇判断が明確化され、外気温度の変化に影響され
ることなく検出すべき熱交換器温度の変化を確実に検出
することが可能となり、アドレス設定の信頼性を向上し
うる。
According to the sixth aspect of the invention, since the predetermined temperature difference of the heat exchanger temperature is changed according to the outside air temperature, it is possible to clarify the judgment that the temperature of the heat exchanger has risen. . That is, when the outside air temperature is low, the refrigerant pipe is long,
Moreover, in an air conditioning system in which the indoor / outdoor capacity ratio exceeds 100%, the high pressure is unlikely to rise, so the rise determination is clarified by classifying whether or not the heat exchanger temperature has risen according to the outside air temperature. The change in the heat exchanger temperature to be detected can be reliably detected without being affected by the change in the outside air temperature, and the reliability of address setting can be improved.

【0063】請求項7に記載の発明によれば、熱交換器
温度が変化した室内機のメカ弁開度を変化していない室
内機のメカ弁開度よりも絞るので、室内機の馬力の大小
差等により、冷媒の分流不良が生じることを想定して、
熱交換器温度が上昇した室内機のメカ弁は、他の室内機
のメカ弁よりも少し開度を絞ることにより、流れにくい
室内機へ冷媒を流すことができる。これにより、冷媒循
環の均質化を図ることができ 冷媒配管等の構造上の違
いに影響されることなく検出すべき熱交換器温度の変化
を確実に検出することが可能となり、アドレス設定の信
頼性を向上しうる。
According to the invention as set forth in claim 7, since the mechanical valve opening degree of the indoor unit in which the heat exchanger temperature has changed is narrower than the mechanical valve opening degree of the indoor unit which has not changed, the horsepower of the indoor unit can be reduced. Assuming that the split flow of the refrigerant may occur due to the difference in size,
The mechanical valve of the indoor unit in which the temperature of the heat exchanger has risen can cause the refrigerant to flow to the indoor unit in which it is difficult to flow by narrowing the opening of the mechanical valve of the other indoor units. This makes it possible to homogenize the refrigerant circulation and reliably detect changes in the heat exchanger temperature that should be detected without being affected by structural differences in the refrigerant piping, etc. Can improve the sex.

【0064】請求項8に記載の発明によれば、請求項1
乃至7に記載の空気調和システムの自動アドレス設定方
法において、圧縮機の運転の発停前後における室内熱交
換器の温度変化が大きい場合又は、圧縮機運転後におけ
る室内熱交換器の温度が所定値(58℃)以上となると
アドレスを設定する条件とする方法が提供される。
According to the invention of claim 8, claim 1
In the automatic address setting method of the air conditioning system according to any one of 1 to 7, when the temperature change of the indoor heat exchanger before and after the start and stop of the operation of the compressor is large, or the temperature of the indoor heat exchanger after the operation of the compressor is a predetermined value. When the temperature is higher than (58 ° C.), a method of setting the condition for setting the address is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用される空気調和システムを示すブ
ロック図である。
FIG. 1 is a block diagram showing an air conditioning system to which the present invention is applied.

【図2】図1の空調システムにおける一部の冷媒系およ
び制御系を示すブロック図である。
FIG. 2 is a block diagram showing a part of a refrigerant system and a control system in the air conditioning system of FIG.

【図3】アドレス自動設定の基本手順を示すフローチャ
ートである。
FIG. 3 is a flowchart showing a basic procedure of automatic address setting.

【図4】本発明に係るアドレス自動設定の手順(前半)
を示すフローチャートである。
FIG. 4 is a procedure (first half) of automatic address setting according to the present invention.
It is a flowchart which shows.

【図5】本発明に係るアドレス自動設定の手順(後半を
示すフローチャートである。
FIG. 5 is a flowchart of an automatic address setting procedure according to the present invention (the latter half of the flowchart).

【図6】外気温度に対応する判断温度差の具体例を示す
説明図である。
FIG. 6 is an explanatory diagram showing a specific example of a judgment temperature difference corresponding to the outside air temperature.

