JPH09278709A - Production of aromatic carboxylic acid - Google Patents

Production of aromatic carboxylic acid

Info

Publication number
JPH09278709A
JPH09278709A JP9028905A JP2890597A JPH09278709A JP H09278709 A JPH09278709 A JP H09278709A JP 9028905 A JP9028905 A JP 9028905A JP 2890597 A JP2890597 A JP 2890597A JP H09278709 A JPH09278709 A JP H09278709A
Authority
JP
Japan
Prior art keywords
reaction
carboxylic acid
aromatic carboxylic
producing
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9028905A
Other languages
Japanese (ja)
Inventor
Hiroshi Hashizume
浩 橋爪
Takashi Komatani
隆志 駒谷
Katsunori Fukuda
勝則 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP9028905A priority Critical patent/JPH09278709A/en
Publication of JPH09278709A publication Critical patent/JPH09278709A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an aromatic dicarboxylic acid excellent in quality and color tone of polymerization while extremely preventing combustion loss of acetic acid as a reaction solvent. SOLUTION: An alkyl aromatic hydrocarbon (e.g. p-xylene) is oxidized in an acetic acid solvent in the presence of a catalyst containing cobalt, manganese and bromine in a liquid phase at 140-180 deg.C to give the objective aromatic carboxylic acid. Preferably, the amount of the cobalt compound is 400-3,000wt. ppm calculated as cobalt metal based on the acetic acid solvent, the amount of the manganese component is 0.001-0.4 by the atomic ratio to cobalt and the amount of the bromine component is 0.1-5.0 by the atomic ratio to cobalt. A condensable component discharged from a reactor in the reaction is condensed and removed to give an oxidizing exhaust gas, which is partially supplied to a liquid phase of the reactor. The reaction pressure is preferably raised more than the pressure in which the oxidizing exhaust gas is neither circulated nor supplied, by using air as a molecular oxygen-containing gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は芳香族カルボン酸の
製造方法に関する。詳しくは、アルキル芳香族炭化水素
の液相酸化反応において、反応溶媒である酢酸の燃焼損
失を大幅に防ぎつつ、かつ、高品質の芳香族カルボン酸
を製造する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing an aromatic carboxylic acid. More specifically, the present invention relates to a method for producing a high-quality aromatic carboxylic acid while largely preventing combustion loss of acetic acid, which is a reaction solvent, in a liquid phase oxidation reaction of an alkyl aromatic hydrocarbon.

【0002】[0002]

【従来の技術】テレフタル酸などの芳香族カルボン酸の
製造方法としては、工業的には、パラキシレンなどのア
ルキル芳香族炭化水素を、酢酸溶媒中、コバルト、マン
ガン、及び臭素を含有する触媒の存在下、分子状酸素で
液相酸化反応させる方法が最も一般的である。
BACKGROUND ART As a method for producing an aromatic carboxylic acid such as terephthalic acid, industrially, an alkyl aromatic hydrocarbon such as paraxylene is used as a catalyst containing cobalt, manganese and bromine in an acetic acid solvent. The most general method is to carry out a liquid-phase oxidation reaction with molecular oxygen in the presence.

【0003】パラキシレンの液相酸化反応によるテレフ
タル酸の製造を例にとると、反応中間体の一つである4
−カルボキシベンズアルデヒド(以下、「4CBA」と
いう)、あるいは副反応により生成する多くの不純物が
テレフタル酸に混入するため、製品テレフタル酸の品
質、特にテレフタル酸のアルカリ水溶液に溶解させたと
きの340nmにおける光線透過率(以下「透過率」と
いう)が変化する。工業的な高純度テレフタル酸の製造
においては、一般的に、製品テレフタル酸の4CBA含
有量と透過率を指標として製品の品質を判定及び制御し
ている。
Taking the production of terephthalic acid by the liquid phase oxidation reaction of paraxylene as an example, it is one of the reaction intermediates.
-Carboxybenzaldehyde (hereinafter referred to as "4CBA"), or many impurities generated by side reactions are mixed in terephthalic acid, so the quality of the product terephthalic acid, especially the light at 340 nm when dissolved in an alkaline aqueous solution of terephthalic acid. The transmittance (hereinafter referred to as “transmittance”) changes. In the industrial production of high-purity terephthalic acid, generally, the quality of the product is judged and controlled by using the 4CBA content and the transmittance of the product terephthalic acid as indexes.

【0004】通常、テレフタル酸の品質は、酸化反応器
の反応温度、触媒使用量、滞留時間などの酸化反応条件
を選定することにより調節することが可能である。しか
しながら、一般的に、4CBA含有量が低く、透過率の
高い高品質のテレフタル酸を製造するためには、反応温
度を上げる、触媒濃度を上げるなど、酸化反応の条件を
厳しくする必要がある。それに伴い、酢酸溶媒が燃焼ま
たは分解を起こし、損失する量が多くなり、テレフタル
酸の製造コストが高くなるという問題点がある。
Generally, the quality of terephthalic acid can be controlled by selecting the oxidation reaction conditions such as the reaction temperature of the oxidation reactor, the amount of catalyst used, and the residence time. However, generally, in order to produce a high-quality terephthalic acid having a low 4CBA content and a high transmittance, it is necessary to make the conditions of the oxidation reaction severe, such as increasing the reaction temperature and increasing the catalyst concentration. Accompanying this, there is a problem that the acetic acid solvent burns or decomposes, the amount of loss increases, and the production cost of terephthalic acid increases.

【0005】酢酸の燃焼または分解による損失を防ぐた
めに、酸化反応の反応温度を低くすると、同時に反応活
性も大幅に低下してしまい、得られたテレフタル酸中に
存在する4CBA含有量が高く、透過率も低い品質の悪
いテレフタル酸しか得られない。公知文献を見ても、共
酸化剤等の反応促進剤を用いた酸化反応系を採用した特
殊なケースを除き、180℃以下の温度域での工業的製
造に適用された反応例は見当たらない。また、仮に18
0℃以下の温度域が設定できたとしても、触媒濃度が極
めて高いなどの条件を設定する必要があり、テレフタル
酸の品質及び製造コスト面で大きな不利となる。
When the reaction temperature of the oxidation reaction is lowered in order to prevent the loss due to the combustion or decomposition of acetic acid, at the same time, the reaction activity also largely decreases, and the 4CBA content present in the obtained terephthalic acid is high, and the permeation rate is high. Only poor quality terephthalic acid can be obtained. Looking at the publicly known documents, no reaction example applied to industrial production in a temperature range of 180 ° C. or lower is found, except in a special case where an oxidation reaction system using a reaction accelerator such as a co-oxidant is adopted. . In addition, 18
Even if the temperature range of 0 ° C. or less can be set, it is necessary to set conditions such as an extremely high catalyst concentration, which is a great disadvantage in terms of the quality and manufacturing cost of terephthalic acid.

【0006】以上のようなアルキル芳香族炭化水素の液
相酸化反応による芳香族カルボン酸の製造方法におい
て、近年の主な改良技術として以下のようなものがあ
る。 特公平5−32381号公報には、酸化排ガスの一部
を反応器の液相部に循環供給することにより反応系気相
部の酸素分圧を高めて酸化反応を実施することにより、
透過率の良好なテレフタル酸を得る方法が開示されてい
る。該方法では、テレフタル酸の透過率及び重合色調を
改善する効果が認められる。しかしながら、同等の4C
BAを含有しているテレフタル酸を製造する際の酢酸溶
媒の燃焼又は分解量は従来法とほとんど差がない。
In the above-mentioned method for producing an aromatic carboxylic acid by the liquid phase oxidation reaction of an alkylaromatic hydrocarbon, there are the following major improvements in recent years. Japanese Examined Patent Publication (Kokoku) No. 5-32381 discloses that a partial oxidation gas is circulated and supplied to the liquid phase part of the reactor to increase the oxygen partial pressure in the gas phase part of the reaction system to carry out the oxidation reaction.
A method for obtaining terephthalic acid having good transmittance is disclosed. In this method, the effect of improving the transmittance of terephthalic acid and the polymerization color tone is recognized. However, the equivalent 4C
The amount of acetic acid solvent burned or decomposed when producing terephthalic acid containing BA is almost the same as that in the conventional method.

