JPH09277353A - Method for controlling die swell of viscoelastic material in screw extruder with pin - Google Patents

Method for controlling die swell of viscoelastic material in screw extruder with pin

Info

Publication number
JPH09277353A
JPH09277353A JP8096863A JP9686396A JPH09277353A JP H09277353 A JPH09277353 A JP H09277353A JP 8096863 A JP8096863 A JP 8096863A JP 9686396 A JP9686396 A JP 9686396A JP H09277353 A JPH09277353 A JP H09277353A
Authority
JP
Japan
Prior art keywords
pin
screw
viscoelastic body
pins
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8096863A
Other languages
Japanese (ja)
Inventor
Masashi Yano
雅士 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP8096863A priority Critical patent/JPH09277353A/en
Publication of JPH09277353A publication Critical patent/JPH09277353A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/922Viscosity; Melt flow index [MFI]; Molecular weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92209Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/9238Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/924Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92695Viscosity; Melt flow index [MFI]; Molecular weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently extrude a viscoelastic material under high precision die swell by setting a feedback system between the viscosity and temperature of the material detected by sensor pins attached at the end of a screw and the insertion rate of numbers of work pins. SOLUTION: Forefront pins 5a-5f closest to the end of a screw on the extrusion head 7 side are sensor pins for detecting the properties of a viscoelastic material. Hydraulic mechanisms 9-1-9-8 carry out operation to make work pins 4-1-4-8 freely movable on the inside and the outside of the radial direction of a screw 2 on the basis of the feedback command of the viscosity and temperature of the material which are detected independently by the sensor pins 5a-5f. The operation individually controls the insertion depth of the work pins 4-1-4-8 into the material by the feedback signal while the extrusion work of the material continues. The insertion depth is based on the distance between the inside wall of the cylinder and the bottom of the screw and expressed by an insertion rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、タイヤなどのゴ
ム製品製造に際し未加硫配合ゴムなどの粘弾性体を所定
の断面形状をもつ粘弾性体部材として押出す際のピン付
きスクリュー押出機における粘弾性体のダイスエル制御
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a screw extruder with a pin for extruding a viscoelastic body such as unvulcanized compound rubber as a viscoelastic body member having a predetermined cross-sectional shape when manufacturing a rubber product such as a tire. The present invention relates to a die swell control method for a viscoelastic body.

【0002】[0002]

【従来の技術】押出機により所定断面形状をもつ粘弾性
体部材、例えば未加硫配合ゴム部材を押出す際、押出後
における粘弾性体部材の断面形状は押出機の押出ダイ直
前における粘弾性体のダイスエル特性に著しく左右され
るのは良く知られた事実である。しかしこのダイスエル
特性をコントロールする手段は存在していない。
2. Description of the Related Art When extruding a viscoelastic body member having a predetermined cross-sectional shape by an extruder, for example, an unvulcanized rubber member, the cross-sectional shape of the viscoelastic body member after extrusion is viscoelastic just before the extrusion die of the extruder. It is a well-known fact that the body's die swell characteristics are significantly affected. However, there is no means to control this die swell characteristic.

【0003】そこで従来は押出機の押出ヘッド内に特別
な粘弾性体の流路を設けたり、又は押出ダイにあける孔
形状を適当に選定して、押出実験によりダイを経て押出
された粘弾性体のダイスエルを測定し、試行錯誤を重ね
た上押出ヘッド内流路や押出ダイの孔形状を決定する手
段がとられている。この決定に至るまでに多大な工数を
要するのは言うまでもなく、粘弾性体の種類が変われば
それに伴いダイスエル特性が変化するので、粘弾性体部
材の生産性が著しく損なわれているのが現状である。
Therefore, in the past, a viscoelastic material was extruded through the die by an extrusion experiment by providing a special viscoelastic material flow path in the extrusion head of the extruder or by appropriately selecting the hole shape in the extrusion die. Means for measuring the die swell of the body and determining the shape of the flow path in the upper extrusion head and the hole shape of the extrusion die by trial and error are used. Needless to say, it takes a lot of man-hours to reach this decision, and if the type of viscoelastic body changes, the die swell characteristics change accordingly, so the productivity of viscoelastic body members is significantly impaired under the present circumstances. is there.

