JPH09279346A - Vaporizing method of powder and its device - Google Patents

Vaporizing method of powder and its device

Info

Publication number
JPH09279346A
JPH09279346A JP8095027A JP9502796A JPH09279346A JP H09279346 A JPH09279346 A JP H09279346A JP 8095027 A JP8095027 A JP 8095027A JP 9502796 A JP9502796 A JP 9502796A JP H09279346 A JPH09279346 A JP H09279346A
Authority
JP
Japan
Prior art keywords
carrier gas
metal compound
gas
powder
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8095027A
Other languages
Japanese (ja)
Inventor
Yoshio Asai
祥生 浅井
Yoshihiko Senda
好彦 千田
Eiji Fujioka
栄治 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP8095027A priority Critical patent/JPH09279346A/en
Publication of JPH09279346A publication Critical patent/JPH09279346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a vaporizing method of a powder and the device therefor so that a powdery metal compd. can be completely vaporized without producing a nonvaporized component or a modified component by decomposition heat and that a uniform film quality and film thickness, good color tone and film strength can be obtd. without causing no trouble such as production of a condensate or its deposition and clogging or film defects such as spots. SOLUTION: A powdery metal compd. 1 is heated and vaporized at a temp. lower than the thermal decomposition temp. and introduced with a carrier gas to the surface of a substrate 8. The vaporized metal compd. is thermally decomposed on the surface of the substrate 8 and made to react to form a metal or metal compd. film on the substrate surface. In this method, the powdery metal compd. 1 is quantitatively supplied to a flow of a carrier gas (A) which is an inert so as to carry the powdery metal compd. with the carrier gas (A) flow. The carrier gas (A) and the powdery metal compd. are heated from the outside of the tube where the carrier gas is passed so as to vaporize the powdery metal compd. at a temp. lower than the decomposition temp. The vaporized compd. with the carrier gas (A) is introduced to the substrate surface 8 heated to a temp. higher than the decomposition temp.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、粉末状金属化合物
を熱的に分解または反応せしめることによって、基体上
に金属化合物被膜を被覆するための原料となる金属化合
物蒸気の発生法ならびに金属化合物蒸気を発生するため
の装置である粉体の気化方法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal compound vapor which is a raw material for coating a metal compound film on a substrate by thermally decomposing or reacting a powdery metal compound, and a metal compound vapor. The present invention relates to a powder vaporization method and a device for generating powder.

【0002】[0002]

【従来の技術】従来より所謂 CVD法によるコ−ティング
が、工業的または実験室的に実施されてきたが、被膜の
原料となる金属化合物蒸気はバブリング法によるのが一
般的であった。
2. Description of the Related Art Conventionally, coating by the so-called CVD method has been carried out industrially or in a laboratory, but the vapor of a metal compound as a raw material of a coating is generally formed by a bubbling method.

【0003】該バブリング法は、液体状の原料物質中に
キャリア−ガスを吹き込み、バブリングさせてキャリア
−ガスとともに蒸気を取り出し、液体とキャリア−ガス
の温度およびキャリア−ガスの流量によって、原料蒸気
の供給量を制御する方法であって、その装置は簡単で扱
い易いという利点があるものの、例えば1)液体物質だけ
に適応可能である、2)多成分の蒸気を得るには成分の数
だけバブラ−が必要になる、3)原料供給量が必ずしも定
量的に制御、把握できない等の欠点を持っている。
In the bubbling method, a carrier gas is blown into a liquid raw material, bubbling is performed to take out vapor together with the carrier gas, and the raw material vapor is discharged depending on the temperature of the liquid and the carrier gas and the flow rate of the carrier gas. Although it is a method of controlling the supply amount and the device has the advantage of being simple and easy to handle, for example, 1) it can be applied only to liquid substances, and 2) to obtain a multi-component vapor, bubbler can be used depending on the number of components. -Is required, and 3) it has drawbacks such as not being able to quantitatively control and grasp the amount of raw material supply.

【0004】一方、常温で固体上の原料をCVD 法に用い
る場合には原料を粉末にし、流動床のようにキャリア−
ガスを送り込めば、液体同様にバブラ−方式で蒸気を発
生させることができる。
On the other hand, when a solid material at room temperature is used in the CVD method, the material is powdered and used as a carrier in a fluidized bed.
If gas is sent in, vapor can be generated by a bubbler method like liquid.

【0005】このような方法による蒸気装置が記載され
ているものとしては、例えば特開昭60-70176号公報には
固体ソ−ス蒸発ボンベが記載されており、円筒形の固体
ソ−ス蒸発ボンベにおいて、多数個の穴を有する穴あき
板により、一定間隔をもって、前記円筒を多数階に仕切
る如く構成された階層構造体、キャリア−ガスを導入す
る導入管並びにキャリア−ガス及び固体ソ−ス粉末を排
出する吐出部を含む蒸発ボンベが記載されている。
As a steam apparatus using such a method, for example, Japanese Patent Laid-Open No. 60-70176 discloses a solid source evaporation cylinder, which is a cylindrical solid source evaporation source. In a cylinder, a hierarchical structure configured to divide the cylinder into a plurality of floors at regular intervals by a perforated plate having a large number of holes, an introducing pipe for introducing a carrier gas, and a carrier gas and a solid source. An evaporative bomb is described that includes a spout that discharges powder.

【0006】また例えば、特開平7-278818号公報にはCV
D 粉体原料用気化器が記載されており、キャリア−ガス
を導入する導入部とキャリア−ガスを排出する排出部
が、キャリア−ガスの通過する気化器本体の内部におい
て粉体原料により隔てられた構造を有するものであるこ
とが記載されている。
Further, for example, Japanese Patent Laid-Open No. 7-278818 discloses CV.
D A vaporizer for powder raw material is described, in which an inlet for introducing carrier gas and an outlet for discharging carrier gas are separated by the powder raw material inside the vaporizer main body through which carrier gas passes. It is described that they have a different structure.

【0007】また例えば、特開平3-94066 号公報には酸
化物超電導体製造用CVD 原料の気化装置が記載されてお
り、酸化物超電導体を構成する各元素の化合物を用いて
化学気相蒸着法によって酸化物超電導体を生成させる際
に使用する原料を気化する装置において、縦型の気化塔
と、気化塔の下部に接合されたキャリア−ガスの導入管
の接合部よりも上方に接合された粉末供給装置と、気化
塔の上部に接合されてリアクタに接続された輸送管と、
気化塔の底部に取り付けられた未気化原料の回収部と、
気化塔の外周に設けられた加熱装置とを具備してなり、
粉末供給装置は、気化塔に接合された供給筒と、この供
給筒内に回転自在に設けられた押出スクリュウと、供給
筒に接続された粉末原料供給用のホッパを具備してなる
ことが記載されている。
Further, for example, Japanese Patent Application Laid-Open No. 3-94066 describes a vaporizer of a CVD raw material for producing an oxide superconductor, which uses chemical vapor deposition using a compound of each element constituting the oxide superconductor. In a device for vaporizing a raw material used in producing an oxide superconductor by the method, a vertical vaporization tower and a carrier joined to the lower part of the vaporization tower-bonded above the joint of a gas introduction pipe A powder supply device, and a transport pipe joined to the reactor by being joined to the upper part of the vaporization tower,
A recovery section for the unvaporized raw material attached to the bottom of the vaporization tower,
And a heating device provided on the outer periphery of the vaporization tower,
It is described that the powder supply device includes a supply cylinder joined to the vaporization tower, an extrusion screw rotatably provided in the supply cylinder, and a hopper for supplying the powder raw material, which is connected to the supply cylinder. Has been done.

【0008】さらに例えば、特開平5-311446号公報には
有機金属化合物の粉末供給装置および気化供給装置が記
載されており、有機金属化合物の粉末を充填した容器を
振動させることにより粉末を定量供給することが記載さ
れている。
Further, for example, Japanese Unexamined Patent Publication No. 5-311446 describes a powder supply device and a vaporization supply device of an organometallic compound, and a powder is quantitatively supplied by vibrating a container filled with the organometallic compound powder. It is described to do.

【0009】[0009]

【発明が解決しようとする課題】前述した例えば、特開
昭60-70176号公報に記載の固体ソ−ス蒸発ボンベでは、
加熱した容器の粉末原料にキャリア−ガスを通し気化移
送する方式であるので、気化による粉末原料の減少によ
り、一定気化量に保つのが難しく、気化せずに長時間加
熱される原料が熱によるダンゴ状に固化するなど連続安
定供給が難しいし、キャリア−ガス中に未気化粉末原料
が混合して移送され易い。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention For example, in the solid source evaporation cylinder described in JP-A-60-70176,
Since it is a method of vaporizing and transferring carrier gas to the powdered raw material of the heated container, it is difficult to maintain a constant vaporization amount due to the decrease of the powdered raw material due to vaporization, and the raw material heated for a long time without vaporization is caused by heat. Continuous stable supply is difficult, such as solidification in a dango shape, and the unvaporized powder raw material is easily mixed in the carrier gas and transferred.

【0010】また例えば、特開平7-278818号公報に記載
のCVD 粉体原料用気化器では、一定気化量に保つのが難
しく、長時間のガス発生には向き難く、長時間のガス発
生では原料が高温にさらされるので熱変成をもたらすた
め、蒸発量が変化する。
Further, for example, in the vaporizer for CVD powder raw material described in JP-A-7-278818, it is difficult to maintain a constant vaporization amount, it is difficult to generate gas for a long time, and it is difficult to generate gas for a long time. Since the raw material is exposed to high temperature, it causes thermal transformation, and the amount of evaporation changes.