【0007】特公平7−88211号公報には、酸化
排ガスの一部を反応器の気相部に循環供給する方法が開
示されている。該方法では、反応器内に発生する泡立ち
を抑制し、反応が安定に実施できるという効果が示され
ている。しかしながら、気相部に酸化排ガスを循環供給
する場合は該ガスが酢酸溶媒が飽和しにくく、液相部に
酸化排ガスを循環供給する場合と比較すると、テレフタ
ル酸の透過率の改善効果が得られにくい。
Japanese Patent Publication No. 7-88211 discloses a method of circulating and supplying a part of oxidizing exhaust gas to a gas phase portion of a reactor. This method is shown to have the effect of suppressing foaming generated in the reactor and allowing the reaction to be carried out stably. However, when the oxidizing exhaust gas is circulated and supplied to the gas phase part, the acetic acid solvent is unlikely to be saturated, and compared with the case where the oxidizing exhaust gas is circulated and supplied to the liquid phase part, the effect of improving the transmittance of terephthalic acid is obtained. Hateful.

【0008】特開平7−278048号公報には、空
気よりも高い濃度で分子状酸素を含む高濃度酸素含有ガ
スを酸素源ガスとして用いた場合において酸化排ガスの
一部を循環供給する方法が開示されている。しかしなが
ら、高濃度酸素含有ガスを用いることはその製造コスト
的に極めて不利である。また、反応器気相部の酸素分圧
を一定にする場合、空気を用いた場合に比べ、酸化排ガ
スの循環量を多くしなければならず、循環ブロワ−能力
アップ、あるいは消費動力増大などによりコスト的に不
利となる。また、高濃度酸素含有ガスを用いているため
に、実施例における反応圧力が、比較例1の条件である
空気を用いた酸化反応で排ガスの循環供給を行わない場
合の反応圧力と同じになっており、前記の特公平5−
32381号公報に示したように反応系気相部の酸素分
圧を高めた効果は得られにくい。
Japanese Unexamined Patent Publication No. 7-278048 discloses a method of circulating and supplying a part of oxidizing exhaust gas when a high-concentration oxygen-containing gas containing molecular oxygen at a higher concentration than air is used as an oxygen source gas. Has been done. However, it is extremely disadvantageous in terms of manufacturing cost to use a gas containing a high concentration of oxygen. Further, when the oxygen partial pressure in the gas phase of the reactor is kept constant, the circulation amount of the oxidizing exhaust gas must be increased as compared with the case where air is used, and the circulation blower capacity is increased or consumption power is increased. It is a cost disadvantage. Further, since the high-concentration oxygen-containing gas is used, the reaction pressure in the example becomes the same as the reaction pressure when the exhaust gas is not circulated and supplied in the oxidation reaction using air which is the condition of Comparative Example 1. The above-mentioned special fair 5-
As described in Japanese Patent No. 32381, it is difficult to obtain the effect of increasing the oxygen partial pressure in the gas phase portion of the reaction system.

【0009】以上の3つの改良発明では、その実施例か
ら明らかなように、テレフタル酸中に含まれる4CBA
濃度が一定となる酸化反応を実施した際に得られるテレ
フタル酸の透過率あるいは重合色調が改善される効果が
認められているが、その際に燃焼あるいは分解により損
失する酢酸溶媒の量は低減できていない。
In the above three improved inventions, as is clear from the examples, 4CBA contained in terephthalic acid is used.
The effect of improving the transmittance or polymerization color of terephthalic acid obtained when carrying out an oxidation reaction with a constant concentration is recognized, but the amount of acetic acid solvent lost by combustion or decomposition at that time can be reduced. Not not.

【0010】[0010]

【課題を解決するための手段】本発明者らは上記実情に
鑑み、品質及び重合色調の特に優れた芳香族カルボン酸
を製造するに当たり、酢酸溶媒の燃焼による損失量を大
幅に低下する方法について種々検討した結果、酸化排ガ
スの一部を反応器の液相部に循環供給することにより、
反応圧力を分子状酸素含有ガスとして空気を用い、か
つ、酸化排ガスの循環供給を行わない場合の圧力よりも
高める、すなわち反応器気相部の酸素分圧を効率的に高
めて酸化反応を実施するに当たり、反応温度と触媒組成
の組合せを厳選し、更に、組合せることにより、従来法
では達成できていなかった、酢酸の燃焼損失を大幅に低
減させ、かつ、透過率などの品質が極めて優れた芳香族
カルボン酸を製造できることを見い出し、本発明を完成
するに至った。
SUMMARY OF THE INVENTION In view of the above circumstances, the present inventors have proposed a method for significantly reducing the amount of loss due to combustion of an acetic acid solvent in producing an aromatic carboxylic acid having particularly excellent quality and polymerization color tone. As a result of various studies, by circulating and supplying a part of the oxidizing exhaust gas to the liquid phase portion of the reactor,
The reaction pressure is higher than that when air is used as the molecular oxygen-containing gas and the oxidizing exhaust gas is not circulated, that is, the oxygen partial pressure in the gas phase of the reactor is efficiently increased to carry out the oxidation reaction. In doing so, by carefully selecting the combination of reaction temperature and catalyst composition, and further combining them, the combustion loss of acetic acid, which could not be achieved by the conventional method, was significantly reduced, and the quality such as transmittance was extremely excellent. It was found that an aromatic carboxylic acid can be produced, and the present invention has been completed.

【0011】即ち、本発明の要旨は、アルキル芳香族炭
化水素を酢酸溶媒中、コバルト、マンガン、及び臭素を
含有する触媒成分の存在下、分子状酸素含有ガスにより
液相酸化して芳香族カルボン酸を製造する方法におい
て、(1)反応温度が140℃以上、180℃以下であ
り、(2)コバルト成分の量がコバルト金属換算で酢酸
溶媒に対して400重量ppm以上、3000重量pp
m以下であり、(3)マンガン成分の量がコバルトに対
する原子比で0.001倍以上、0.4倍以下であり、
(4)臭素成分の量がコバルトに対する原子比で0.1
倍以上、5.0倍以下である触媒成分の存在下、(5)
反応器から抜き出したガスから凝縮性成分を凝縮除去し
て得た酸化排ガスの一部を反応器の液相部に循環供給
し、(6)反応圧力を分子状酸素含有ガスとして空気を
用い、かつ、酸化排ガスの循環供給を行わない場合の圧
力よりも高めること、を特徴とする芳香族カルボン酸の
製造方法に存する。
That is, the gist of the present invention is to subject an aromatic aromatic hydrocarbon to liquid-phase oxidation of an alkylaromatic hydrocarbon in a solvent of acetic acid in the presence of a catalyst component containing cobalt, manganese, and bromine with a gas containing molecular oxygen. In the method for producing an acid, (1) the reaction temperature is 140 ° C. or higher and 180 ° C. or lower, and (2) the amount of the cobalt component is 400 ppm by weight or more and 3000 weight pp in terms of cobalt metal based on the acetic acid solvent.
m or less, and (3) the amount of the manganese component is 0.001 times or more and 0.4 times or less in terms of atomic ratio to cobalt.
(4) The amount of bromine component is 0.1 in terms of atomic ratio to cobalt.
In the presence of a catalyst component that is more than twice and less than 5.0 times, (5)
Part of the oxidizing exhaust gas obtained by condensing and removing the condensable components from the gas extracted from the reactor is circulated and supplied to the liquid phase part of the reactor, and (6) the reaction pressure is air as the molecular oxygen-containing gas, In addition, a method for producing an aromatic carboxylic acid is characterized in that the pressure is raised to a pressure higher than when the oxidizing exhaust gas is not circulated and supplied.

【0012】[0012]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明において、原料として用いるアルキル芳香
族炭化水素は、液相酸化により芳香族モノカルボン酸、
芳香族ジカルボン酸、芳香族トリカルボン酸等の芳香族
カルボン酸に変換されるモノ、ジ、トリアルキルベンゼ
ン、あるいはモノ、ジ、トリアルキルナフタレン等の芳
香族炭化水素であり、その一部のアルキル基が酸化され
たものも含む。アルキル芳香族炭化水素としては、パラ
キシレン、メタキシレン、オルトキシレン、トリメチル
ベンゼン、トルエン、メチルナフタレン、ジメチルナフ
タレン等が例示される。また、生成する芳香族カルボン
酸としては、テレフタル酸、イソフタル酸、オルトフタ
ル酸、トリメリット酸、安息香酸、ナフトエ酸、ナフタ
レンジカルボン酸等が例示されるが、本発明の方法は、
テレフタル酸やイソフタル酸の製造に適用するのが好ま
しく、これらの場合、原料となるアルキルベンゼンとし
ては、パラキシレンやメタキシレン等が挙げられる。特
に好ましいのは、パラキシレンを原料としてテレフタル
酸を製造する方法である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. In the present invention, an alkyl aromatic hydrocarbon used as a raw material is an aromatic monocarboxylic acid obtained by liquid phase oxidation,
An aromatic dicarboxylic acid, an aromatic hydrocarbon such as an aromatic carboxylic acid such as an aromatic tricarboxylic acid, a mono-, di-, or trialkylbenzene, or an aromatic hydrocarbon such as a mono-, di-, or trialkylnaphthalene, a part of which is an alkyl group. Includes those that have been oxidized. Examples of the alkyl aromatic hydrocarbon include paraxylene, metaxylene, orthoxylene, trimethylbenzene, toluene, methylnaphthalene, dimethylnaphthalene and the like. Examples of the aromatic carboxylic acid produced include terephthalic acid, isophthalic acid, orthophthalic acid, trimellitic acid, benzoic acid, naphthoic acid, and naphthalenedicarboxylic acid, but the method of the present invention is
It is preferably applied to the production of terephthalic acid or isophthalic acid, and in these cases, examples of the alkylbenzene as a raw material include paraxylene and metaxylene. Particularly preferred is a method for producing terephthalic acid from paraxylene as a raw material.