【0004】また同じ種類の粘弾性体であってもそのダ
イスエル特性は常に一定不変ではなくバラツキを有する
ため、押出部材の断面形状も当然ながらしばしば無視し
得ないバラツキをもち、加えて押出ヘッド内に設定した
流路やダイの孔形状は使用時間の経過と共に進行する摩
耗により変化するので押出部材の断面形状は所望形状か
らの隔たりが増すなどの不利を伴い、その都度対策を講
じることが余儀なくさている。
Further, even if the same kind of viscoelastic body is used, the die swell characteristics thereof are not always constant and have variations. Therefore, the cross-sectional shape of the extruded member naturally has a variation which cannot be neglected. Since the shape of the flow path and the hole of the die set change with the progress of wear over the time of use, the cross-sectional shape of the extruded member has disadvantages such as increasing the distance from the desired shape, and it is unavoidable to take measures each time. I'm standing.

【0005】[0005]

【発明が解決しようとする課題】従ってこの発明の目的
は、押出機による予備実験などに拠らず、また使用途中
での余分な調整を施すことなく高い効率の下で、しかも
高精度な断面形状をもつ粘弾性体部材、なかでも未加硫
配合ゴム部材を押出可能なピン付きスクリュー押出機に
おける粘弾性体のダイスエル制御方法を提供することに
ある。
Therefore, the object of the present invention is not to rely on preliminary experiments with an extruder or the like, and to achieve highly efficient and highly accurate cross-sections without extra adjustment during use. It is an object of the present invention to provide a die swell control method for a viscoelastic body in a screw extruder with a pin capable of extruding a viscoelastic body member having a shape, in particular, an unvulcanized compounded rubber member.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、この発明によるピン付きスクリュー押出機における
粘弾性体のダイスエル制御方法は、押出機のスクリュー
軸線方向に沿って多数本のスクリュー半径方向ピンを複
数列配列して成るスクリュー押出機により粘弾性体を押
出すにあたり、多数本のピンのうち押出機のスクリュー
先端に最も近い最先端ピンを粘弾性体特性検出用センサ
ピンとし、その残余ピンは粘弾性体の可塑化を助勢する
ワークピンとし、上記センサピンはスクリュー回転によ
り搬送される粘弾性体のセンサピンに作用する搬送抵抗
より粘弾性体の粘度を検出すると同時にセンサピンの先
端に設けた温度センサにより粘弾性体の温度を検出し、
上記ワークピンは各ピンにそれぞれ連結した移動機構に
よりスクリュー半径方向に移動自在とし、センサピンが
検出した粘弾性体の粘度及び温度を各ワークピンの移動
機構にフィードバックしてワークピンの粘弾性体に対す
る挿入深さを制御することを特徴とする。
In order to achieve the above object, a die swell control method for a viscoelastic body in a screw extruder with a pin according to the present invention comprises a plurality of screw radial direction pins along the screw axis direction of the extruder. When a viscoelastic body is extruded by a screw extruder composed of multiple rows, the most advanced pin of the many pins that is closest to the screw tip of the extruder is used as the sensor pin for detecting the viscoelastic property, and the remaining pins. Is a work pin that assists plasticization of the viscoelastic body, and the sensor pin detects the viscosity of the viscoelastic body from the conveyance resistance that acts on the sensor pin of the viscoelastic body conveyed by screw rotation, and at the same time the temperature provided at the tip of the sensor pin. The temperature of the viscoelastic body is detected by the sensor,
The work pins are movable in the screw radial direction by a moving mechanism connected to each pin, and the viscosity and temperature of the viscoelastic body detected by the sensor pin are fed back to the moving mechanism of each work pin to the viscoelastic body of the work pin. It is characterized by controlling the insertion depth.