【図7】外気温度に対応する判断温度差の具体例を示す
説明図である。
FIG. 7 is an explanatory diagram showing a specific example of a judgment temperature difference corresponding to the outside air temperature.

【図8】外気温度に対応する判断温度差の具体例を示す
説明図である。
FIG. 8 is an explanatory diagram showing a specific example of the judgment temperature difference corresponding to the outside air temperature.

【符号の説明】[Explanation of symbols]

1〜3 室外機 4〜16 室内機 17 通信線 40 室外熱交換器 42 圧縮機 43 室外機のCPU 44 室外機送風ファン 45 外気温度センサ 50 室内熱交換器 53 室内機のCPU 54 室内機送風ファン 58 メカ弁 59 室内熱交換器温度センサ 1 to 3 outdoor unit 4 to 16 indoor unit 17 communication line 40 outdoor heat exchanger 42 compressor 43 outdoor unit CPU 44 outdoor unit blower fan 45 outdoor air temperature sensor 50 indoor heat exchanger 53 indoor unit CPU 54 indoor unit blower fan 58 Mechanical valve 59 Indoor heat exchanger temperature sensor

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 1台または複数台の室外機および複数台
の室内機を有し、前記各室外機および室内機の制御系が
同一の通信配線を介して接続された空気調和システムに
おいて、前記室外機内の圧縮機を運転して冷媒を室内機
側に供給したとき、前記圧縮機の運転前後で熱交換器温
度が所定温度差以上変化した室内機と前記運転を行った
室外機との対応関係に基づいて前記室内機にアドレスを
設定する方法において、 前記圧縮機の運転時間を外気温度に応じて変更すること
を特徴とする空気調和システムの自動アドレス設定方
法。
1. An air conditioning system having one or a plurality of outdoor units and a plurality of indoor units, wherein the control systems of the respective outdoor units and indoor units are connected via the same communication wiring, When the compressor in the outdoor unit is operated and the refrigerant is supplied to the indoor unit side, the correspondence between the indoor unit in which the heat exchanger temperature changes by a predetermined temperature difference or more before and after the operation of the compressor and the outdoor unit in which the operation is performed. A method for setting an address in the indoor unit based on a relationship, wherein an operating time of the compressor is changed according to an outside air temperature, an automatic address setting method for an air conditioning system.
【請求項2】 1台または複数台の室外機および複数台
の室内機を有し、前記各室外機および室内機の制御系が
同一の通信配線を介して接続された空気調和システムに
おいて、前記室外機内の圧縮機を運転して冷媒を室内機
側に供給したとき、前記圧縮機の運転前後で熱交換器温
度が所定温度差以上変化した室内機と前記運転を行った
室外機との対応関係に基づいて前記室内機にアドレスを
設定する方法において、 前記圧縮機の起動後に、強制的に圧縮機の高圧側に必要
な高圧が発生するよう前記室外送風機または室内送風機
の回転数を外気温度に応じて変更することを特徴とする
空気調和システムのアドレス自動設定方法。
2. An air conditioning system having one or a plurality of outdoor units and a plurality of indoor units, wherein the control systems of the outdoor units and the indoor units are connected via the same communication wiring, When the compressor in the outdoor unit is operated and the refrigerant is supplied to the indoor unit side, the correspondence between the indoor unit in which the heat exchanger temperature changes by a predetermined temperature difference or more before and after the operation of the compressor and the outdoor unit in which the operation is performed. In the method of setting the address to the indoor unit based on the relationship, after the compressor is started, the rotation speed of the outdoor blower or the indoor blower is adjusted so that the high pressure necessary for the high pressure side of the compressor is forcibly generated. A method for automatically setting an address of an air conditioning system, which is characterized in that it is changed according to.
【請求項3】 1台または複数台の室外機および複数台
の室内機を有し、前記各室外機および室内機の制御系が
同一の通信配線を介して接続された空気調和システムに
おいて、前記室外機内の圧縮機を運転して冷媒を室内機
側に供給したとき、前記圧縮機の運転前後で熱交換器温
度が所定温度差以上変化した室内機と前記運転を行った
室外機との対応関係に基づいて前記室内機にアドレスを
設定する方法において、 前記アドレス設定開始時に、前記室外機および/または
室内機の送風機の制御モードを外気温度に応じて決定す
ることを特徴とする空気調和システムのアドレス自動設
定方法。
3. An air conditioning system having one or a plurality of outdoor units and a plurality of indoor units, wherein the control systems of the outdoor units and the indoor units are connected via the same communication wiring, When the compressor in the outdoor unit is operated and the refrigerant is supplied to the indoor unit side, the correspondence between the indoor unit in which the heat exchanger temperature changes by a predetermined temperature difference or more before and after the operation of the compressor and the outdoor unit in which the operation is performed. In the method of setting an address to the indoor unit based on a relationship, at the time of starting the address setting, the control mode of the blower of the outdoor unit and / or the indoor unit is determined according to the outside air temperature. Automatic address setting method.
【請求項4】 1台または複数台の室外機および複数台
の室内機を有し、前記各室外機および室内機の制御系が