【0013】酢酸溶媒の使用量は、通常、アルキル芳香
族炭化水素に対して2〜6重量倍である。また、酢酸溶
媒には、若干量、例えば10重量%以下の水を含有して
いてもよい。分子状酸素含有ガスとしては、空気、不活
性ガス希釈された酸素、酸素富化空気などが用いられる
が、設備面及びコスト面などからは空気が好ましい。
The amount of acetic acid solvent used is usually 2 to 6 times the weight of the alkyl aromatic hydrocarbon. The acetic acid solvent may contain a slight amount of water, for example, 10% by weight or less. As the molecular oxygen-containing gas, air, oxygen diluted with an inert gas, oxygen-enriched air, or the like is used, but air is preferable from the viewpoint of equipment and cost.

【0014】触媒としては、コバルト、マンガン及び臭
素の各成分を含有するものであり、これらの具体例とし
ては、コバルト化合物では、酢酸コバルト、ナフテン酸
コバルト、臭化コバルトなどが例示される。マンガン化
合物では、酢酸マンガン、ナフテン酸マンガン、臭化マ
ンガンなどが例示される。臭化化合物では、臭化水素、
臭化ナトリウム、臭化コバルト、臭化マンガン、テトラ
ブロモエタンなどが例示できる。これらの化合物は併用
してもかまわない。
The catalyst contains respective components of cobalt, manganese and bromine, and specific examples thereof include cobalt compounds such as cobalt acetate, cobalt naphthenate and cobalt bromide. Examples of manganese compounds include manganese acetate, manganese naphthenate, manganese bromide and the like. For bromide compounds, hydrogen bromide,
Examples include sodium bromide, cobalt bromide, manganese bromide, tetrabromoethane and the like. These compounds may be used in combination.

【0015】触媒の使用量は、コバルト成分の使用量が
コバルト金属換算で酢酸に対し、400重量ppm以
上、3000重量ppm以下、好ましくは500重量p
pm以上、2000重量ppm以下である。マンガン成
分の使用量は、コバルトに対する原子比で0.001倍
以上、0.4倍以下である。また、マンガン成分の絶対
使用量で示すと、マンガン金属換算で酢酸に対し、通常
1重量ppm以上、250重量ppm以下、好ましくは
5重量ppm以上、200重量ppm以下である。臭素
成分の使用量は、コバルトに対する原子比で0.1倍以
上、5.0倍以下、好ましくは0.2倍以上、2.0倍
以下である。触媒の使用量が上記範囲外では、得られる
芳香族カルボン酸の純度あるいは透過率が不十分となっ
たり、酢酸燃焼が大きくなり、効果が得られない。特
に、マンガン成分の使用量は重要であり、コバルトに対
する原子比が0.001倍未満では反応活性が大幅に低
下し、0.4倍を越えるとマンガン成分の沈殿が生じ芳
香族カルボン酸中に混入し品質が悪化しあるいは酢酸の
損失が増大する。
The amount of the catalyst used is such that the amount of the cobalt component used is 400 weight ppm or more and 3000 weight ppm or less, preferably 500 weight p, based on acetic acid in terms of cobalt metal.
It is pm or more and 2000 weight ppm or less. The amount of the manganese component used is 0.001 times or more and 0.4 times or less in terms of atomic ratio with respect to cobalt. The absolute amount of manganese component is usually 1 ppm by weight or more and 250 ppm by weight or less, preferably 5 ppm by weight or more and 200 ppm by weight or less based on acetic acid in terms of manganese metal. The amount of the bromine component used is 0.1 times or more and 5.0 times or less, preferably 0.2 times or more and 2.0 times or less in terms of atomic ratio with respect to cobalt. If the amount of the catalyst used is out of the above range, the purity or the transmittance of the aromatic carboxylic acid to be obtained becomes insufficient, or the combustion of acetic acid becomes large, so that the effect cannot be obtained. In particular, the amount of the manganese component used is important. If the atomic ratio to cobalt is less than 0.001 times, the reaction activity is significantly reduced, and if it exceeds 0.4 times, the manganese component is precipitated and the aromatic carboxylic acid is precipitated. If mixed, the quality deteriorates or the loss of acetic acid increases.

【0016】なお、触媒成分として、コバルト、マンガ
ン、臭素成分以外の成分が存在していても構わない。例
えば、ナトリウム成分が通常1〜1000ppm程度存
在すると、マンガン成分の沈殿の防止、あるいは、得ら
れる芳香族カルボン酸の品質、特に透過率などに効果が
認められる。ナトリウム成分は触媒調整槽に添加しても
よいし、また製造プロセス中で系内に蓄積したナトリウ
ム成分をそのまま利用してもよい。更に、必要に応じ
て、反応促進のために共酸化剤を併用しても構わない。
共酸化剤としては、アセトアルデヒドなどのアルデヒド
化合物、メチルエチルケトンなどのケトン化合物、プロ
ピルアセテ−トなどのエステル化合物等が用いられる。
As the catalyst component, components other than the cobalt, manganese and bromine components may be present. For example, when the sodium component is usually present in an amount of about 1 to 1000 ppm, the effect of preventing the precipitation of the manganese component or the quality of the aromatic carboxylic acid obtained, particularly the transmittance, is recognized. The sodium component may be added to the catalyst adjusting tank, or the sodium component accumulated in the system during the manufacturing process may be used as it is. Furthermore, if necessary, a co-oxidizing agent may be used together to accelerate the reaction.
As the co-oxidizing agent, aldehyde compounds such as acetaldehyde, ketone compounds such as methyl ethyl ketone, ester compounds such as propyl acetate and the like are used.

【0017】反応温度は、140℃以上、180℃以
下、好ましくは150℃以上、175℃以下の条件下で
実施することが望ましい。140℃未満では反応速度が
低下し、180℃を超えると酢酸溶媒の燃焼による損失
量が増加するので好ましくない。反応圧力は少なくとも
反応温度において混合物が液相を保持できる圧力以上
で、通常0.2〜5MPaである。反応は、通常、連続
的に実施され、その反応時間(平均滞留時間)は通常は
30〜300分である。反応母液中の水分濃度は、通常
5〜25重量%、好ましくは7〜20重量%であり、こ
の水分濃度の調節は、通常、反応器内で揮発したガスを
抜き出し、該ガスを凝縮して得られる凝縮性成分の還流
液の一部を系外に排出(パ−ジ)することにより行うこ
とができる。
The reaction temperature is 140 ° C. or higher and 180 ° C. or lower, preferably 150 ° C. or higher and 175 ° C. or lower. If the temperature is lower than 140 ° C, the reaction rate decreases, and if the temperature exceeds 180 ° C, the loss due to combustion of the acetic acid solvent increases, which is not preferable. The reaction pressure is at least a pressure at which the mixture can maintain the liquid phase at least at the reaction temperature, and is usually 0.2 to 5 MPa. The reaction is usually carried out continuously, and the reaction time (average residence time) is usually 30 to 300 minutes. The water concentration in the reaction mother liquor is usually 5 to 25% by weight, preferably 7 to 20% by weight. The adjustment of the water concentration is usually performed by extracting the gas volatilized in the reactor and condensing the gas. This can be performed by discharging (purging) a part of the obtained condensable component reflux liquid to the outside of the system.

【0018】本発明で用いる反応器は、通常、後述の図
1に示すような攪拌槽タイプのものであるが、必ずしも
攪拌機は必要ではなく、気泡塔タイプのものでも構わな
い。反応器の上部に還流冷却器を、下部に分子状酸素含
有ガス供給口が設けられている。そして、下部より供給
した分子状酸素含有ガスは酸化反応に利用された後、多
量の酢酸蒸気を同伴したガス成分として反応器より抜き
出され、次いで、還流冷却器にて酢酸を凝縮分離した
後、酸化排ガスとして排出される。凝縮液は水分調節の
ために一部系外にパ−ジし、残りは反応器に還流され
る。
The reactor used in the present invention is usually a stirring tank type as shown in FIG. 1 which will be described later, but a stirrer is not always necessary and a bubble column type may be used. A reflux condenser is provided in the upper part of the reactor, and a molecular oxygen-containing gas supply port is provided in the lower part. After the molecular oxygen-containing gas supplied from the lower part is utilized for the oxidation reaction, it is extracted from the reactor as a gas component accompanied by a large amount of acetic acid vapor, and then the reflux condenser cools the acetic acid to separate it. , Emitted as oxidizing exhaust gas. The condensate is partially purged outside the system to control the water content, and the rest is refluxed to the reactor.