【0007】[0007]

【発明の実施の形態】この発明による一実施例の要部を
線図にて簡略図解した図1及び図2に基づき詳細に以下
説明する。図1は、スクリュー押出機1のスクリュー2
とそのシリンダ3とを透視した要部側面図であり、図2
は図1のII−II線に沿う要部断面図である。図1におい
てスクリュー押出機1(以降押出機1と略す)は、スク
リュー2の送りねじ部に環状溝を設け、該環状溝部にス
クリュー2の軸線方向に沿って多数本(図示例は9本)
のスクリュー半径方向ピン4−1〜4−8、5を複数列
(図示例はシリンダ3周りに等間隔で6列、図2参
照))配列した構成を有する。図1、2ではこれらのピ
ンを図の上から順にa〜fの添字を付してピン列を区別
して示す。
BEST MODE FOR CARRYING OUT THE INVENTION The main part of an embodiment according to the present invention will be described below in detail with reference to FIGS. FIG. 1 shows a screw 2 of a screw extruder 1.
FIG. 2 is a side view of the main part of the cylinder 3 and the cylinder 3 as seen through.
FIG. 2 is a sectional view of an essential part taken along the line II-II in FIG. 1. In FIG. 1, a screw extruder 1 (hereinafter abbreviated as extruder 1) is provided with an annular groove in a feed screw portion of a screw 2, and a large number (9 in the illustrated example) along the axial direction of the screw 2 in the annular groove portion.
The screw radial direction pins 4-1 to 4-8 and 5 are arranged in a plurality of rows (in the illustrated example, six rows are arranged at equal intervals around the cylinder 3, see FIG. 2). In FIGS. 1 and 2, these pins are shown by adding subscripts a to f in order from the top of the drawing to distinguish the pin rows.

【0008】ホッパ6から装填した粘弾性体はスクリュ
ー2の回転により図の右側の先端部に位置する押出ヘッ
ド7に向かい可塑化度を高めながら搬送され、押出ダイ
(口金、詳細な図示省略)8から押出される。
The viscoelastic body loaded from the hopper 6 is conveyed by the rotation of the screw 2 toward the extrusion head 7 located at the front end on the right side of the figure while increasing the degree of plasticization, and an extrusion die (die, not shown in detail). 8 is extruded.

【0009】ここに多数本のピン4−1〜4−8、5の
うち押出機1の押出ヘッド7側のスクリュー先端に最も
近い最先端ピン5a〜5f(以降は符号5にてあらわ
す)は粘弾性体の特性を検出するためのセンサピンと
し、センサピン5を除く残余ピン4−1a〜4−1fか
らピン4−8a〜4−8fまで(以降は符号4−1〜4
−8にてあらわす)は粘弾性体の可塑化を助勢する作業
に供するワークピンとする。
Among the many pins 4-1 to 4-8, the most advanced pins 5a to 5f (hereinafter represented by reference numeral 5) closest to the screw tip on the extrusion head 7 side of the extruder 1 are the pins. The remaining pins 4-1a to 4-1f excluding the sensor pin 5 to the pins 4-8a to 4-8f are used as sensor pins for detecting the characteristics of the viscoelastic body (hereinafter, reference numerals 4-1 to 4-4).
-8) represents a work pin used for the work of assisting the plasticization of the viscoelastic body.