【0011】上記した特開昭60-70176号公報に記載の固
体ソ−ス蒸発ボンベあるいは特開平7-278818号公報に記
載のCVD 粉体原料用気化器では、1)気体中の蒸気濃度が
一定にならない、2)粉末が長時間加熱され造塊される、
3)一般的な原料においては長時間の加熱により原料が変
質するなどがあり、ごく特殊な原料の場合を除いて、実
用的な蒸気発生法にはなり難いものである。
In the solid source evaporation cylinder described in JP-A-60-70176 or the vaporizer for CVD powder raw material described in JP-A-7-278818, 1) the vapor concentration in the gas is 2) The powder is heated for a long time and agglomerated,
3) In the case of general raw materials, the raw materials may be deteriorated by heating for a long time, so it is difficult to use a practical steam generation method except for very special raw materials.

【0012】さらに例えば、特開平3-94066 号公報に記
載の酸化物超電導体製造用CVD 原料の気化装置では、加
熱気化塔にスクリュウコンベア−にて粉末を、導入管に
てキャリア−ガスを送り込み、粉末ガスの蒸気を得る装
置であり、気化器の構造上、気化とともに未気化粉末原
料も一緒に移送されてしまうこともあり、気化塔内下部
に未気化粉末が溜まることにより原料の利用効率は高く
なく、導入したキャリア−ガスと蒸気を含んだキャリア
−ガスの分離ができないため、挿入した原料に対するガ
スの収率が悪く、時には未蒸発の粉体がキャリア−ガス
とともに排出されることもあり、また蒸発性の異なる複
数の原料を蒸発させる場合には蒸気組成が一定にならな
いことも起こりうるものでもある。さらに例えばアセチ
ルアセトナ−トのような原料では熱変成し再利用できな
い。
Further, for example, in the vaporization apparatus for CVD raw material for producing oxide superconductor described in Japanese Patent Laid-Open No. 3-94066, powder is fed to the heating vaporization tower by a screw conveyor and carrier gas is fed by an introduction pipe. Since it is a device for obtaining vapor of powder gas, and due to the structure of the vaporizer, unvaporized powder raw material may be transferred together with vaporization, and the raw material utilization efficiency is improved by the accumulation of the unvaporized powder in the lower part of the vaporization tower. Is not high, and the carrier gas introduced cannot be separated from the carrier gas containing the vapor, so the yield of gas relative to the inserted raw material is poor, and sometimes unevaporated powder is discharged together with the carrier gas. In some cases, the vapor composition may not be constant when a plurality of raw materials having different vaporizabilities are vaporized. Furthermore, a raw material such as acetylacetonate cannot be reused because it is thermally metamorphosed.

【0013】さらに例えば、特開平5-311446号公報に記
載の有機金属化合物の粉末供給装置および気化供給装置
では、加熱回転板上にバイブレ−タ−にて粉末を落下さ
せ、回転板を包む室内にキャリア−ガスを導入し、蒸気
を得る装置であり、落下式のためプレ−トへの気化に必
要な伝熱面が少なく、ガス発生も安定せず未気化分を取
り除くので利用効率が高くないし、キャリア−ガス中に
未気化原料が混合して移送されてしまう等があるもので
ある。
Further, for example, in the powder supply device and vaporization supply device of the organometallic compound described in Japanese Patent Laid-Open No. 5-311446, the powder is dropped on the heating rotary plate by a vibrator to enclose the rotary plate. It is a device that introduces a carrier gas to obtain steam, and because it is a drop type, there is little heat transfer surface required for vaporization to the plate, gas generation is not stable and unvaporized parts are removed, so utilization efficiency is high. Alternatively, the unvaporized raw material may be mixed and transferred in the carrier gas.

【0014】[0014]

【課題を解決するための手段】本発明は、従来のかかる
課題に鑑みてなしたものであって、取り出される蒸気を
含んだキャリア−ガスと、導入された蒸気を含まないキ
ャリア−ガス、粉体とが充分に分離され、高い蒸気収率
と安定した蒸気濃度を得る方法とその装置を提供するこ
とにある。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and includes a carrier gas containing vapor to be taken out, a carrier gas containing no vapor introduced, and powder. It is an object of the present invention to provide a method and an apparatus for obtaining a high vapor yield and a stable vapor concentration, in which the body is sufficiently separated.

【0015】すなわち、本発明は、粉末状金属化合物を
熱分解温度以下に加熱し、気化させ、キャリア−ガスと
ともに高温の基体表面に導き、該基体表面で熱的に分
解、反応させ、基体表面上に金属、または金属化合物を
被覆する方法において、粉末状金属化合物を定量的に不
活性ガスであるキャリア−ガスAの流れの中に送り込
み、該キャリア−ガスAの流れとともに前記粉末状金属
化合物を移送し、キャリア−ガスが通る配管の外側から
前記キャリア−ガスAと前記粉末状金属化合物を加熱
し、該粉末状金属化合物を分解温度以下の温度で気化さ
せ、該気化した蒸気を前記キャリア−ガスAとともに、
蒸気を分解温度以上に加熱された基体表面に導くことを
特徴とする粉体の気化方法。
That is, according to the present invention, the powdery metal compound is heated to a temperature not higher than the thermal decomposition temperature, vaporized, guided to the high temperature substrate surface together with the carrier gas, thermally decomposed and reacted on the substrate surface, and the substrate surface In the method of coating a metal or a metal compound on the powdery metal compound, the powdery metal compound is quantitatively sent into a flow of a carrier gas A which is an inert gas, and the powdery metal compound is supplied together with the flow of the carrier gas A. The carrier gas A and the powdery metal compound are heated from the outside of the pipe through which the carrier gas passes, the powdery metal compound is vaporized at a temperature equal to or lower than the decomposition temperature, and the vaporized vapor is transferred to the carrier. -With gas A,
A method for vaporizing powder, characterized in that steam is introduced to the surface of a substrate heated to a decomposition temperature or higher.

【0016】ならびに、前記蒸気と前記キャリア−ガス
Aの流れを、別の経路から送られてきた反応性ガスを含
む不活性ガスであるキャリア−ガスBの流れと合流さ
せ、蒸気を希釈するようにしたことを特徴とする上述し
た粉体の気化方法。
Further, the flow of the vapor and the carrier gas A is combined with the flow of the carrier gas B which is an inert gas containing a reactive gas sent from another path so as to dilute the vapor. The method for vaporizing powder as described above, characterized in that

【0017】さらに、前記不活性ガスが、N2、Ar、He、
Ne、Xeであることを特徴とする上述した粉体の気化方
法。また、前記反応性ガスが、酸素、水蒸気、アンモニ
アのうち少なくとも一つを含むガスであることを特徴と
する上述した粉体の気化方法。
Further, the inert gas is N 2 , Ar, He,
The above-mentioned powder vaporization method, characterized in that it is Ne or Xe. Further, the above-mentioned powder vaporization method, wherein the reactive gas is a gas containing at least one of oxygen, water vapor, and ammonia.

【0018】また、前記キャリア−ガスAと粉末状金属
化合物を移送する配管加熱温度が、前記キャリア−ガス
Aと蒸気を移送する時の温度より高いことを特徴とする
上述した粉体の気化方法。
Further, the heating temperature of the pipe for transferring the carrier gas A and the powdery metal compound is higher than the temperature for transferring the carrier gas A and the vapor. .

【0019】また、前記した粉末状金属化合物として、
有機金属化合物、金属アルコキシド、ハロゲン化物、β
−ジケトン化合物もしくはランタイド系化合物であるこ
とを特徴とする上述した粉体の気化方法。
Further, as the above-mentioned powdery metal compound,
Organometallic compounds, metal alkoxides, halides, β
-The above-mentioned powder vaporization method, which is a diketone compound or a lantide compound.

【0020】また、前記配管加熱温度が、150 乃至350
℃であることを特徴とする上述した粉体の気化方法。ま
た、前記基体がガラスであることを特徴とする上述した
粉体の気化方法。
The pipe heating temperature is 150 to 350.
The method for vaporizing powder as described above, characterized in that the temperature is ° C. Further, the above-mentioned powder vaporization method, wherein the substrate is glass.

【0021】さらに、粉末状金属化合物を熱分解温度以
下に加熱し、気化させ、キャリア−ガスとともに高温の
基体表面に導き、該基体表面で熱的に分解、反応させ、
基体表面上に金属、または金属化合物を被覆する装置に
おいて、粉末状金属化合物を定量的にキャリア−ガスA
の流れの中に送り込み装置と、前記粉末状金属化合物を
移送する該キャリア−ガスAを送り込む装置と、前記粉
末状金属化合物とキャリア−ガスAが通る配管の外側を
加熱する装置と、該気化した蒸気を前記キャリア−ガス
Aとともに蒸気の分解温度以上に加熱された基体表面に
導く装置とから成ることを特徴とする粉体の気化装置。
Further, the powdery metal compound is heated to a temperature not higher than the thermal decomposition temperature, vaporized, led to a high temperature substrate surface together with a carrier gas, and thermally decomposed and reacted on the substrate surface.
In a device for coating a metal or a metal compound on the surface of a substrate, a powdery metal compound is quantitatively measured as a carrier gas A.
A device for feeding the carrier gas A for transferring the powdery metal compound, a device for heating the outside of the pipe through which the powdery metal compound and the carrier gas A pass, and the vaporization And a carrier gas A for guiding the vapor to the surface of the substrate heated above the vapor decomposition temperature.