【0019】本発明の重要な操作要因である、反応器気
相部の酸素分圧を高めるためには、前記の特公平5−3
2381号公報に記載されている方法、即ち、反応器か
ら抜き出したガスから凝縮性成分を凝縮除去して得た酸
化排ガスを2つの流れに分岐させ、一方は系外に排出
し、他方は反応器に連続的に循環供給する方法を用い
る。酸化排ガスの一部を循環する方法は、循環量を調節
することにより他の反応条件に重大な影響を及ぼさずに
反応圧力を調節することができる。このとき反応圧力
は、分子状酸素含有ガスとして空気を用いて他の条件に
ついては同一条件下で該循環供給を行わない場合の圧力
よりも高めることが必要である。そのときの反応器気相
部の酸素分圧は、分子状酸素含有ガスとして空気を用い
て他の条件については同一条件下で該循環供給を行わな
い場合の酸素分圧に対し、通常、1.3〜5倍、好まし
くは1.5〜3倍となるように循環供給量が調節され
る。
In order to increase the oxygen partial pressure in the gas phase of the reactor, which is an important operating factor of the present invention, the above-mentioned Japanese Patent Publication No. 5-3 is used.
2381, that is, the oxidizing exhaust gas obtained by condensing and removing the condensable components from the gas extracted from the reactor is branched into two streams, one of which is discharged out of the system and the other of which is reacted. A method of continuously circulating and supplying to the vessel is used. In the method of circulating a part of the oxidizing exhaust gas, the reaction pressure can be adjusted without seriously affecting other reaction conditions by adjusting the circulation amount. At this time, the reaction pressure needs to be higher than the pressure when air is used as the molecular oxygen-containing gas and the circulation supply is not performed under other conditions under the same conditions. At that time, the oxygen partial pressure in the gas phase portion of the reactor is usually 1 with respect to the oxygen partial pressure when air is not used as the molecular oxygen-containing gas and the circulation supply is not performed under the same conditions under other conditions. The circulation supply amount is adjusted so as to be 3 to 5 times, preferably 1.5 to 3 times.

【0020】循環される酸化排ガスは、凝縮させた直後
の高い圧力を有するガスを用いるのが好ましい。また、
循環させる酸化排ガスは、後述の図1に示すように酸化
排ガスのリサイクルラインから直接反応器液相部へ循環
する方法でもよく、酸素含有ガスと混合した後に混合ガ
スとして反応器液相部に供給しても構わない。酸化排ガ
ス中の酸素濃度は、爆発限界の面から上限が約8容量%
とされるため、通常0.1〜8容量%、好ましくは0.
5〜7%容量%の範囲で運転される。
As the oxidizing exhaust gas to be circulated, it is preferable to use a gas having a high pressure immediately after being condensed. Also,
The oxidizing exhaust gas to be circulated may be directly circulated from the oxidizing exhaust gas recycling line to the liquid phase part of the reactor as shown in FIG. 1 described later, and after being mixed with the oxygen-containing gas, it is supplied to the liquid phase part of the reactor as a mixed gas. It doesn't matter. The upper limit of the oxygen concentration in the oxidant exhaust gas is about 8% by volume from the viewpoint of explosion limit.
Therefore, it is usually 0.1 to 8% by volume, preferably 0.
It is operated in the range of 5 to 7% by volume.

【0021】本発明において、さらに重要な操作要因
は、反応器から抜き出したガスから凝縮性成分を凝縮除
去して得た酸化排ガスの一部を反応器の液相部に循環供
給し、反応圧力を分子状酸素含有ガスとして空気を用い
て他の条件については同一条件下で該循環供給を行わな
い場合の圧力よりも高めた反応条件下において、反応温
度及びコバルト、マンガン、臭素の触媒組成を厳選し、
更に、それらを組合せることである。
In the present invention, a further important operating factor is that a part of the oxidizing exhaust gas obtained by condensing and removing the condensable components from the gas withdrawn from the reactor is circulated and supplied to the liquid phase portion of the reactor, and the reaction pressure is The reaction temperature and the catalyst composition of cobalt, manganese, and bromine under the reaction conditions that are higher than the pressure when the circulation supply is not performed under the same conditions using air as the molecular oxygen-containing gas. Carefully selected,
Furthermore, it is to combine them.

【0022】本発明において、上記の酸化反応の後、直
ちに晶析してもよいし、必要に応じて追加の処理を行っ
た後で晶析処理してもよい。追加の処理としては、例え
ば、上記の最初の酸化反応(第1反応帯域)の反応混合
物を、通常140〜190℃に保持した第2反応帯域に
おいてアルキル芳香族炭化水素を供給せずに追酸化処理
(第2酸化処理)を行う方法が有効である。また、第2
反応帯域の反応混合物を、更に、第3反応帯域で通常2
10℃以上、好ましくは220〜280℃でアルキル芳
香族炭化水素を供給せずに再度追酸化処理(第3酸化処
理)する方法も有効である。この追酸化処理に供される
反応混合物は、通常、最初の酸化反応で芳香族カルボン
酸への転換率が95%以上であることが望ましい。ま
た、各々の追酸化処理での分子状酸素含有ガスの供給量
は最初の反応の通常1/5から1/1000程度であ
り、処理時間は通常5〜120分である。
In the present invention, crystallization may be carried out immediately after the above-mentioned oxidation reaction, or crystallization may be carried out after additional treatment, if necessary. As the additional treatment, for example, the reaction mixture of the above-mentioned first oxidation reaction (first reaction zone) is additionally oxidized in the second reaction zone kept at 140 to 190 ° C. without supplying an alkylaromatic hydrocarbon. The method of performing the treatment (second oxidation treatment) is effective. Also, the second
The reaction mixture in the reaction zone is further mixed in the third reaction zone, usually 2
A method of performing additional oxidation treatment (third oxidation treatment) again at 10 ° C. or higher, preferably 220 to 280 ° C. without supplying an alkylaromatic hydrocarbon is also effective. It is usually desirable that the reaction mixture used for this additional oxidation treatment has a conversion rate to an aromatic carboxylic acid of 95% or more in the first oxidation reaction. The supply amount of the molecular oxygen-containing gas in each additional oxidation treatment is usually about 1/5 to 1/1000 of the first reaction, and the treatment time is usually 5 to 120 minutes.

【0023】本発明の方法で得られた芳香族カルボン酸
含有反応混合物において、以上の追酸化処理が特に有効
である理由としては、本発明のように、140℃以上、
180℃以下の低い反応温度で得られた反応混合物の芳
香族カルボン酸の析出粒子が、従来の180℃を越える
反応条件で得られた芳香族カルボン酸の粒子と比較して
粒径が小さいか、あるいは凝集状粒子であるため、追酸
化処理による精製効果を受けやすいためと推定される。
また、本発明の方法で得られた芳香族カルボン酸は、水
に溶解させ、水素の存在下で白金族触媒と接触させて精
製する方法(特公昭41−16860号公報等参照)等
どの公知の処理技術も同様に適用できる。
The reason why the above-mentioned additional oxidation treatment is particularly effective in the reaction mixture containing an aromatic carboxylic acid obtained by the method of the present invention is, as in the present invention, 140 ° C. or higher,
Whether the precipitated particles of the aromatic carboxylic acid of the reaction mixture obtained at a low reaction temperature of 180 ° C. or lower have a smaller particle size than the particles of the aromatic carboxylic acid obtained under the conventional reaction conditions of more than 180 ° C. It is presumed that since the particles are agglomerated particles, they are likely to be subjected to the refining effect by the additional oxidation treatment.
The aromatic carboxylic acid obtained by the method of the present invention is dissolved in water and brought into contact with a platinum group catalyst in the presence of hydrogen for purification (see Japanese Patent Publication No. 41-16860). The processing technology described in (1) can be applied in the same manner.