【0010】センサピン5は、図3に要部を簡略図解し
た断面に示すように、中空ピン内部にストレーンゲージ
10を接着張合せ、スクリュー2の回転により押出ヘッ
ド7に向かって搬送される粘弾性体がセンサピン5を通
過する際のセンサピン5に作用する搬送抵抗をストレー
ンゲージ10により測定し、測定した抵抗値を粘度η
(ポアズ、gf/cm ・s )に変換する。またセンサピン5
はその先端部に温度検出器11を備え、粘度ηを示す位
置における粘弾性体の温度も同時に検出する。そのとき
搬送される粘弾性体の最高温度を検出するため、スクリ
ュー2のねじ底とシリンダ3の内壁との中間位置の温度
を検出するようにセンサピン5のピン部分長さとピン先
端位置とを規定する。またセンサピン5に上記中空ピン
の他に水銀を封入したブルドン管(図示省略)を適用す
ることも可とし、固定式の場合はブルドン管がより一層
良く適合する。
The sensor pin 5 has a viscoelasticity in which a strain gauge 10 is adhered to the inside of the hollow pin and is conveyed toward the extrusion head 7 by the rotation of the screw 2 as shown in the cross-sectional view of the main portion of FIG. The transport resistance acting on the sensor pin 5 when the body passes through the sensor pin 5 is measured by the strain gauge 10, and the measured resistance value is the viscosity η.
Convert to (Poise, gf / cm · s). Also sensor pin 5
Is equipped with a temperature detector 11 at its tip, and simultaneously detects the temperature of the viscoelastic body at the position indicating the viscosity η. In order to detect the maximum temperature of the viscoelastic body conveyed at that time, the pin portion length of the sensor pin 5 and the pin tip position are defined so as to detect the temperature at the intermediate position between the screw bottom of the screw 2 and the inner wall of the cylinder 3. To do. In addition to the hollow pin, a Bourdon tube (not shown) in which mercury is sealed can be applied to the sensor pin 5, and in the case of the fixed type, the Bourdon tube is better suited.

【0011】一方ワークピン4−1〜4−8は各ピンそ
れぞれを移動機構、例えば油圧アクチュエータのうち複
動油圧シリンダなどの油圧機構又はねじ送り機構に連結
するものとして、図示例は複動油圧シリンダ9−1a〜
9−1fから9−8a〜9−8fに連結する。これら油
圧機構にもワークピンと対応する添字a〜fを付して図
1、2に示すが、以降は符号9−1〜9−8と略す。
On the other hand, the work pins 4-1 to 4-8 are used to connect the respective pins to a moving mechanism, for example, a hydraulic mechanism such as a double-acting hydraulic cylinder among hydraulic actuators or a screw feed mechanism. Cylinder 9-1a ~
9-1f to 9-8a to 9-8f. These hydraulic mechanisms are also shown in FIGS. 1 and 2 by adding subscripts a to f corresponding to the work pins, but hereinafter, they are abbreviated as 9-1 to 9-8.

【0012】これら油圧機構9−1〜9−8はそれぞれ
独立に、センサピン5が検出した粘弾性体の粘度η及び
温度のフィードバック信号指令に基づきワークピン4−
1〜4−8をスクリュー2の半径方向内側及び外側に移
動自在とする動作を行う。この動作は粘弾性体の押出し
作業が続く間にわたり、上記フィードバック信号により
ワークピン4−1〜4−8の粘弾性体に対する挿入深さ
を個別に制御する。ここに挿入深さはシリンダ内壁位置
とスクリューのねじ底位置との間の距離を基準とし挿入
率0%(シリンダ内壁位置)〜100%(ねじ底位置)
であらわすのが好都合である。
These hydraulic mechanisms 9-1 to 9-8 are independent of each other, based on the feedback signal command of the viscosity η of the viscoelastic body detected by the sensor pin 5 and the temperature feedback signal command.
The operation of making 1 to 4-8 movable inward and outward in the radial direction of the screw 2 is performed. In this operation, the insertion depth of the work pins 4-1 to 4-8 into the viscoelastic body is individually controlled by the feedback signal while the viscoelastic body pushing operation continues. Here, the insertion depth is based on the distance between the cylinder inner wall position and the screw bottom position of the screw, and the insertion rate is 0% (cylinder inner wall position) to 100% (screw bottom position).
It is convenient to represent it.