【0022】さらにまた、前記粉末状金属化合物とキャ
リア−ガスAが通る配管の外側を、加熱された熱媒体で
加熱することを特徴とする上述した粉体の気化装置をそ
れぞれ提供するものである。
Further, each of the above-mentioned powder vaporizers is characterized in that the outside of the pipe through which the powdery metal compound and the carrier gas A pass is heated by a heated heating medium. .

【0023】[0023]

【発明の実施の形態】ここで、前記粉末状金属化合物を
定量的に不活性ガスであるキャリア−ガスAの流れの中
に送り込み、該キャリア−ガスAの流れとともに前記粉
末状金属化合物を移送し、キャリア−ガスが通る配管の
外側から前記キャリア−ガスAと前記粉末状金属化合物
を加熱し、該粉末状金属化合物を分解温度以下の温度で
気化させ、該気化した蒸気を前記キャリア−ガスAとと
もに、分解温度以上に加熱された基体表面に導き、該基
体表面で熱的に分解、反応させ、基体表面上に金属、ま
たは金属化合物を被覆することとしたのは、図1に示す
ような粉体の気化装置を用いることで、高い蒸気収率と
安定した蒸気濃度を得ることができ、簡便な方法で効率
よく、膜質および膜厚が均一であってかつ欠陥がない、
しかも色調等光学特性を損なうこともなく、バランスよ
く所期の膜特性を発揮しうる成膜となる、従来に比べ格
段に優れた有用な粉体の気化方法およびその装置となし
たものである。
BEST MODE FOR CARRYING OUT THE INVENTION Here, the powdery metal compound is quantitatively fed into a flow of a carrier gas A which is an inert gas, and the powdery metal compound is transferred together with the flow of the carrier gas A. Then, the carrier gas A and the powdery metal compound are heated from the outside of the pipe through which the carrier gas passes, the powdery metal compound is vaporized at a temperature equal to or lower than the decomposition temperature, and the vaporized vapor is used as the carrier gas. As shown in FIG. 1, it was decided to introduce, together with A, to the surface of the substrate heated above the decomposition temperature, thermally decompose and react on the surface of the substrate, and to coat the metal or metal compound on the surface of the substrate. By using a simple powder vaporizer, it is possible to obtain a high vapor yield and a stable vapor concentration, a simple method and efficient, uniform film quality and film thickness, and no defects,
Moreover, it is a useful vaporization method of powder, which is significantly superior to the conventional one, and a device thereof, which can form a film capable of exhibiting desired film characteristics in a well-balanced manner without impairing optical characteristics such as color tone. .

【0024】また、粉体の気化装置としては、その一例
として図1に示すように、粉末状金属化合物である粉体
原料1を移送するための不活性ガスであるキャリア−ガ
スA2を送り込む装置と、該キャリア−ガスA2の流量
をマスフロ−コントロ−ラ−9で制御して定量的に供給
している流れの中に、粉末状金属化合物である粉体原料
1を押出スクリュ−の回転速度により供給量を制御する
スクリュ−コンベア4でもって定常的かつ定量的に送り
込む送り込み装置と、温度コントロ−ラ−で設定値±0.
5 ℃程度に温度制御された熱媒体6を内蔵し満たした加
熱バス5中に前記粉末状金属化合物である粉体原料1と
キャリア−ガスA2が通る配管であるガス移送配管7を
浸漬するようにして熱媒体6で外側からガス移送配管7
内を加熱する装置と、前記粉末状金属化合物である粉体
原料1を該装置の出口までにおいて気化した蒸気と前記
キャリア−ガスA2でなる蒸気とキャリア−ガスA10
を、別の経路から送られてきた反応性ガスを含む不活性
ガスであるキャリア−ガスB3の流れと合流させるとも
に混合し蒸気を希釈するようにし、前記した蒸気と前記
キャリア−ガスA10と前記キャリア−ガスB3でなる蒸
気とキャリア−ガスAとB11を所期の設定温度、例えば
150 乃至350 ℃程度に加熱保温しつつ噴霧ノズル12(例
えばスリット状等各種ノズル)に移送し、該噴霧ノズル
12でもって蒸気の分解温度以上に加熱された基体8表面
に噴霧するよう導く装置とから成る粉体の気化装置であ
る。
As an example of the vaporizing device for powder, as shown in FIG. 1, a device for feeding carrier gas A2 which is an inert gas for transferring powder raw material 1 which is a powder metal compound. And the flow rate of the carrier gas A2 controlled by the mass flow controller 9 to quantitatively supply the powder raw material 1, which is a powdery metal compound, to the rotation speed of the extrusion screw. With a screw conveyor 4 which controls the supply amount by means of a constant and quantitative feed device, and a temperature controller, a set value of ± 0.
The powder raw material 1 which is the powdery metal compound and the gas transfer pipe 7 which is a pipe through which the carrier gas A2 passes are immersed in a heating bath 5 which is filled with a heating medium 6 whose temperature is controlled to about 5 ° C. And the heat transfer medium 6 from the outside to the gas transfer pipe 7
A device for heating the inside, a vaporized powder raw material 1 which is the powdery metal compound up to the outlet of the device, a vapor composed of the carrier gas A2 and a carrier gas A10
Are mixed with a flow of a carrier gas B3, which is an inert gas containing a reactive gas sent from another path, and are mixed together to dilute the steam, and the above-mentioned steam, the carrier gas A10, and the above are mixed. The vapor composed of the carrier gas B3 and the carrier gases A and B11 are set to a desired set temperature, for example,
Transferring to the spray nozzle 12 (for example, various nozzles such as slits) while keeping the temperature at 150 to 350 ℃, the spray nozzle
12 is a device for vaporizing powder, which is constituted by a device for spraying onto the surface of the substrate 8 which is heated to a temperature not lower than the decomposition temperature of steam.

【0025】また、粉末を定量的に送り込む手段として
は、例えば前記スクリュ−コンベア−などがよく、他に
溝を設けた回転ドラムなどがあり、キャリア−ガスの圧
力に抗して定量的に供給できる手段であればその方法、
手段は特に限定されない。
Means for quantitatively feeding the powder include, for example, the screw conveyor and the like, and a rotary drum provided with a groove in addition thereto, which quantitatively supplies the carrier gas against the pressure thereof. If you can do it,
The means is not particularly limited.

【0026】また、キャリア−ガスAは、粉体を移送す
ることができるだけの流速で粉体の排出口に導かれる。
該キャリア−ガスAは吹き飛ばすように排出口に吹き付
けてもよいが、該キャリア−ガスAの定常流路に粉体を
押し込むように供給する方が粉体とガスが滞留すること
がなく好ましい。
Further, the carrier gas A is introduced into the powder discharge port at a flow rate that allows the powder to be transferred.
The carrier gas A may be blown to the discharge port so as to be blown away, but it is preferable to supply the carrier gas A so that the powder is pushed into the steady flow path because the powder and the gas do not stay.

【0027】さらに、粉体を移送するキャリア−ガスA
は、充分な流速を保ちながら加熱装置(バス)の中を通
り抜けるようにし、この時、ガス流を導く配管(原料粉
体、伝熱面積、流速、詰まり等を勘案して形状、大き
さ、長さなどを決めることとなるが、配管状のものが好
ましい)ごと外側から加熱することが望ましい。
Further, carrier gas A for transferring the powder
Is designed to pass through the heating device (bath) while maintaining a sufficient flow rate, and at this time, the pipe that guides the gas flow (material powder, heat transfer area, flow rate, clogging, etc. is taken into consideration, shape, size, Although the length and the like are determined, it is preferable to heat from the outside together with the pipe-like one).

【0028】さらにまた、粉体を移送するガス流を加熱
バス部に導入する方法は、ガス流速が遅くなり、粉体と
ガス流が分離し、粉体を速やかに蒸発させるのが困難な
だけでなく、次工程に送られるガス流に粉体や蒸気を含
まないガス流が混入し、充分な品質の被膜が得られ難く
なる。なお配管を内部から加熱する方法も考えられる
が、この場合例えば充分な伝熱面積を確保することが難
しく、確保するためにはガス流路が複雑になり、加熱部
材表面にスケ−ルなどが溜まり易くなる等の欠点を有す
る。一般に熱分解性原料粉末を加熱し、蒸発させる場合
には、蒸発と分解が同時に起こり易く、如何に分解を抑
えて蒸発させるかであり、配管内部に加熱手段を持つの
は好ましくない。
Furthermore, in the method of introducing the gas flow for transferring the powder into the heating bath section, the gas flow velocity becomes slow, the powder and the gas flow are separated, and it is difficult to quickly evaporate the powder. Not only that, a gas flow containing no powder or steam is mixed into the gas flow sent to the next step, which makes it difficult to obtain a film of sufficient quality. A method of heating the pipe from the inside is also conceivable, but in this case, for example, it is difficult to secure a sufficient heat transfer area, the gas flow path becomes complicated to secure the heat transfer area, and a scale or the like is formed on the heating member surface. It has drawbacks such as easy accumulation. Generally, when a thermally decomposable raw material powder is heated to evaporate, evaporation and decomposition are likely to occur at the same time, which is how to suppress the decomposition to evaporate, and it is not preferable to have a heating means inside the pipe.