【0024】[0024]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はその要旨を超えないかぎり実施例に限
定されるものではない。なお、実施中、「部」とあるの
は「重量部」を表し、「ppm」とあるのは「重量pp
m」を表す。 実施例1 (a)還流冷却器1、攪拌機、加熱装置、触媒、溶媒及
びパラキシレン供給ライン3、酸素含有ガス導入ライン
4、反応スラリ−抜出しライン5、還流液抜出しライン
8及び酸化排ガスを反応器に循環させるためのブロワ−
2と循環ライン7を備えたチタン製の耐圧主酸化反応器
9(図1参照)、(b)還流冷却器、攪拌機、加熱装
置、酸素含有ガス導入口及び反応スラリ−の送入口と抜
出口を備えたチタン製の耐圧追酸化反応器、(c)還流
冷却器、攪拌機及び反応スラリ−の送入口と抜出口を備
えた冷却晶析器、よりなる連続反応装置を用いて反応を
行った。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to the examples as long as the gist thereof is not exceeded. During the implementation, "part" means "part by weight", and "ppm" means "weight pp."
m ". Example 1 (a) Reaction of reflux condenser 1, stirrer, heating device, catalyst, solvent and para-xylene supply line 3, oxygen-containing gas introduction line 4, reaction slurry extraction line 5, reflux liquid extraction line 8 and oxidizing exhaust gas Blower for circulating to the vessel
2 and a pressure-resistant main oxidation reactor 9 made of titanium (see FIG. 1) equipped with a circulation line 7, (b) a reflux condenser, a stirrer, a heating device, an oxygen-containing gas inlet and a reaction slurry inlet and outlet. The reaction was carried out using a continuous reaction apparatus comprising a titanium pressure-resistant additional oxidation reactor equipped with a (c) reflux condenser, a stirrer and a cooling crystallizer equipped with a reaction slurry inlet and outlet. .

【0025】即ち、主酸化反応器9のライン3よりパラ
キシレン1部、水5%を含む酢酸4.6部、酢酸コバル
ト・4水和物0.0105部、酢酸マンガン・4水和物
0.0003部、臭化水素酸(47%水溶液)0.00
79部及び水酸化ナトリウム0.0004部からなる混
合物5.615部/hr(注:仕込み触媒量より反応系
中の各触媒成分の濃度を計算すると、コバルト(Co)
1100ppm、マンガン(Mn)33ppm、臭素
(Br)1650ppm、ナトリウム(Na)100p
pmとなる)を供給する。また、ライン8より還流液
1.6部/hrを抜き出し反応系内の水分濃度を約10
%に調節し、滞留時間100分、反応温度170℃の条
件下でパラキシレンの酸化反応を行った。ライン4より
酸化ガスとして空気を酸化排ガス中の酸素濃度が6容量
%となるように供給し、還流冷却器1からの酸化排ガス
をライン6よりパ−ジするとともに、系外にパ−ジする
酸化排ガス量に対し非凝縮性成分を基準とした循環ガス
量の容量割合が1.0となるように、酸化排ガスをブロ
ワ−2によりライン7を経て主酸化反応器9に循環す
る。反応圧力は、排ガスの循環供給を行わない場合の反
応圧力0.83MPaより高くなり、反応圧力1.10
MPaでバランスする。このときの気相部酸素分圧も、
排ガスの循環供給を行わない場合の0.015MPaか
ら0.03MPaへ高くなる
That is, from the line 3 of the main oxidation reactor 9, 1 part of paraxylene, 4.6 parts of acetic acid containing 5% of water, 0.0105 parts of cobalt acetate.4 hydrate, 0 manganese acetate.4 hydrate. 0.0003 parts, hydrobromic acid (47% aqueous solution) 0.00
A mixture of 79 parts and 0.0004 parts of sodium hydroxide 5.615 parts / hr (Note: When the concentration of each catalyst component in the reaction system was calculated from the amount of catalyst charged, cobalt (Co)
1100ppm, Manganese (Mn) 33ppm, Bromine (Br) 1650ppm, Sodium (Na) 100p
pm). Further, 1.6 parts / hr of the reflux liquid was extracted from the line 8 and the water concentration in the reaction system was adjusted to about 10
%, And the paraxylene oxidation reaction was carried out under the conditions of a residence time of 100 minutes and a reaction temperature of 170 ° C. Air is supplied from line 4 as oxidizing gas so that the oxygen concentration in the oxidizing exhaust gas is 6% by volume, and the oxidizing exhaust gas from reflux condenser 1 is purged from line 6 and outside the system. The oxidizing exhaust gas is circulated through the line 7 to the main oxidation reactor 9 by the blower-2 so that the volume ratio of the circulating gas amount based on the non-condensable component to the oxidizing exhaust gas amount is 1.0. The reaction pressure is higher than the reaction pressure of 0.83 MPa when the exhaust gas is not circulated and supplied, and the reaction pressure of 1.10
Balance at MPa. At this time, the gas phase oxygen partial pressure is also
Increased from 0.015MPa without exhaust gas circulation to 0.03MPa

【0026】次いで、主酸化反応器9よりライン5を通
して反応スラリ−を抜き出し、このスラリ−を追酸化反
応器10に連続的に送り、滞留時間45分、圧力0.9
5MPa、反応温度176℃の条件下、追酸化排ガス中
の酸素濃度が6容量%となるように空気を供給し、追酸
化を行った。追酸化後の反応スラリ−は引き続き、冷却
晶析器に送り晶析した後、固液分離し、次いで、回収し
た結晶を酢酸にて懸洗処理して再び固液分離し、乾燥す
ることによりテレフタル酸結晶を得た。このような連続
反応を24時間行った後、得られたテレフタル酸結晶の
透過率及び4CBA含有量を測定し、また、この製造時
における酢酸溶媒の燃焼量を測定し、その結果を表−1
に示す。
Then, a reaction slurry is taken out from the main oxidation reactor 9 through a line 5, and this slurry is continuously sent to an additional oxidation reactor 10 for a residence time of 45 minutes and a pressure of 0.9.
Under the conditions of 5 MPa and a reaction temperature of 176 ° C., air was supplied so that the oxygen concentration in the additional oxidation exhaust gas would be 6% by volume, and additional oxidation was performed. The reaction slurry after additional oxidation is subsequently sent to a cooling crystallizer for crystallization, and solid-liquid separation is carried out, and then the recovered crystals are subjected to suspension washing with acetic acid, solid-liquid separation is carried out again, and then dried. Terephthalic acid crystals were obtained. After carrying out such a continuous reaction for 24 hours, the transmittance and 4CBA content of the obtained terephthalic acid crystals were measured, and the combustion amount of the acetic acid solvent during the production was measured.
Shown in

【0027】比較例1 触媒組成をCo300ppm、Mn300ppm、Br
900ppmとし、主酸化反応の反応温度を195℃、
反応圧力を2.07MPaとしたこと以外は実施例1と
同様にして反応を行った結果を表−1に示す。なお、こ
れは前記の特公平5−32381号公報に記載されてい
る実施例の条件に該当する。 比較例2 酸化排ガスのブロワ−2による主酸化反応器への循環を
行わなかったこと以外は比較例1と同様にして反応を行
った結果を表−1に示す。
Comparative Example 1 The catalyst composition was Co 300 ppm, Mn 300 ppm, Br.
900ppm, the reaction temperature of the main oxidation reaction is 195 ℃,
Table 1 shows the results of the reaction performed in the same manner as in Example 1 except that the reaction pressure was 2.07 MPa. This corresponds to the conditions of the embodiment described in Japanese Patent Publication No. 5-32381. Comparative Example 2 Table 1 shows the results of the reaction performed in the same manner as Comparative Example 1 except that the oxidizing exhaust gas was not circulated to the main oxidation reactor by the blower-2.

【0028】比較例3 酸化排ガスのブロワ−2による主酸化反応器への循環を
行わなかったこと以外は実施例1と同様にして反応を行
った結果を表−1に示す。 比較例4 酸化排ガスのブロワ−2による主酸化反応器への循環を
反応器液相部の代わりに反応器気相部へ循環したこと以
外は実施例1と同様にして反応を行った結果を表−1に
示す。
Comparative Example 3 Table 1 shows the results of the reaction carried out in the same manner as in Example 1 except that the oxidizing exhaust gas was not circulated to the main oxidation reactor by the blower-2. Comparative Example 4 The result of carrying out the reaction in the same manner as in Example 1 except that the circulation of the oxidizing exhaust gas to the main oxidation reactor by the blower-2 was circulated to the gas phase portion of the reactor instead of the liquid phase portion of the reactor, It shows in Table-1.

【0029】比較例5 反応温度を195℃、反応圧力を2.07MPaとした
以外は、実施例1と同様にして反応を行った結果を表−
1に示す。 比較例6 反応温度を195℃、反応圧力を2.07MPaとし、
得られるテレフタル酸中4CBA濃度を実施例1と同等
になるようにPX供給速度を増加させた以外は、実施例
1と同様にして反応を行った結果を表−1に示す。
Comparative Example 5 The results of the reaction were carried out in the same manner as in Example 1 except that the reaction temperature was 195 ° C. and the reaction pressure was 2.07 MPa.
It is shown in FIG. Comparative Example 6 The reaction temperature was 195 ° C., the reaction pressure was 2.07 MPa,
Table 1 shows the results of the reaction performed in the same manner as in Example 1 except that the PX supply rate was increased so that the concentration of 4 CBA in the obtained terephthalic acid was the same as in Example 1.