同一の通信配線を介して接続された空気調和システムに
おいて、前記室外機内の圧縮機を運転して冷媒を室内機
側に供給したとき、前記圧縮機の運転前後で熱交換器温
度が所定温度差以上変化した室内機と前記運転を行った
室外機との対応関係に基づいて前記室内機にアドレスを
設定する方法において、 前記アドレス設定制御開始時における室内機のメカ弁開
度を外気温度に応じて決定することを特徴とする空気調
和システムのアドレス自動設定方法。
4. An air conditioning system comprising one or a plurality of outdoor units and a plurality of indoor units, wherein the control systems of the outdoor units and the indoor units are connected via the same communication wiring. When the compressor in the outdoor unit is operated and the refrigerant is supplied to the indoor unit side, the correspondence between the indoor unit in which the heat exchanger temperature changes by a predetermined temperature difference or more before and after the operation of the compressor and the outdoor unit in which the operation is performed. In the method of setting an address to the indoor unit based on a relationship, the mechanical valve opening of the indoor unit at the time of starting the address setting control is determined according to the outside air temperature, the address automatic setting method of the air conditioning system .
【請求項5】 請求項4にに記載のアドレス自動設定方
法において、前記アドレス設定制御開始時における室内
機のメカ弁開度を吐出温度に応じて決定することを特徴
とする空気調和システムのアドレス自動設定方法。
5. The address of an air conditioning system according to claim 4, wherein the mechanical valve opening of the indoor unit at the start of the address setting control is determined according to the discharge temperature. Automatic setting method.
【請求項6】 1台または複数台の室外機および複数台
の室内機を有し、前記各室外機および室内機の制御系が
同一の通信配線を介して接続された空気調和システムに
おいて、前記室外機内の圧縮機を運転して冷媒を室内機
側に供給したとき、前記圧縮機の運転前後で熱交換器温
度が所定温度差以上変化した室内機と前記運転を行った
室外機との対応関係に基づいて前記室内機にアドレスを
設定する方法において、 前記熱交換器温度の所定温度差を外気温度に応じて変更
することを特徴とする空気調和システムのアドレス自動
設定方法。
6. An air conditioning system comprising one or a plurality of outdoor units and a plurality of indoor units, wherein the control systems of the outdoor units and the indoor units are connected via the same communication wiring. When the compressor in the outdoor unit is operated and the refrigerant is supplied to the indoor unit side, the correspondence between the indoor unit in which the heat exchanger temperature changes by a predetermined temperature difference or more before and after the operation of the compressor and the outdoor unit in which the operation is performed. A method for setting an address in the indoor unit based on a relationship, wherein a predetermined temperature difference of the heat exchanger temperature is changed in accordance with an outside air temperature.
【請求項7】 1台または複数台の室外機および複数台
の室内機を有し、前記各室外機および室内機の制御系が
同一の通信配線を介して接続された空気調和システムに
おいて、前記室外機内の圧縮機を運転して冷媒を室内機
側に供給したとき、前記圧縮機の運転前後で熱交換器温
度が所定温度差以上変化した室内機と前記運転を行った
室外機との対応関係に基づいて前記室内機にアドレスを
設定する方法において、 前記熱交換器温度が変化した室内機のメカ弁開度を、変
化していない室内機のメカ弁開度よりも絞ることを特徴
とする空気調和システムのアドレス自動設定方法。
7. An air conditioning system comprising one or a plurality of outdoor units and a plurality of indoor units, wherein the control systems of the outdoor units and the indoor units are connected via the same communication wiring. When the compressor in the outdoor unit is operated and the refrigerant is supplied to the indoor unit side, the correspondence between the indoor unit in which the heat exchanger temperature changes by a predetermined temperature difference or more before and after the operation of the compressor and the outdoor unit in which the operation is performed. In the method of setting an address to the indoor unit based on a relationship, the mechanical valve opening degree of the indoor unit in which the heat exchanger temperature has changed is narrower than the mechanical valve opening degree of the indoor unit that has not changed. Automatic air conditioning system address setting method.
【請求項8】 請求項1乃至7に記載の空気調和システ
ムのアドレス自動設定方法において、前記熱交換器の温
度変化は当該熱交換器の絶対温度を基準として判断する
ことを特徴とする空気調和システムのアドレス自動設定
方法。
8. The air conditioner automatic address setting method according to claim 1, wherein the temperature change of the heat exchanger is judged based on the absolute temperature of the heat exchanger. System address automatic setting method.
JP08655196A 1996-04-09 1996-04-09 Automatic address setting method for air conditioning system Expired - Lifetime JP3691156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08655196A JP3691156B2 (en) 1996-04-09 1996-04-09 Automatic address setting method for air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08655196A JP3691156B2 (en) 1996-04-09 1996-04-09 Automatic address setting method for air conditioning system