【0029】上記の方法で濃厚な蒸気を含む反応性ガス
を得た後、別系統で送られてきたキャリア−ガスBと混
合し、所期の濃度に希釈することも可能である。この場
合例えば蒸気発生器や蒸気輸送配管などをコンパクトに
設計することができ、また原料供給量と吹き出し速度を
別途にコントロ−ルでき、より好ましい成膜条件が達成
される。
After the reactive gas containing rich vapor is obtained by the above method, it is possible to mix it with the carrier gas B sent from another system and dilute it to the desired concentration. In this case, for example, the steam generator and the steam transport pipe can be designed compactly, and the raw material supply amount and the blowing speed can be separately controlled, so that more preferable film forming conditions can be achieved.

【0030】さらにまた、蒸気を希釈することにより、
反応性ガス(原料蒸気とキャリア−ガスAとBが合流し
たもの)の温度を下げることも可能になる。温度を下げ
ることで互いに反応する成分を同時に輸送することも可
能になる。
Furthermore, by diluting the steam,
It is also possible to lower the temperature of the reactive gas (the raw material vapor and the carrier gases A and B joined together). By lowering the temperature, it becomes possible to simultaneously transport components that react with each other.

【0031】また、前記した蒸気とキャリア−ガスA10
の流れを、別の経路から送られてきた反応性ガスを含む
不活性ガスであるキャリア−ガスB3の流れと合流さ
せ、蒸気を希釈するようにした粉体の気化方法の方が、
成膜効率上から好ましいものである。
Further, the above-mentioned vapor and carrier gas A10
Of the carrier gas B3, which is an inert gas containing a reactive gas sent from another path, to dilute the vapor,
This is preferable from the viewpoint of film formation efficiency.

【0032】さらに、前記した不活性ガスとしては、
N2、Ar、He、Ne、Xe等の不活性ガスが挙げられ、粉体原
料やめざす膜あるいは成膜条件などにもよるが、なかで
もN2ガスが好ましいものである。
Further, as the above-mentioned inert gas,
Examples of the inert gas include N 2 , Ar, He, Ne, and Xe, and N 2 gas is preferable, although it depends on the powder raw material, the film to be aimed, or the film forming conditions.

【0033】さらに、前記した反応性ガスとしては、酸
素、水蒸気、アンモニアのうち少なくとも一つを含むガ
スであり、粉体原料やめざす膜あるいは成膜条件などに
もより、適宜選択し用いる。
Further, the above-mentioned reactive gas is a gas containing at least one of oxygen, water vapor, and ammonia, and is appropriately selected and used depending on the powder raw material, the film to be aimed, or the film forming conditions.

【0034】さらにまた、前記キャリア−ガスAと粉末
状金属化合物を移送する配管の加熱温度が、前記キャリ
ア−ガスAと蒸気を移送する時の温度より高いこととし
たのは、キャリア−ガスAと蒸気を移送する時の温度を
キャリア−ガスAと粉末状金属化合物を移送する配管の
加熱温度より少なくとも低くし、キャリア−ガスBと合
流してから噴霧ノズルの噴霧口までの間において、前記
蒸気の分解反応を抑制して阻止し、該管内における内面
への分解反応物の付着を防止し、しかも成膜効率を高め
るようにする等のためである。
Furthermore, the heating temperature of the pipe for transferring the carrier gas A and the powdery metal compound is higher than the temperature at the time of transferring the carrier gas A and the vapor. And the temperature at which the vapor is transferred are at least lower than the heating temperature of the pipe for transferring the carrier gas A and the powdery metal compound, and the temperature between the carrier gas B and the spray port of the spray nozzle is the This is because the decomposition reaction of vapor is suppressed and prevented, the decomposition reaction product is prevented from adhering to the inner surface of the tube, and the film formation efficiency is increased.

【0035】また、前記した粉末状金属化合物は、具体
的にはAl,Cr,Co,Cu,Fe,Ni,Zn,V,In,Ce,Sn,Si,Ti等から
なる、例えばアセチルアセトン(AcAc)、ジピバロイルメ
タン(DPM) あるいはヘキサフルオロアセチルアセトン(H
FA) などの有機金属化合物、また例えば金属アルコキシ
ド、ハロゲン化物、またさらに例えばAcAc、DPM あるい
はHFA などのβ−ジケトン化合物もしくはランタイド系
化合物、もしくはこれらの化合物を2種以上選択して用
いる等が挙げられる。
The above-mentioned powdery metal compound is specifically composed of Al, Cr, Co, Cu, Fe, Ni, Zn, V, In, Ce, Sn, Si, Ti, etc., such as acetylacetone (AcAc ), Dipivaloylmethane (DPM) or hexafluoroacetylacetone (H
FA) and the like, metal alkoxides, halides, β-diketone compounds such as AcAc, DPM or HFA or lantide compounds, or two or more of these compounds selected and used. To be

【0036】また、前記ガス移送配管における加熱温度
としては、前記した粉末状金属化合物である粉体の蒸発
温度程度であり、具体的には約150 乃至350 ℃であっ
て、時間的には前記した加熱バスを通過する間に蒸発を
完了するようにする。前記ガス移送配管の加熱保温が15
0 ℃未満であれば、ガス発生量が少なく必要量の発生に
は巨大な装置が必要となり、350 ℃を超えると熱分解反
応が起きて成膜できない。好ましいガス移送配管の加熱
保温としては約180 乃至300 ℃程度である。
The heating temperature in the gas transfer pipe is about the evaporation temperature of the powder which is the above-mentioned powdery metal compound, specifically about 150 to 350 ° C. Allow the evaporation to complete while passing through the heated bath. The heat insulation of the gas transfer pipe is 15
If the temperature is lower than 0 ° C, the amount of gas generated is small and a huge device is required to generate the required amount. If the temperature exceeds 350 ° C, a thermal decomposition reaction occurs and a film cannot be formed. The preferable heating and heat retention of the gas transfer pipe is about 180 to 300 ° C.

【0037】また、前記基板としては、有機質または無
機質のガラス、セラッミクス、金属等種々の材質のもの
が使用でき特に限定しないが、特にガラス、無機質の透
明板ガラスであって、無色または着色、ならびにその種
類あるいは色調等に特に限定されるものではなく、さら
に焼成後には曲げ板ガラスとしてはもちろん、各種強化
ガラスや強度アップガラス、平板や単板で使用できると
ともに、複層ガラスあるいは合せガラスとしても採用で
きるものであり、また各種板状体、特に建築用や自動車
用の窓ガラスにも適宜採用できることは言うまでもな
い。
The substrate may be made of various materials such as organic or inorganic glass, ceramics and metals, and is not particularly limited, but it is particularly glass or inorganic transparent plate glass, which is colorless or colored, and its The type or color tone is not particularly limited, and after being fired, it can be used not only as bent plate glass, but also as various tempered glass, strength-up glass, flat plate or single plate, and can also be used as multi-layer glass or laminated glass. It goes without saying that it can also be appropriately applied to various plate-like bodies, particularly window glasses for construction and automobiles.

【0038】さらにまた、前記粉末状金属化合物とキャ
リア−ガスAが通るガス移送の配管を加熱するための加
熱された熱媒体としては、例えば各種オイル、バ−レル
サ−ム(商品名)等が挙げられる。
Furthermore, as the heated heat medium for heating the gas transfer pipe through which the powdery metal compound and the carrier gas A pass, for example, various oils, barrel thermos (trade name) and the like are used. Can be mentioned.

【0039】前述したとおり、本発明の粉体の気化方法
及びその装置は、定量的な粉体供給において、長いらせ
ん状の蒸発管を用い、最適な蒸発温度に保つことによ
り、未気化成分が出ず、供給全量から安定したガス発生
が可能である。
As described above, in the powder vaporization method and apparatus of the present invention, in the quantitative powder supply, by using a long spiral evaporation tube and keeping the optimum evaporation temperature, the non-vaporized components are removed. It does not come out, and stable gas generation is possible from the total supply.

【0040】また、原料供給部とガス発生部が別れてい
るため、先に記述した先行の特許出願公開公報に記載の
発明が持つ種々の課題を適宜改善でき、原料供給にかか
わる課題が生じないようにすることができる。
Further, since the raw material supply section and the gas generating section are separated, it is possible to appropriately improve various problems of the invention described in the above-mentioned prior patent application publication, and no problems related to the raw material supply occur. You can

【0041】また、N2ガス等不活性ガスをキャリア−ガ
スとした気化により、酸化反応を抑えて、熱分解しない
温度に保ちつつガス搬送するようにし、さらに成膜に必
要なO2分を成膜直前で混合させ、最適なガス濃度に制御
できる。
Further, the N 2 gas or the like inert gas carrier - by vaporization and the gas, to suppress the oxidation reaction while maintaining a temperature not thermally decomposed so as to gas transport, the further O 2 minutes required for deposition It can be mixed just before film formation and controlled to an optimum gas concentration.