【0030】比較例7 特公平5−32381号公報の実施例に記載の触媒組成
(比較例1の触媒組成)であるCo300ppm、Mn
300ppm、Br900ppmとした以外は実施例1
と同様にして反応を行った結果を表−1に示す。本例で
は、触媒成分の中のマンガン成分の析出沈殿が顕著であ
り、反応状態が不安定であったので、開始2時間後で反
応を停止した。
Comparative Example 7 Co300 ppm, Mn, which is the catalyst composition (catalyst composition of Comparative Example 1) described in the example of Japanese Patent Publication No. 5-32381.
Example 1 except 300 ppm and Br 900 ppm
The results of the reaction carried out in the same manner as in Table 1 are shown in Table 1. In this example, the precipitation of the manganese component in the catalyst component was remarkable and the reaction state was unstable, so the reaction was stopped 2 hours after the start.

【0031】比較例8 触媒組成をCo1100ppm、Mn500ppm、B
r1650ppmとした以外は、実施例1と同様にして
反応を行った結果を表−1に示す。本例では、反応は安
定して進行したものの、触媒成分の中でマンガン成分の
析出沈殿が認められ、テレフタル酸の品質として透過率
が不良であった。
Comparative Example 8 The catalyst composition was Co1100 ppm, Mn500 ppm, B
Table 1 shows the results of the reaction performed in the same manner as in Example 1 except that r1650 ppm was used. In this example, although the reaction proceeded steadily, precipitation of manganese component was observed in the catalyst component, and the transmittance was poor as the quality of terephthalic acid.

【0032】[0032]

【表1】 [Table 1]

【0033】表−1における*1〜*7の意味は以下の
通りである。 *1 排ガス循環量−−−系外にパ−ジする酸化排ガス
量に対し、非凝縮性成分を基準とした循環ガス量の容量
割合を示す。 *2 テレフタル酸透過率−−−2N水酸化カリウム水
溶液50mlにテレフタル酸7.5gを溶解したときの
光源340nm、光路長10mmでの透過率を示す。 *3 酢酸溶媒燃焼量−−−反応器からの酸化排ガス中
に含まれるCO及びCO2の量を分析し、この値より燃
焼した酢酸量を求め、比較例1の方法における燃焼量を
基準(1.0)として、これに対する相対値で示す。 *4 排ガスのブロワ−による循環を反応器気相部に行
った。 *5 例に示されている反応条件において、主酸化反応
器からの酸化排ガスの一部を反応器へ循環供給しない場
合の反応圧力を示す。 *6 反応状態が不安定であったので、開始2時間後で
反応を停止した。 *7 実施例1のパラキシレンの供給速度を1.0とし
たときの相対値を示す。
The meanings of * 1 to * 7 in Table-1 are as follows. * 1 Exhaust gas circulation amount --- Indicates the volume ratio of the circulation gas amount based on the non-condensable component with respect to the oxidizing exhaust gas amount purged outside the system. * 2 Terephthalic acid transmittance --- Shows the transmittance at a light source of 340 nm and an optical path length of 10 mm when 7.5 g of terephthalic acid is dissolved in 50 ml of a 2N aqueous potassium hydroxide solution. * 3 Amount of acetic acid solvent burned --- The amount of CO and CO2 contained in the oxidizing exhaust gas from the reactor is analyzed, the amount of burned acetic acid is determined from this value, and the amount burned in the method of Comparative Example 1 is used as a standard (1 .0) is shown as a relative value. * 4 The exhaust gas was circulated by a blower in the gas phase part of the reactor. * 5 Shows the reaction pressure when part of the oxidation waste gas from the main oxidation reactor is not circulated to the reactor under the reaction conditions shown in the example. * 6 Since the reaction state was unstable, the reaction was stopped 2 hours after the start. * 7: shows the relative value when the feeding rate of para-xylene of Example 1 was 1.0.

【0034】表−1の比較例1は、前記の特公平5−3
2381号公報に記載されている方法、即ち、反応器か
ら抜き出したガスから凝縮性成分を凝縮除去して得た酸
化排ガスを2つの流れに分岐させ、一方は系外に排出
し、他方は反応器液相部に連続的に循環供給することに
より、反応圧力を高め、酸素分圧を高める方法による反
応例である。比較例1は、酸化排ガスの循環を行なわな
い比較例2と比べ、得られたテレフタル酸の透過率は良
好であるが、酢酸燃焼量及び4CBA含有量は同等であ
った。この結果は、前記の特公平5−32381の実施
例1〜11及び特開平7ー278048の実施例1〜8
においても同様であった。一方、本発明における実施例
1では、酸化排ガスの反応器への循環による酸素分圧を
高める方法を、本発明で明らかとなった厳選された反応
温度及び触媒組成とを組合せることにより、比較例1と
同様に透過率の向上効果が認められるとともに、更に、
同等の4CBA濃度において比較例1の方法では達成で
きない大幅な酢酸燃焼の低減効果が認められた。
Comparative Example 1 in Table 1 is the same as Japanese Patent Publication No. 5-3.
2381, that is, the oxidizing exhaust gas obtained by condensing and removing the condensable components from the gas extracted from the reactor is branched into two streams, one of which is discharged out of the system and the other of which is reacted. This is a reaction example in which the reaction pressure is raised and the oxygen partial pressure is raised by continuously circulating and supplying to the liquid phase portion of the vessel. In Comparative Example 1, the obtained terephthalic acid had a good transmittance as compared with Comparative Example 2 in which the oxidizing exhaust gas was not circulated, but the acetic acid combustion amount and the 4CBA content were the same. The results show that Examples 1 to 11 of Japanese Patent Publication No. 5-32381 and Examples 1 to 8 of JP-A-7-278048.
It was the same in. On the other hand, in Example 1 of the present invention, a method of increasing the oxygen partial pressure by circulating the oxidative exhaust gas to the reactor was combined with the carefully selected reaction temperature and catalyst composition revealed in the present invention, and a comparison was made. Similar to Example 1, the effect of improving the transmittance is recognized, and further,
At the same concentration of 4 CBA, a significant reduction effect of acetic acid combustion which was not achieved by the method of Comparative Example 1 was recognized.

【0035】実施例1に対し、酸化排ガスを反応器へ循
環供給しない条件に変更した比較例3では、酢酸燃焼量
は大幅に低減するものの、反応活性が大きく低下したた
め得られたテレフタル酸中の4CBA含有量が極めて高
くなりまた透過率も大幅に悪化した。酸化排ガスの反応
器への循環供給を液相部の代わりに気相部へ循環させた
比較例4では、反応成績は酸化排ガスの反応器への循環
を行っていない比較例3とほぼ同様であり、透過率向上
の効果が認められない。実施例1に対し、反応温度を1
95℃に変更した比較例5では、酢酸燃焼量が大幅に増
加した。実施例1に対し、反応温度を195℃に変更
し、得られるテレフタル酸中4CBA濃度を実施例1と
同等になるようにPX供給速度を増加させた条件で比較
すると、透過率は良好であるが、酢酸燃焼量の低減効果
は全く見られていない。実施例1に対し、触媒組成が本
発明の厳選された範囲以外のコバルト及びマンガン濃度
である比較例7及び8では、反応活性あるいは得られる
テレフタル酸の品質が大きく悪化した。
Compared with Example 1, in Comparative Example 3 in which the oxidizing exhaust gas was not circulated and supplied to the reactor, the amount of acetic acid burned was significantly reduced, but the reaction activity was significantly reduced, so that the terephthalic acid in the obtained terephthalic acid was reduced. The 4CBA content was extremely high and the transmittance was significantly deteriorated. In Comparative Example 4 in which the oxidative exhaust gas was circulated to the gas phase portion instead of the liquid phase portion, the reaction results were almost the same as those in Comparative Example 3 in which the oxidizing exhaust gas was not circulated to the reactor. There is no effect of improving the transmittance. The reaction temperature was set to 1 in comparison with Example 1.
In Comparative Example 5 in which the temperature was changed to 95 ° C., the amount of acetic acid burned increased significantly. Compared to Example 1, the reaction temperature was changed to 195 ° C., and when the PX feed rate was increased so that the concentration of 4CBA in terephthalic acid obtained was the same as in Example 1, the transmittance was good. However, no effect of reducing the amount of acetic acid burned is observed. In contrast to Example 1, in Comparative Examples 7 and 8 in which the catalyst composition had cobalt and manganese concentrations outside the carefully selected range of the present invention, the reaction activity or the quality of the obtained terephthalic acid was greatly deteriorated.