Publications (2)

Publication Number Publication Date
JPH09280633A true JPH09280633A (en) 1997-10-31
JP3691156B2 JP3691156B2 (en) 2005-08-31

Family

ID=13890148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08655196A Expired - Lifetime JP3691156B2 (en) 1996-04-09 1996-04-09 Automatic address setting method for air conditioning system

Country Status (1)

Country Link
JP (1) JP3691156B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147822A (en) * 2000-11-06 2002-05-22 Matsushita Electric Ind Co Ltd Dehumidification control of air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147822A (en) * 2000-11-06 2002-05-22 Matsushita Electric Ind Co Ltd Dehumidification control of air conditioner

Also Published As

Publication number Publication date
JP3691156B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
US8550368B2 (en) Interactive control system for an HVAC system
US7731098B2 (en) Thermostat responsive to inputs from external devices
US5775116A (en) Defrosting control method for air conditioner
JP3486167B2 (en) Multi-room air conditioner
CN109990439B (en) Control method and control device for abnormal reversing of air conditioner four-way valve and air conditioner
JP3162827B2 (en) Temperature control device
US20080054082A1 (en) Climate control system including responsive controllers
US20030056946A1 (en) Method and apparatus for operating a thermostat to provide an automatic changeover
US7664575B2 (en) Contingency mode operating method for air conditioning system
JP4264266B2 (en) Air conditioner
JPH09280633A (en) Method for automatically setting address of air conditioning system
JP3119209B2 (en) High pressure protection controller for refrigeration equipment
JPH11248300A (en) Air conditioner
JP3960786B2 (en) Air conditioner
JPH09243210A (en) Control method for air conditioner and apparatus therefor
US7516044B2 (en) Self diagnosing HVAC zone configuration
JP3187268B2 (en) Control device for air conditioner
JP3270993B2 (en) Air conditioner
JPH11141957A (en) Air conditioner
JPS5875649A (en) Abnormality detecting device of air conditioner
JPH05332647A (en) Air conditioner
KR20000055135A (en) Apparatus and Method for controlling drive of the air conditioner
JPH08159567A (en) Air conditioner
KR0186056B1 (en) Overload control method of heat pump airconditioner
KR0150472B1 (en) Operating control method of an airconditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

EXPY Cancellation because of completion of term