【0042】さらに、一定温度に加熱制御した熱媒体バ
ス、例えばオイルバス内に蒸発管を設置する構成によ
り、安定した蒸発条件を保つことができる。さらにま
た、原料供給時に、気化と熱分解の温度が近い、例えば
本発明のアセチルアセトナ−ト金属化合物のような原料
の場合、高温加熱部の一部に低温部があると、発生した
ガスが凝縮し付着する。また原料供給部は高温による熱
変成、固化を防ぐために気化温度以下に保つ必要がある
が、本発明の場合には連続的な加熱搬送方式のため上記
のような課題が生じない等、有用な粉体の気化方法及び
その装置を提供するものである。
Furthermore, the stable evaporation condition can be maintained by the structure in which the evaporation pipe is installed in the heat medium bath whose temperature is controlled to be constant, for example, the oil bath. Furthermore, when the raw material is fed, the vaporization temperature and the thermal decomposition temperature are close to each other, for example, in the case of a raw material such as the acetylacetonate metal compound of the present invention, if a low temperature portion is present in a part of the high temperature heating portion, the generated gas is generated. Are condensed and attached. Further, the raw material supply section needs to be maintained at a vaporization temperature or lower in order to prevent thermal denaturation and solidification due to high temperature, but in the case of the present invention, the above problems do not occur due to the continuous heating and conveying system, which is useful. A method for vaporizing powder and an apparatus therefor are provided.

【0043】さらに、該本発明の粉体の気化方法及びそ
の装置は、例えば着色膜、プライバシ−ガラス用膜、各
種熱線反射膜、紫外線遮蔽膜、低反射膜、酸化物超伝導
膜、単結晶膜、撥水撥油性膜、アルカリ溶出防止膜、保
護膜、ハ−ドコ−ト膜、防汚性膜、防菌性膜等の各種機
能性膜に採用が可能である。
Further, the powder vaporization method and apparatus thereof of the present invention include, for example, a colored film, a film for privacy glass, various heat ray reflective films, an ultraviolet shielding film, a low reflective film, an oxide superconducting film, and a single crystal. It can be used for various functional films such as a film, a water / oil repellent film, an alkali elution preventive film, a protective film, a hard coat film, an antifouling film and an antibacterial film.

【0044】[0044]

【実施例】以下、実施例により本発明を具体的に説明す
る。ただし本発明は係る実施例に限定されるものではな
い。
The present invention will be described below in detail with reference to examples. However, the present invention is not limited to such an embodiment.

【0045】実施例1 大きさ約100mm ×200mm 、厚さ約3mmのフロ−トガラス
基板を中性洗剤、水すすぎ、アルコ−ルで順次洗浄し、
乾燥した後、アセトンで払拭し、約600 ℃に加熱し、高
温の被膜用ガラス基板とした。
Example 1 A float glass substrate having a size of about 100 mm × 200 mm and a thickness of about 3 mm was sequentially washed with a neutral detergent, a water rinse, and an alcohol,
After drying, it was wiped with acetone and heated to about 600 ° C. to obtain a high temperature glass substrate for coating.

【0046】上述した図1に示す粉体の気化装置Xにお
いて、粉末有機金属化合物としてコバルトIII アセチル
アセトナ−トを、またキャリア−ガスAとして窒素ガス
をそれぞれ用い、表1に示すように、キャリア−ガスA
である窒素ガスをマスフロ−コントロ−ラ−で流量約4
l /min 制御して定量的に供給する流れの中に、粉末有
機金属化合物であるコバルトIII アセチルアセトナ−ト
を供給量約2g /minにスクリュ−コンベアのスクリュ
−回転で定常的かつ定量的に送り込む。
In the powder vaporizer X shown in FIG. 1 described above, cobalt III acetylacetonate was used as the powdered organometallic compound, and nitrogen gas was used as the carrier gas A, as shown in Table 1. Carrier-gas A
The flow rate of nitrogen gas is about 4 with a mass flow controller.
In a flow controlled and quantitatively controlled at l / min, cobalt III acetylacetonate, which is a powdered organometallic compound, was supplied at a constant rate of about 2 g / min by screw rotation of a screw conveyor. Send to.

【0047】続いて、温度コントロ−ラ−で約300 ℃±
0.5 ℃程度に温度制御したオイルである熱媒体を満たし
た加熱バス(オイルバス)中に浸漬されたガス移送管に
上記コバルトIII アセチルアセトナ−トと窒素ガスをさ
らに移送し、ガス移送管内において加熱することでコバ
ルトIII アセチルアセトナ−ト蒸気を約0.5g/l 程度含
む濃度の窒素ガスを送り出す。
Subsequently, a temperature controller was used to measure about 300.degree.
The cobalt III acetylacetonate and nitrogen gas were further transferred to a gas transfer pipe immersed in a heating bath (oil bath) filled with a heating medium which was an oil whose temperature was controlled to about 0.5 ° C., and then in the gas transfer pipe. By heating, nitrogen gas having a concentration containing about 0.5 g / l of cobalt III acetylacetonate vapor is sent out.

【0048】次いで、該コバルトIII アセチルアセトナ
−ト蒸気を含む窒素ガスを、別の経路からマスフロ−コ
ントロ−ラ−で流量約10l /min 制御して定量的に供給
して送られてきた反応性ガスを含む不活性ガスである酸
素を5%含む窒素ガスの流れと合流させ、温度約180 ℃
程度まで下げ、蒸気濃度約0.2 g /l 程度含む窒素ガス
に希釈し、保温等で該温度を保持しつつノズル幅約100m
m 程度のスリット状ノズル付き噴霧ノズルに移送する。
Then, the reaction was sent in which the nitrogen gas containing the cobalt III acetylacetonate vapor was quantitatively supplied from another route by controlling the flow rate of about 10 l / min by a mass flow controller. Combined with a stream of nitrogen gas containing 5% of oxygen, which is an inert gas containing a volatile gas, and the temperature is about 180 ° C.
To about 100 m, while diluting it with nitrogen gas containing about 0.2 g / l of vapor concentration and keeping the temperature by keeping it warm.
Transfer to a spray nozzle with a slit nozzle of about m.

【0049】次に、約30mm/秒の定速移動する前記加熱
したガラス基板の表面に、少なくとも該ガラス基板の幅
の間において、該スリット状ノズル付き噴霧ノズルを幅
方向で一定の移動速度にスキャナしつつ噴霧して導き、
基板表面で蒸気の分解反応を同時に行い、酸化コバルト
薄膜を被覆し、乾燥と焼成をし成膜した。
Next, on the surface of the heated glass substrate which moves at a constant speed of about 30 mm / sec, the spray nozzle with the slit-shaped nozzle is moved at a constant moving speed in the width direction at least between the widths of the glass substrate. Spray and guide while scanning,
At the same time, vapor decomposition reaction was performed on the surface of the substrate to coat a cobalt oxide thin film, which was dried and baked to form a film.

【0050】得られた膜付きガラス基板の評価を下記の
ように行った。 〔外観上の観察〕 1)色調: ミノルタ表面色差計(CR-200)にて測定す
る。
The obtained glass substrate with a film was evaluated as follows. [Observation on appearance] 1) Color tone: Measure with Minolta surface color difference meter (CR-200).

【0051】2)光学特性:(1)340型自記分光光度計(日
立製作所製)とJIS Z 8722、JIS R3106 によって、可視
光透過率や可視光反射率(380nm〜780nm)、紫外線透過率
(320nm〜400nm)、日射透過率(320nm〜400nm)、刺激純
度、主波長等を求めた。
2) Optical characteristics: (1) Visible light transmittance, visible light reflectance (380 nm to 780 nm), ultraviolet ray transmittance by 340 type self-recording spectrophotometer (manufactured by Hitachi Ltd.) and JIS Z 8722, JIS R3106.
(320 nm to 400 nm), solar radiation transmittance (320 nm to 400 nm), stimulus purity, dominant wavelength, etc. were determined.

【0052】(2) ヘ−ズメ−タ〔日本電色工業(株)
製、NDH-20D 型〕でヘ−ズ(曇り具合)値を測定する。 (3) ミノルタ表面色差計(CR-200)にて膜面反射率を測
定する。 〔膜厚測定〕 DEKTAK(Sloan 社製)にて測定する。 〔膜強度測定(耐摩耗試験)〕テ−バ−試験器(ト−ヨ
−セイキ社製、ROTARY ABRATION TESTER)にて、摩耗輪
CS-10Fで 100回転後のヘ−ズ値(透過率)の変化分△H
を求めた。 〔膜欠陥〕 官能テストで雲ムラ、斑点等の程度を標
準サンプルと目視比較で判定。 〔耐薬品性〕 (1) 耐酸性:HCl (1規定)に24時間
(23±3 ℃)浸漬前後の透過率の変化率。
(2) Head meter [Nippon Denshoku Industries Co., Ltd.]
Manufactured by NDH-20D] to measure the haze value. (3) Measure the film surface reflectance with a Minolta surface color difference meter (CR-200). [Measurement of film thickness] Measure with DEKTAK (manufactured by Sloan). [Film strength measurement (wear resistance test)] Wear a wheel with a taper tester (TOYOYOSEIKI ROTARY ABRATION TESTER).
Change in haze value (transmittance) after 100 rotations with CS-10F △ H
I asked. [Film defect] A sensory test judges the degree of cloud unevenness, spots, etc. by visual comparison with a standard sample. [Chemical resistance] (1) Acid resistance: The rate of change in transmittance before and after immersion in HCl (1 standard) for 24 hours (23 ± 3 ° C).