【0036】実施例2〜6及び比較例9〜11 実施例1と同様の方法で、主酸化反応温度を190〜1
30℃まで変更して反応を実施した。得られるテレフタ
ル酸の透過率がほぼ一定(75〜81%)となるような
触媒濃度及びパラキシレン(PX)供給速度の反応条件
を選び結果を比較した。なお、追酸化反応温度は、追酸
化反応器の圧力を主酸化反応器の圧力より0.15MP
aほど低い圧力に設定したときにバランスした反応温度
(150〜190℃)をそれぞれ設定した。結果を表−
2に示す。
Examples 2 to 6 and Comparative Examples 9 to 11 In the same manner as in Example 1, the main oxidation reaction temperature was set to 190 to 1
The reaction was carried out by changing the temperature to 30 ° C. The reaction conditions of the catalyst concentration and the paraxylene (PX) feed rate were selected so that the obtained terephthalic acid transmittance was almost constant (75 to 81%), and the results were compared. The temperature of the additional oxidation reaction is 0.15MP from the pressure of the main oxidation reactor when the pressure of the additional oxidation reactor is
The reaction temperatures (150 to 190 ° C.) were balanced when the pressure was set as low as a. Table-Results
It is shown in FIG.

【0037】[0037]

【表2】 [Table 2]

【0038】表−2より、実施例2〜6に示したような
温度範囲においては、実施例1に示したような、酸化排
ガスの反応器液相部への循環による反応器気相部の酸素
分圧を高める方法を、厳選した反応温度と触媒組成によ
る反応方法と組合せることにより、大幅な酢酸燃焼の低
減効果が発現した。一方、比較例9〜11に示すよう
に、反応温度185℃以上では酢酸燃焼量の低下はほと
んど見られず、また、反応温度130℃は反応活性が低
く安定した運転ができなかった。
From Table 2, in the temperature ranges shown in Examples 2 to 6, as shown in Example 1, the oxidative exhaust gas was circulated to the liquid phase portion of the reactor by the circulation of the gas phase portion of the reactor. By combining the method of increasing oxygen partial pressure with the reaction method of carefully selected reaction temperature and catalyst composition, a significant reduction effect of acetic acid combustion was realized. On the other hand, as shown in Comparative Examples 9 to 11, at the reaction temperature of 185 ° C. or higher, almost no decrease in the acetic acid combustion amount was observed, and at the reaction temperature of 130 ° C., the reaction activity was low and stable operation could not be performed.

【0039】[0039]

【発明の効果】本発明により、既に報告されている酸化
反応によって得られる芳香族カルボン酸の品質、特に透
過率を大幅に向上させる方法に対し、その効果を保った
上で、更に反応溶媒である酢酸の燃焼損失を大幅に防ぐ
ことができることが明らかとなった。この効果は、従来
公知の同種の触媒系の発明や、特公平5−32381号
公報あるいは特開平7ー278048の実施例に記載さ
れた効果、及びこれらの発明から予想される効果を大き
く超えるものであり、酸化排ガスの反応器液相部への循
環による反応器気相部の酸素分圧を高める方法と特定の
反応温度条件と特定の触媒組成の組み合わせにより初め
て得られる格別な効果である。
EFFECTS OF THE INVENTION According to the present invention, a method for significantly improving the quality, particularly the transmittance, of an aromatic carboxylic acid obtained by an oxidation reaction, which has been already reported, is maintained, and further, a reaction solvent is used. It became clear that the burning loss of some acetic acid could be largely prevented. This effect greatly exceeds the effects of the conventionally known inventions of the same kind of catalyst system, the effects described in Japanese Patent Publication No. 5-32381 or JP-A-7-278048, and the effects expected from these inventions. This is a special effect obtained only by the combination of the method of increasing the oxygen partial pressure in the gas phase of the reactor by circulating the oxidizing exhaust gas to the liquid phase of the reactor, the combination of the specific reaction temperature condition and the specific catalyst composition.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は本発明の実施例で用いた酸化反応設備
を示すものである。
FIG. 1 shows the oxidation reaction equipment used in the examples of the present invention.

【符号の説明】[Explanation of symbols]

1:還流冷却器 2:ブロワ− 3:触媒、溶媒及びパラキシレンの供給ライン 4:酸素含有ガスの導入ライン 5:反応スラリ−の抜き出しライン 6:酸化排ガスのパ−ジライン 7:酸化排ガスのリサイクルライン 8:還流液の抜き出しライン 9:主酸化反応器 10:追酸化反応(第2酸化反応)器 11:酸素含有ガスの導入ライン 1: Reflux condenser 2: Blower 3: Supply line of catalyst, solvent and paraxylene 4: Introduction line of oxygen-containing gas 5: Extraction line of reaction slurry 6: Purging line of oxidizing exhaust gas 7: Recycling of oxidizing exhaust gas Line 8: Reflux liquid extraction line 9: Main oxidation reactor 10: Additional oxidation reaction (second oxidation reaction) device 11: Oxygen-containing gas introduction line