【0013】上記フィードバックシステムは、制御装置
(図示省略)を用い、センサピン5が検出した粘弾性体
の粘度及び温度の信号値を制御装置に入力し、入力した
信号値と予め制御装置にインプットした粘度及び温度そ
れぞれの設定値との差を演算し、両者間に差があるとき
はその差の値に応じた信号を油圧機構9−1〜9−8に
出力し、この出力を受けた油圧機構9−1〜9−8がワ
ークピン4−1〜4−8の挿入率を加減し、この状態で
押出機内を搬送される粘弾性体の先端部における粘度及
び温度をセンサピン5が検出するフィードバックループ
を形成させ、差信号が常にゼロ値を保持するシステムと
するのが好適である。そのときワークピン4−1〜4−
8の挿入率は一様である必要はなく、スクリュー2の軸
線方向配列位置毎に制御するシステムを採用するのが望
ましい。
The above feedback system uses a control device (not shown), inputs the signal values of the viscosity and temperature of the viscoelastic body detected by the sensor pin 5 to the control device, and inputs the input signal value and the control device in advance. The difference between the viscosity and the set value of the temperature is calculated, and if there is a difference between the two, a signal corresponding to the value of the difference is output to the hydraulic mechanisms 9-1 to 9-8, and the hydraulic pressure that receives this output is output. The mechanisms 9-1 to 9-8 adjust the insertion rate of the work pins 4-1 to 4-8, and the sensor pin 5 detects the viscosity and temperature at the tip of the viscoelastic body conveyed in the extruder in this state. A system is preferred in which a feedback loop is formed and the difference signal always holds a zero value. At that time, work pins 4-1 to 4-
The insertion rate of 8 does not have to be uniform, and it is desirable to employ a system that controls for each axially arranged position of the screw 2.

【0014】さて粘弾性体を未加硫配合ゴムとして、図
1〜3に従う4.5インチスクリュー押出機を用いて実
験した結果を図4、5に示す。図4は、粘度η(gf/cm
・s)と高さ方向のダイスエル比D1(%)との関係をスク
リュー2の回転数(rpm)をパラメータとしてあらわした
線図であり、それぞれの測定点(マル印)におけるゴム
温度(℃)を併記し、図5は、粘度η=80gf/cm ・s
のときのダイスエル比D1(%)と温度t(℃)との関係
をあらわす線図である。図4、5から明らかなように、
粘弾性体からなる被押出物のダイスエル特性は押出直前
の粘弾性体の粘度と温度とにより定まることを見出し
た。ここにダイスエル比D( %)は、押出ダイ(口金)
の開口高さ又は開口幅をL0 、押出物品の高さ又は幅を
Lとしたとき、高さ及び幅それぞれにつき下記の数式に
て定まる値とする。なお高さのダイスエル比はD
1(%)、幅のそれはD2(%)で区別する。
4 and 5 show the results of experiments using a 4.5-inch screw extruder according to FIGS. 1 to 3 with the viscoelastic body as unvulcanized compounded rubber. Figure 4 shows the viscosity η (gf / cm
・ S) and the die swell ratio D 1 (%) in the height direction are shown with the rotation speed (rpm) of the screw 2 as a parameter, and the rubber temperature (° C) at each measurement point (mark). ) Is also shown in FIG. 5, and in FIG. 5, the viscosity η = 80 gf / cm · s
FIG. 6 is a diagram showing the relationship between the die swell ratio D 1 (%) and the temperature t (° C.) at the time. As is clear from FIGS.
It was found that the die swell characteristics of an extrudate made of a viscoelastic body are determined by the viscosity and temperature of the viscoelastic body immediately before extrusion. Die swell ratio D (%) is the extrusion die (base)
Let L 0 be the height or width of the opening and L be the height or width of the extruded article, and let the height and the width be values determined by the following formulas. The height die swell ratio is D
1 (%), that of the width is distinguished by D 2 (%).