【0053】(2) 耐アルカリ性:NaOH (1規定)に24
時間(23±3 ℃)浸漬前後の透過率の変化率。 〔耐候性〕 サンシャインウエザ−メ−タで実施。 〔その他〕 撥水性、電気的特性等必要に応じて適宜
一般に用いられている測定法によって評価する。
(2) Alkali resistance: 24 (1 standard) NaOH
Percentage change in transmittance before and after immersion in time (23 ± 3 ° C). [Weather resistance] Implemented with a sunshine weather meter. [Others] Water repellency, electrical characteristics, etc. are appropriately evaluated by commonly used measurement methods as necessary.

【0054】その結果、表2に示すように、得られた膜
付きガラス板におけるCo2O3 薄膜の膜厚は、約60nm程度
であり、所定の膜厚にでき、膜質および膜厚分布とも均
一であり、不完全なガス発生による膜欠陥もなく、色調
や膜強度も良好であり、◎印であって所期のめざす粉体
の気化方法及びその気化装置であった。
As a result, as shown in Table 2, the film thickness of the Co 2 O 3 thin film in the obtained glass plate with a film was about 60 nm, and it was possible to obtain a predetermined film thickness. It was uniform, had no film defects due to incomplete gas generation, had good color tone and film strength, and was marked with ⊚, which was the intended powder vaporization method and its vaporization apparatus.

【0055】実施例2 実施例1と同様の高温の被膜用ガラス基板と、上述した
図1に示す粉体の気化装置Xを用い、粉末有機金属化合
物としてクロムIII アセチルアセトナ−トに変え、表1
に示すように、実施例1と同様にして、その供給量を約
3.2g/min とし、約280 ℃±0.5 ℃程度の熱媒体とし、
クロムIII アセチルアセトナ−ト蒸気を約0.8g/l 程度
含む濃度の窒素ガスを送り出し、次いで該クロムIII ア
セチルアセトナ−ト蒸気を含む窒素ガスを、別の経路か
らマスフロ−コントロ−ラ−で流量約16l /min 制御し
て定量的に供給して送られてきた反応性ガスを含む不活
性ガスである酸素を2%含む窒素ガスの流れと合流さ
せ、温度約190 ℃程度まで下げ、蒸気濃度約0.2 g /l
程度含む窒素ガスに希釈し、保温等で該温度を保持しつ
つノズル幅約100mm 程度のスリット状ノズル付き噴霧ノ
ズルに移送する。
Example 2 Using the same high temperature coating glass substrate as in Example 1 and the powder vaporizer X shown in FIG. 1 described above, the powder organometallic compound was changed to chromium III acetylacetonate. Table 1
As shown in FIG.
3.2g / min, heat medium of about 280 ℃ ± 0.5 ℃,
Nitrogen gas having a concentration of about 0.8 g / l of chromium III acetylacetonate vapor was sent out, and then nitrogen gas containing the chromium III acetylacetonate vapor was supplied by a mass flow controller from another route. A flow rate of about 16 l / min was controlled to quantitatively supply and send a flow of nitrogen gas containing 2% of oxygen, which is an inert gas containing a reactive gas, and the temperature was lowered to about 190 ° C. Concentration about 0.2 g / l
It is diluted with nitrogen gas containing about a certain amount and is transferred to a spray nozzle with a slit-shaped nozzle having a nozzle width of about 100 mm while maintaining the temperature by keeping it warm.

【0056】次に、実施例1と同様に約30mm/秒の定速
移動する前記加熱したガラス基板の表面に、少なくとも
該ガラス基板の幅の間において、該スリット状ノズル付
き噴霧ノズルを幅方向で一定の移動速度にスキャナしつ
つ噴霧して導き、基板表面で蒸気の分解反応を同時に行
い、酸化クロム薄膜を被覆被膜し、乾燥と焼成をし成膜
した。
Next, in the same manner as in Example 1, the spray nozzle with the slit-shaped nozzle was applied in the width direction on the surface of the heated glass substrate which moved at a constant speed of about 30 mm / sec, at least between the widths of the glass substrate. At the same time, it was sprayed and guided at a constant moving speed, and vapor decomposition reaction was simultaneously performed on the substrate surface, and a chromium oxide thin film was coated and dried and baked to form a film.

【0057】得られた膜付きガラス基板の評価を実施例
1と同様に行った。その結果、表2に示すように、得ら
れた膜付きガラス板におけるCr2O3 薄膜の膜厚は、約40
nm程度であり、実施例1と同様、所定の膜厚にでき、膜
質および膜厚分布とも均一であり、不完全なガス発生に
よる膜欠陥もなく、色調や膜強度も良好であり、◎印で
あって所期のめざす粉体の気化方法及びその気化装置で
あった。
The obtained glass substrate with a film was evaluated in the same manner as in Example 1. As a result, as shown in Table 2, the thickness of the Cr 2 O 3 thin film in the obtained glass plate with a film was about 40.
Approximately nm, as in Example 1, a predetermined film thickness can be obtained, the film quality and film thickness distribution are uniform, there is no film defect due to incomplete gas generation, and the color tone and film strength are good. That is, the intended vaporization method of powder and its vaporization apparatus.

【0058】実施例3 実施例1と同様の高温の被膜用ガラス基板と、上述した
図1に示す粉体の気化装置Xを用い、粉末有機金属化合
物として鉄III アセチルアセトナ−トに変え、表1に示
すように、実施例1と同様にして、その供給量を約0.8g
/min とし、約220 ℃±0.5 ℃程度の熱媒体とし、鉄II
I アセチルアセトナ−ト蒸気を約0.2g/l 程度含む濃度
の窒素ガスを送り出し、次いで該鉄 IIIアセチルアセト
ナ−ト蒸気を含む窒素ガスを、別の経路からマスフロ−
コントロ−ラ−で流量約4l /min 制御して定量的に供
給して送られてきた反応性ガスを含む不活性ガスである
酸素を4%含む窒素ガスの流れと合流させ、温度約160
℃程度まで下げ、蒸気濃度約0.1 g /l 程度含む窒素ガ
スに希釈し、保温等で該温度を保持しつつノズル幅約10
0mm 程度のスリット状ノズル付き噴霧ノズルに移送す
る。
Example 3 Using the same high temperature glass substrate for coating as in Example 1 and the powder vaporizer X shown in FIG. 1 described above, the powder organometallic compound was changed to iron III acetylacetonate. As shown in Table 1, in the same manner as in Example 1, the supply amount was about 0.8 g.
/ Min, heat medium of about 220 ℃ ± 0.5 ℃, iron II
I Nitrogen gas having a concentration of about 0.2 g / l of acetylacetonate vapor was sent out, and then the nitrogen gas containing the iron III acetylacetonate vapor was mass-flowed from another route.
A flow rate of about 4 l / min was controlled by a controller to quantitatively supply the oxygen gas, which was an inert gas containing a reactive gas and was fed quantitatively, and was combined with a flow of nitrogen gas containing 4% to obtain a temperature of about 160.
The temperature is lowered to about ℃, diluted with nitrogen gas containing about 0.1 g / l of vapor concentration, and the nozzle width is kept at about 10 while maintaining the temperature by keeping it warm.
Transfer to a spray nozzle with a slit-shaped nozzle of about 0 mm.

【0059】次に、実施例1と同様に約30mm/秒の定速
移動する前記加熱したガラス基板の表面に、少なくとも
該ガラス基板の幅の間において、該スリット状ノズル付
き噴霧ノズルを幅方向で一定の移動速度にスキャナしつ
つ噴霧して導き、基板表面で蒸気の分解反応を同時に行
い、酸化鉄薄膜を被覆被膜し、乾燥と焼成をし成膜し
た。
Next, in the same manner as in Example 1, the spray nozzle with the slit-shaped nozzle was applied in the width direction on the surface of the heated glass substrate which moved at a constant speed of about 30 mm / sec at least between the widths of the glass substrate. At the same time, it was sprayed and guided at a constant moving speed, and the decomposition reaction of vapor was simultaneously performed on the substrate surface, the iron oxide thin film was coated and dried and baked to form a film.

【0060】得られた膜付きガラス基板の評価を実施例
1と同様に行った。その結果、表2に示すように、得ら
れた膜付きガラス板におけるFe2O3 薄膜の膜厚は、約40
nm程度であり、実施例1と同様、所定の膜厚にでき、膜
質および膜厚分布とも均一であり、不完全なガス発生に
よる膜欠陥もなく、色調や膜強度も良好であり、◎印で
あって所期のめざす粉体の気化方法及びその気化装置で
あった。
The obtained glass substrate with a film was evaluated in the same manner as in Example 1. As a result, as shown in Table 2, the film thickness of the Fe 2 O 3 thin film in the obtained glass plate with a film was about 40.
Approximately nm, as in Example 1, a predetermined film thickness can be obtained, the film quality and film thickness distribution are uniform, there is no film defect due to incomplete gas generation, and the color tone and film strength are good. That is, the intended vaporization method of powder and its vaporization apparatus.