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 アルキル芳香族炭化水素を酢酸溶媒中、
コバルト、マンガン、及び臭素を含有する触媒成分の存
在下、分子状酸素含有ガスにより液相酸化して芳香族カ
ルボン酸を製造する方法において、(1)反応温度が1
40℃以上、180℃以下であり、(2)コバルト成分
の量がコバルト金属換算で酢酸溶媒に対して400重量
ppm以上、3000重量ppm以下であり、(3)マ
ンガン成分の量がコバルトに対する原子比で0.001
倍以上、0.4倍以下であり、(4)臭素成分の量がコ
バルトに対する原子比で0.1倍以上、5.0倍以下で
ある触媒成分の存在下、(5)反応器から抜き出したガ
スから凝縮性成分を凝縮除去して得た酸化排ガスの一部
を反応器の液相部に循環供給し、(6)反応圧力を分子
状酸素含有ガスとして空気を用い、かつ、酸化排ガスの
循環供給を行わない場合の圧力よりも高めること、を特
徴とする芳香族カルボン酸の製造方法。
1. An alkyl aromatic hydrocarbon in an acetic acid solvent,
In the method for producing an aromatic carboxylic acid by liquid-phase oxidation with a gas containing molecular oxygen in the presence of a catalyst component containing cobalt, manganese, and bromine, (1) the reaction temperature is 1
The temperature is 40 ° C. or higher and 180 ° C. or lower, (2) the amount of the cobalt component is 400 wt ppm or more and 3000 wt ppm or less with respect to the acetic acid solvent in terms of cobalt metal, and (3) the amount of the manganese component is atoms relative to cobalt. 0.001 in ratio
(4) withdrawal from the reactor in the presence of a catalyst component having an amount of bromine component of 0.4 times or more and (4) an amount of bromine component of 0.1 to 5.0 times the atomic ratio of cobalt. Part of the oxidizing exhaust gas obtained by condensing and removing the condensable components from the gas is circulated and supplied to the liquid phase part of the reactor, (6) the reaction pressure is air as the molecular oxygen-containing gas, and the oxidizing exhaust gas is The method for producing an aromatic carboxylic acid is characterized in that the pressure is raised above the pressure when the circulation supply is not performed.
【請求項2】 アルキル芳香族炭化水素がパラキシレン
である請求項1の芳香族カルボン酸の製造方法。
2. The method for producing an aromatic carboxylic acid according to claim 1, wherein the alkyl aromatic hydrocarbon is paraxylene.
【請求項3】 コバルト成分の量がコバルト金属換算で
酢酸溶媒に対して500重量ppm以上、2000重量
ppm以下である請求項1又は2の芳香族カルボン酸の
製造方法。
3. The method for producing an aromatic carboxylic acid according to claim 1, wherein the amount of the cobalt component is 500 ppm by weight or more and 2000 ppm by weight or less based on the acetic acid solvent in terms of cobalt metal.
【請求項4】 マンガン成分の量がマンガン金属換算で
酢酸溶媒に対して1重量ppm以上、250重量ppm
以下である請求項1ないし3のいずれかの芳香族カルボ
ン酸の製造方法。
4. The amount of manganese component, calculated as manganese metal, is 1 ppm by weight or more and 250 ppm by weight based on the acetic acid solvent.
The method for producing an aromatic carboxylic acid according to claim 1, wherein:
【請求項5】 臭素成分の量がコバルトに対する原子比
で0.2倍以上、2.0倍以下である請求項1ないし4
のいずれかの芳香族カルボン酸の製造方法。
5. The amount of bromine component is 0.2 times or more and 2.0 times or less in terms of atomic ratio with respect to cobalt.
A method for producing an aromatic carboxylic acid according to any one of 1.
【請求項6】 反応温度が150℃以上、175℃以下
である請求項1ないし5のいずれかの芳香族カルボン酸
の製造方法。
6. The method for producing an aromatic carboxylic acid according to claim 1, wherein the reaction temperature is 150 ° C. or higher and 175 ° C. or lower.
【請求項7】 酸化排ガス中の酸素濃度が0.1〜8容
量%である請求項1ないし6のいづれかの芳香族カルボ
ン酸の製造方法。
7. The method for producing an aromatic carboxylic acid according to claim 1, wherein the oxygen concentration in the oxidizing exhaust gas is 0.1 to 8% by volume.
【請求項8】 反応器気相部の酸素分圧が、分子状酸素
含有ガスとして空気を用いて、かつ酸化排ガスの循環供
給を行わない場合の気相部酸素分圧の1.3〜5倍とな
るように反応圧力を高める請求項1ないし7のいずれか
の芳香族カルボン酸の製造方法。
8. The oxygen partial pressure in the gas phase portion of the reactor is 1.3 to 5 of the oxygen partial pressure in the gas phase portion when air is used as the molecular oxygen-containing gas and the oxidizing exhaust gas is not circulated and supplied. The method for producing an aromatic carboxylic acid according to any one of claims 1 to 7, wherein the reaction pressure is doubled.
【請求項9】 反応器に供給される分子状酸素含有ガス
が空気である請求項1ないし8のいずれかの芳香族カル
ボン酸の製造方法。
9. The method for producing an aromatic carboxylic acid according to claim 1, wherein the molecular oxygen-containing gas supplied to the reactor is air.
【請求項10】 触媒成分としてナトリウム成分がナト
リウム金属換算で酢酸溶媒に対して1重量ppm以上、
1000重量ppm以下である請求項1ないし9のいず
れかの芳香族カルボン酸の製造方法。
10. A sodium component as a catalyst component is 1 ppm by weight or more in terms of sodium metal based on an acetic acid solvent,
The method for producing an aromatic carboxylic acid according to claim 1, which has an amount of 1000 ppm by weight or less.
【請求項11】 反応促進のための共酸化剤が不存在下
で酸化反応を行う請求項1ないし10のいずれかの芳香
族カルボン酸の製造方法。
11. The method for producing an aromatic carboxylic acid according to claim 1, wherein the oxidation reaction is carried out in the absence of a co-oxidant for promoting the reaction.
【請求項12】 請求項1ないし11のいずれかの方法
で得られた反応混合物を、140〜190℃の温度に保
持した第2反応帯域において、アルキル芳香族炭化水素
を供給することなく、分子状酸素含有ガスにより第2酸
化処理を行うことを特徴とする芳香族カルボン酸の製造
方法。
12. A reaction mixture obtained by the method according to any one of claims 1 to 11 is maintained at a temperature of 140 to 190 ° C. in a second reaction zone without supplying an alkyl aromatic hydrocarbon. A method for producing an aromatic carboxylic acid, which comprises performing a second oxidation treatment with a gaseous oxygen-containing gas.
【請求項13】 請求項12の方法で得られた反応混合
物を、210℃以上の温度に保持した第3反応帯域にお
いて、アルキル芳香族炭化水素を供給することなく、分
子状酸素含有ガスにより第3酸化処理を行うことを特徴
とする芳香族カルボン酸の製造方法。
13. The reaction mixture obtained by the method according to claim 12, in a third reaction zone maintained at a temperature of 210 ° C. or higher, is fed with a molecular oxygen-containing gas without adding an alkylaromatic hydrocarbon. 3. A method for producing an aromatic carboxylic acid, which comprises performing an oxidation treatment.
JP9028905A 1996-02-13 1997-02-13 Production of aromatic carboxylic acid Pending JPH09278709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9028905A JPH09278709A (en) 1996-02-13 1997-02-13 Production of aromatic carboxylic acid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-25388 1996-02-13
JP2538896 1996-02-13
JP9028905A JPH09278709A (en) 1996-02-13 1997-02-13 Production of aromatic carboxylic acid

Publications (1)

Publication Number Publication Date
JPH09278709A true JPH09278709A (en) 1997-10-28

Family

ID=26362982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9028905A Pending JPH09278709A (en) 1996-02-13 1997-02-13 Production of aromatic carboxylic acid

Country Status (1)

Country Link
JP (1) JPH09278709A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511664A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
JP2008511646A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation in bubble column reactors.
JP2008511650A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
JP2008511648A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
JP2008511639A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
JP2008511641A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
JP2008511655A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
JP2008511638A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
JP2008511649A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
KR100826448B1 (en) * 2004-12-30 2008-04-29 주식회사 효성 Deviece and Process of Acetic Acid Recovery and Removal in Oxidation Reaction of Dimethylnaphthalene
US7550627B2 (en) 2005-03-08 2009-06-23 Eastman Chemical Company Processes for producing aromatic dicarboxylic acids
EP2522426A1 (en) 2011-05-12 2012-11-14 King Saud University Heterogeneous catalyst for preparing carboxylic acids and method for preparing carboxylic acids
JP2016026232A (en) * 2010-01-29 2016-02-12 グルーポ ペトロテメックス,ソシエダ アノニマ デ カピタル バリアブレ Oxidation system with side-draw secondary reactor
JP2016040312A (en) * 2010-01-29 2016-03-24 グルーポ ペトロテメックス,ソシエダ アノニマ デ カピタル バリアブレ Oxidation system with side-draw secondary reactor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511655A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
JP2008511649A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
JP2008511650A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
JP2008511648A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
JP2008511639A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
JP2008511641A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
JP2008511646A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation in bubble column reactors.
JP2008511638A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
JP2008511664A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
KR100826448B1 (en) * 2004-12-30 2008-04-29 주식회사 효성 Deviece and Process of Acetic Acid Recovery and Removal in Oxidation Reaction of Dimethylnaphthalene
US7550627B2 (en) 2005-03-08 2009-06-23 Eastman Chemical Company Processes for producing aromatic dicarboxylic acids
JP2016026232A (en) * 2010-01-29 2016-02-12 グルーポ ペトロテメックス,ソシエダ アノニマ デ カピタル バリアブレ Oxidation system with side-draw secondary reactor
JP2016040312A (en) * 2010-01-29 2016-03-24 グルーポ ペトロテメックス,ソシエダ アノニマ デ カピタル バリアブレ Oxidation system with side-draw secondary reactor
JP2017190350A (en) * 2010-01-29 2017-10-19 グルーポ ペトロテメックス,ソシエダ アノニマ デ カピタル バリアブレ Oxidation system with side-draw secondary reactor
EP2522426A1 (en) 2011-05-12 2012-11-14 King Saud University Heterogeneous catalyst for preparing carboxylic acids and method for preparing carboxylic acids

Similar Documents

Publication Publication Date Title
KR100363923B1 (en) A process for preparing aromatic carboxylic acids
JP4549683B2 (en) Method for removing iron contaminants from a liquid stream during the production and / or purification of aromatic acids
JPH0259820B2 (en)
KR20010005647A (en) Process for preparing 2,6-naphthalenedicarboxylic acid
EP1140765B2 (en) A production method of aromatic carboxylic acids
JP2004358466A (en) Extraction method for removing impurity from carboxylic acid-synthesized mother liquor
WO2005051881A1 (en) Staged countercurrent catalytic oxidation of disubstituted bemzene
JPH09278709A (en) Production of aromatic carboxylic acid
JP2001288139A (en) Method for producing high-purity terephthalic acid
JP2001247511A (en) Method of producing aromatic carboxylic acid
US20120004451A1 (en) Process for producing terephthalic acid
KR101326326B1 (en) Processes for producing aromatic dicarboxylic acids
JP2001226315A (en) Method for producing terephthalic acid
JP2001139514A (en) Method for producing aromatic dicarboxylic acid
JP4429393B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
JPS6246533B2 (en)
TWI434827B (en) Process for producing aromatic carboxylic acid
WO2006096313A1 (en) Processes for producing aromatic dicarboxylic acids
JPH0662495B2 (en) Manufacturing method of high-purity terephthalic acid
KR100398160B1 (en) Process for producing aromatic carboxylic acid
EP0443856B1 (en) Preparation of isopropylidene bis(phthalic acid) and isopropylidene bis (phthalic anhydride)
JPH07278048A (en) Production of aromatic carboxylic acid and device therefor
JPS59190946A (en) Production of terephthalic acid of high purity
KR100841151B1 (en) Method for preparing high purified naphthalene dicarboxylic acid
JPS6323982B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060411