【0061】実施例4 実施例1と同様の高温の被膜用ガラス基板と、上述した
図1に示す粉体の気化装置X、および粉末金属化合物と
してコバルトIII アセチルアセトナ−トを用い、表1に
示すように、実施例1と同様にして、その供給量を約0.
8g/min とし、約220 ℃±0.5 ℃程度の熱媒体とし、鉄
III アセチルアセトナ−ト蒸気を約0.2g/l 程度含む濃
度の窒素ガスを送り出し、そのまま保温等で該温度を保
持しつつノズル幅約100mm 程度のスリット状ノズル付き
噴霧ノズルに移送する。
Example 4 The same high temperature glass substrate for coating as in Example 1, the above-described powder vaporizer X shown in FIG. 1, and cobalt III acetylacetonate as a powder metal compound were used. As shown in, the supply amount was about 0.
8g / min, 220 ℃ ± 0.5 ℃ heat medium, iron
III Nitrogen gas having a concentration containing about 0.2 g / l of acetylacetonate vapor is sent out and transferred to a spray nozzle with a slit-shaped nozzle having a nozzle width of about 100 mm while keeping the temperature as it is while keeping it warm.

【0062】次に、実施例1と同様に約30mm/秒の定速
移動する前記加熱したガラス基板の表面に、少なくとも
該ガラス基板の幅の間において、該スリット状ノズル付
き噴霧ノズルを幅方向で一定の移動速度にスキャナしつ
つ噴霧して導き、基板表面で蒸気の分解反応を同時に行
い、酸化コバルト薄膜を被覆被膜し、乾燥と焼成をし成
膜した。
Next, in the same manner as in Example 1, the spray nozzle with the slit-shaped nozzle was applied in the width direction on the surface of the heated glass substrate which moved at a constant speed of about 30 mm / sec, at least between the widths of the glass substrate. At the same time, it was sprayed and guided at a constant moving speed, and vapor decomposition reaction was simultaneously performed on the substrate surface, and a cobalt oxide thin film was coated and dried and baked to form a film.

【0063】得られた膜付きガラス基板の評価を実施例
1と同様に行った。その結果、表2に示すように、得ら
れた膜付きガラス板におけるCo2O3 薄膜の膜厚は、約20
nm程度であり、実施例1とは異なって膜厚が薄くなり、
成膜速度すなわち成膜効率が多少劣るものの、膜質およ
び膜厚分布とも均一であり、不完全なガス発生による膜
欠陥もなく、色調や膜強度も良好であり、膜厚と色の濃
淡は成膜時間を延ばすことで解決でき、○印ではある
が、所期のめざす粉体の気化方法及びその気化装置であ
った。
The obtained glass substrate with a film was evaluated in the same manner as in Example 1. As a result, as shown in Table 2, the film thickness of the Co 2 O 3 thin film in the obtained glass plate with a film was about 20.
The thickness is about nm, which is different from that in Example 1,
Although the film forming speed, that is, the film forming efficiency, is somewhat inferior, the film quality and film thickness distribution are uniform, there are no film defects due to incomplete gas generation, and the color tone and film strength are also good, and the film thickness and color density are stable. Although it can be solved by extending the film time, it is the intended vaporization method of the powder and its intended vaporization device, although it is indicated by a circle.

【0064】比較例1 表1に示すように、キャリア−ガスAのみ窒素ガスと酸
素20%に変え、他は実施例4と同様にした。
Comparative Example 1 As shown in Table 1, only carrier gas A was changed to nitrogen gas and oxygen 20%, and other conditions were the same as in Example 4.

【0065】得られた膜付きガラス基板の評価を実施例
1と同様に行った。その結果、表2に示すように、Co2O
3 薄膜の膜厚は、約20nm程度であり、キャリア−ガスA
のO2分が多いため気化、ガス移送中に熱酸化反応したも
のが堆積し、またその分解物(酸化物)が成膜時に膜面
で斑点状欠陥を発生させ、またさらに安定したガス発生
もできないし、次第に管内を詰まり気味にならしめるこ
ととなる等の弊害を発現し、到底所期のめざす粉体の気
化方法及びその気化装置であると言えるものではなく、
×印であった。
The obtained glass substrate with a film was evaluated in the same manner as in Example 1. As a result, as shown in Table 2, Co 2 O
3 The thickness of the thin film is about 20 nm, and carrier gas A
Since there is a large amount of O 2 in the gas, vaporization and thermal oxidation reaction during gas transfer accumulate, and the decomposed product (oxide) causes spot defects on the film surface during film formation, and further stable gas generation. It is also not possible to say that it is a vaporization method of powder and its vaporization device that aims at the ultimate goal, expressing the adverse effects such as gradually clogging the inside of the pipe and making it feel like it,
It was a mark X.

【0066】比較例2 表1に示すように、従来の粉体の気化装置Yを用い、キ
ャリア−ガスAを窒素ガスと酸素5%に変え、粉末金属
化合物としてのコバルトIII アセチルアセトナ−トの供
給量を約2.0g/min と増加し、約250 ℃±0.5 ℃程度の
高めた熱媒体とし、コバルトIII アセチルアセトナ−ト
蒸気を約0.5g/l 程度含むよう濃度をあげた窒素ガスを
送り出し、他は実施例4や比較例1と同様にした。
Comparative Example 2 As shown in Table 1, a conventional powder vaporizer Y was used, the carrier gas A was changed to nitrogen gas and oxygen 5%, and cobalt III acetylacetonate as a powder metal compound was used. The supply rate of nitrogen gas was increased to about 2.0 g / min, and the heating medium was increased to about 250 ° C ± 0.5 ° C, and the concentration of nitrogen gas was increased to contain cobalt III acetylacetonate vapor at about 0.5 g / l. And the others were the same as in Example 4 and Comparative Example 1.

【0067】得られた膜付きガラス基板の評価を実施例
1と同様に行った。その結果、表2に示すように、Co2O
3 薄膜の膜厚は、約20nm程度以下と薄くなり、蒸発時の
ガス濃度が濃くなりすぎ、キャリア−ガスAのO2分があ
るため熱酸化が進み、分解物(酸化物)が成膜時に膜面
で斑点状欠陥を発生させ、比較例1と同様に容器(配管
等)内にも堆積物が付着し、安定したガス発生が難しい
等の弊害を発現し、到底所期のめざす粉体の気化方法及
びその気化装置であると言えるものではなく、×印であ
った。
The obtained glass substrate with a film was evaluated in the same manner as in Example 1. As a result, as shown in Table 2, Co 2 O
3 The film thickness of the thin film is as thin as about 20 nm or less, the gas concentration during evaporation becomes too high, and the carrier gas A contains O 2 so that thermal oxidation proceeds and decomposed products (oxides) are formed. Occasionally, spot-like defects are generated on the film surface, deposits adhere to the inside of containers (pipes, etc.) as in Comparative Example 1, and stable gas generation is difficult. It could not be said that it was the vaporization method of the body and the vaporization apparatus therefor, and was marked with a cross.

【0068】[0068]

【表1】 [Table 1]

【0069】[0069]

【表2】 [Table 2]

【0070】[0070]

【発明の効果】以上前述したように、本発明によれば、
不活性ガス中の粉末状金属化合物を該粉末状金属化合物
の熱分解しない程度の温度に間接的に加熱し気化するよ
うにしたので、未気化成分を生じることなく、かつ酸化
反応を抑制しつつ粉末状金属化合物の蒸気を安定して完
全に発生せしめ、凝縮物やその付着や詰まり等のトラブ
ルなく移送でき、さらに適宜希釈することにより高温に
よる熱変成、固化を防止でき、所定の膜厚を効率よく成
膜でき、膜質および膜厚分布とも均一であり、不完全な
ガス発生による膜欠陥もなく、色調や膜強度も良好であ
り、種々の機能性膜に採用可能である有用な粉体の気化
方法及びその装置をを提供するものである。
As described above, according to the present invention,
Since the powdery metal compound in the inert gas is indirectly heated and vaporized to a temperature at which the powdery metal compound is not thermally decomposed, an unvaporized component is not generated and the oxidation reaction is suppressed. Stable and complete generation of vapor of powdered metal compounds can be transferred without troubles such as condensate and its adhesion and clogging, etc., and further proper dilution can prevent thermal denaturation and solidification due to high temperature, resulting in a predetermined film thickness. A useful powder that can be efficiently formed, has uniform film quality and film thickness distribution, has no film defects due to incomplete gas generation, has good color tone and film strength, and can be used for various functional films. The present invention provides a vaporization method and apparatus therefor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の粉体の気化方法及びその装置による実
施例1乃至4において用いた気化装置の一例を示す説明
図である。
FIG. 1 is an explanatory diagram showing an example of a vaporization apparatus used in Examples 1 to 4 according to a powder vaporization method and apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 粉末原料 2 キャリアガスA 3 キャリアガスB 4 スクリュ−コンベア 5 加熱バス 6 熱媒体 7 ガス移送配管 8 基体 9 マスフロ−コントロ−ラ− 10 蒸気とキャリアガスA 11 蒸気とキャリアガスAとB 12 噴霧ノズル 1 Powder Raw Material 2 Carrier Gas A 3 Carrier Gas B 4 Screw Conveyor 5 Heating Bath 6 Heat Medium 7 Gas Transfer Pipe 8 Substrate 9 Mass Flow Controller 10 Steam and Carrier Gas A 11 Steam and Carrier Gas A and B 12 Spray nozzle

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 粉末状金属化合物を熱分解温度以下に加
熱し、気化させ、キャリア−ガスとともに高温の基体表
面に導き、該基体表面で熱的に分解、反応させ、基体表
面上に金属、または金属化合物を被覆する方法におい
て、粉末状金属化合物を定量的に不活性ガスであるキャ
リア−ガスAの流れの中に送り込み、該キャリア−ガス
Aの流れとともに前記粉末状金属化合物を移送し、キャ
リア−ガスが通る配管の外側から前記キャリア−ガスA
と前記粉末状金属化合物を加熱し、該粉末状金属化合物
を分解温度以下の温度で気化させ、該気化した蒸気を前
記キャリア−ガスAとともに、蒸気を分解温度以上に加
熱された基体表面に導くことを特徴とする粉体の気化方
法。
1. A powdery metal compound is heated to a temperature lower than its thermal decomposition temperature, vaporized, introduced to a high-temperature substrate surface together with a carrier gas, thermally decomposed and reacted on the substrate surface, and a metal on the substrate surface, Alternatively, in the method of coating a metal compound, a powdery metal compound is quantitatively fed into a flow of a carrier gas A which is an inert gas, and the powdery metal compound is transferred together with the flow of the carrier gas A, From the outside of the pipe through which the carrier gas passes, the carrier gas A
And heating the powdery metal compound to vaporize the powdery metal compound at a temperature below the decomposition temperature, and to guide the vaporized vapor together with the carrier gas A to the surface of the substrate heated above the decomposition temperature. A method for vaporizing powder, which is characterized in that
【請求項2】 前記蒸気とキャリア−ガスAの流れを、
別の経路から送られてきた反応性ガスを含む不活性ガス
であるキャリア−ガスBの流れと合流させ、蒸気を希釈
するようにしたことを特徴とする請求項1記載の粉体の
気化方法。
2. The flow of the vapor and carrier gas A,
2. The method for vaporizing powder according to claim 1, wherein the vapor is diluted with a flow of a carrier gas B, which is an inert gas containing a reactive gas, which is sent from another route. .
【請求項3】 前記不活性ガスが、N2、Ar、He、Ne、Xe
であることを特徴とする請求項1乃至2記載の粉体の気
化方法。
3. The inert gas is N 2 , Ar, He, Ne, Xe
The method for vaporizing powder according to claim 1 or 2, wherein
【請求項4】 前記反応性ガスが、酸素、水蒸気、アン
モニアのうち少なくとも一つを含むガスであることを特
徴とする請求項1乃至3記載の粉体の気化方法。
4. The method for vaporizing powder according to claim 1, wherein the reactive gas is a gas containing at least one of oxygen, water vapor, and ammonia.
【請求項5】 前記キャリア−ガスAと粉末状金属化合
物を移送する配管加熱温度が、前記キャリア−ガスAと
蒸気を移送する時の温度より高いことを特徴とする請求
項1乃至4記載の粉体の気化方法。
5. The pipe heating temperature for transferring the carrier gas A and the powdery metal compound is higher than the temperature for transferring the carrier gas A and vapor. Powder vaporization method.
【請求項6】 前記粉末状金属化合物が、有機金属化合
物、金属アルコキシド、ハロゲン化物、β−ジケトン化
合物もしくはランタイド系化合物であることを特徴とす
る請求項1乃至5記載の粉体の気化方法。
6. The method for vaporizing powder according to claim 1, wherein the powdery metal compound is an organic metal compound, a metal alkoxide, a halide, a β-diketone compound or a lantide compound.
【請求項7】 前記配管加熱温度が、150 乃至350 ℃で
あることを特徴とする請求項1乃至6記載の粉体の気化
方法。
7. The method for vaporizing powder according to claim 1, wherein the heating temperature of the pipe is 150 to 350 ° C.
【請求項8】 前記基体が、ガラスであることを特徴と
する請求項1乃至7記載の粉体の気化方法。
8. The method for vaporizing powder according to claim 1, wherein the substrate is glass.
【請求項9】 粉末状金属化合物を熱分解温度以下に加
熱し、気化させ、キャリア−ガスとともに高温の基体表
面に導き、該基体表面で熱的に分解、反応させ、基体表
面上に金属、または金属化合物を被覆する装置におい
て、粉末状金属化合物を定量的にキャリア−ガスAの流
れの中に送り込み装置と、前記粉末状金属化合物を移送
する該キャリア−ガスAを送り込む装置と、前記粉末状
金属化合物とキャリア−ガスAが通る配管の外側を加熱
する装置と、該気化した蒸気を前記キャリア−ガスAと
ともに蒸気の分解温度以上に加熱された基体表面に導く
装置とから成ることを特徴とする粉体の気化装置。
9. A powdery metal compound is heated to a temperature lower than its thermal decomposition temperature, vaporized, introduced to a high-temperature substrate surface together with a carrier gas, thermally decomposed and reacted on the substrate surface, and a metal on the substrate surface, Alternatively, in a device for coating a metal compound, a device for quantitatively feeding the powdery metal compound into the flow of the carrier gas A, a device for feeding the carrier gas A for transferring the powdery metal compound, and the powder And a device for heating the outer side of the pipe through which the metal compound and the carrier gas A pass, and a device for guiding the vaporized vapor together with the carrier gas A to the surface of the substrate heated above the decomposition temperature of the vapor. Vaporizer for powder.
【請求項10】 前記粉末状金属化合物とキャリア−ガス
Aが通る配管の外側を、加熱された熱媒体で加熱するこ
とを特徴とする請求項9記載の粉体の気化装置。
10. The apparatus for vaporizing powder according to claim 9, wherein the outside of the pipe through which the powdery metal compound and the carrier gas A pass is heated by a heated heating medium.
JP8095027A 1996-04-17 1996-04-17 Vaporizing method of powder and its device Pending JPH09279346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8095027A JPH09279346A (en) 1996-04-17 1996-04-17 Vaporizing method of powder and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8095027A JPH09279346A (en) 1996-04-17 1996-04-17 Vaporizing method of powder and its device

Publications (1)

Publication Number Publication Date
JPH09279346A true JPH09279346A (en) 1997-10-28

Family

ID=14126624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8095027A Pending JPH09279346A (en) 1996-04-17 1996-04-17 Vaporizing method of powder and its device

Country Status (1)

Country Link
JP (1) JPH09279346A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093120A1 (en) * 2004-03-29 2005-10-06 Tokyo Electron Limited Film-forming apparatus and film-forming method
WO2008120794A1 (en) * 2007-03-30 2008-10-09 Tokyo Electron Limited Method of cleaning powdery source supply system, storage medium, substrate treating system and method of substrate treatment
CN104032282A (en) * 2013-03-10 2014-09-10 常州碳维纳米科技有限公司 Scheme and similar device for solving problem of flatness influence caused by substrate atom evaporation at high temperature

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093120A1 (en) * 2004-03-29 2005-10-06 Tokyo Electron Limited Film-forming apparatus and film-forming method
JPWO2005093120A1 (en) * 2004-03-29 2008-02-14 大見 忠弘 Film forming apparatus and film forming method
JP5191656B2 (en) * 2004-03-29 2013-05-08 忠弘 大見 Film forming apparatus and film forming method
WO2008120794A1 (en) * 2007-03-30 2008-10-09 Tokyo Electron Limited Method of cleaning powdery source supply system, storage medium, substrate treating system and method of substrate treatment
JP2008251905A (en) * 2007-03-30 2008-10-16 Tokyo Electron Ltd Method of cleaning powdery source supply scheme, storage medium, substrate processing system and substrate processing method
US8389053B2 (en) 2007-03-30 2013-03-05 Tokyo Electron Limited Method of cleaning powdery source supply system, storage medium, substrate processing system and substrate processing method
CN104032282A (en) * 2013-03-10 2014-09-10 常州碳维纳米科技有限公司 Scheme and similar device for solving problem of flatness influence caused by substrate atom evaporation at high temperature

Similar Documents

Publication Publication Date Title
KR100493566B1 (en) Method for depositing titanium oxide coatings on flat glass and the resulting coated glass
US6447848B1 (en) Nanosize particle coatings made by thermally spraying solution precursor feedstocks
US5090985A (en) Method for preparing vaporized reactants for chemical vapor deposition
US20070054044A1 (en) Method for forming metal oxide coating film and vapor deposition apparatus
EP0170216B1 (en) Chemical vapor deposition of a reflective film on the bottom surface of a float glass ribbon
FI110684B (en) A method for precipitating low-emissivity tin oxide on a glass substrate
JPS6210943B2 (en)
US4293326A (en) Glass coating
AU618543B2 (en) Apparatus for coating a substrate
US5882368A (en) Method for coating glass substrates by ultrasonic nebulization of solutions
US8728576B2 (en) Method for producing photocatalytically active titanium dioxide layers
JPH09279346A (en) Vaporizing method of powder and its device
DE2361702B2 (en) METHOD AND DEVICE FOR COATING SURFACES, IN PARTICULAR GLASS, WITH THE HELP OF THIS
JPH06263485A (en) Coating glass and its preparation
JPS6028772B2 (en) Coating method
WO1989007667A1 (en) Methods and apparatus for depositing thin films
WO2001017922A1 (en) Method and apparatus for producing glass having photocatalyst formed thereon
Ando et al. Photo-catalytic TiO2 film deposition by atmospheric TPCVD
JPH01298168A (en) Device for forming metallic compound
FI117790B (en) Method and apparatus for coating materials
JP4509900B2 (en) Deposition equipment
JP2000119856A (en) Formation of film by cvd method and device therefor
JP2004107686A (en) Air open type cvd system
JPS58501993A (en) Method of applying a metal oxide film on the surface of a heated glass substrate
JPH1111981A (en) Formation of titanium oxide