【数1】 [Equation 1]

【0015】さらに上記と同じ条件にて実験を進め、ワ
ークピン4−1〜4−8の列番(1〜8)と各列番にお
ける粘度との関係を各ピンの挿入率A〜Dをパラメータ
として調べた結果を線図として図6に示し、さらにワー
クピンの列番1〜8と各列番における粘弾性体の温度と
の関係を各ピンの挿入率A〜Dをパラメータとして調べ
た結果を同様な線図として図7に示す。各図の横軸には
ホッパ6から粘弾性体を投入した直後位置をi/pと
し、それ以降はワークピンの各列におけるi/p側から
数えた位置を列番1〜8として図1に合せて示した。
Further, the experiment was conducted under the same conditions as above, and the relationship between the row numbers (1 to 8) of the work pins 4-1 to 4-8 and the viscosity in each row number was calculated by using the insertion rates A to D of the pins. The results of the investigation as parameters are shown in a diagram in FIG. 6, and the relationship between the work pin row numbers 1 to 8 and the temperature of the viscoelastic body in each row number was examined using the insertion rates A to D of the pins as parameters. The results are shown in FIG. 7 as a similar diagram. On the horizontal axis of each figure, the position immediately after the viscoelastic body is put in from the hopper 6 is i / p, and thereafter, the positions counted from the i / p side in each row of the work pins are column numbers 1 to 8. Are also shown.

【0016】図6、7において挿入率Aは列番1〜8ま
での全てのワークピンを100%、挿入率Bは列番1〜
8までの全てのワークピンを50%、挿入率Cは列番1
〜8までの全てのワークピンを10%とし、そして挿入
率Dは列番1〜4までのワークピンを0%とし、列番5
〜8までのワークピンを50%としたものである。これ
らの図6、7から以下に述べる事実と効果とがわかる。
In FIGS. 6 and 7, the insertion rate A is 100% for all the work pins up to the column numbers 1 to 8, and the insertion rate B is the column numbers 1 to 8.
50% for all work pins up to 8, insertion rate C is column number 1
All work pins up to 8 are set to 10%, and insertion rate D is set to 0% for work pins in row numbers 1 to 4, row number 5
Work pins up to 8 are set to 50%. The facts and effects described below can be understood from these FIGS.

【0017】粘弾性体のダイスエル特性を決定付ける一
方の要因である粘性ηは、ワークピン4−1〜4−8の
挿入率(%)の値を変えることで制御可能であること、
そして他方の要因である粘弾性体の温度tもまたワーク
ピン4−1〜4−8の挿入率(%)の値を変えることで
制御可能である。また挿入率Dの特に粘度ηの結果から
ワークピン4−1〜4−8の挿入率を一律に設定する必
要はなく、各ワークピン毎に挿入率を変えることでより
高い精度で粘度特性を制御することも可能である。勿論
ピンの配列数とスクリュー2の軸線方向に沿って配列す
るピン本数とが上記二つの要因に寄与するがあくまで副
次的効果と見ることができる。
Viscosity η, which is one factor that determines the die swell characteristic of the viscoelastic body, can be controlled by changing the value of the insertion rate (%) of the work pins 4-1 to 4-8.
The temperature t of the viscoelastic body, which is the other factor, can also be controlled by changing the value of the insertion rate (%) of the work pins 4-1 to 4-8. Further, it is not necessary to uniformly set the insertion rate of the work pins 4-1 to 4-8 from the result of the insertion rate D, particularly the viscosity η, and by changing the insertion rate for each work pin, the viscosity characteristics can be obtained with higher accuracy. It is also possible to control. Of course, the number of pins arranged and the number of pins arranged along the axial direction of the screw 2 contribute to the above two factors, but they can be regarded as secondary effects.

【0018】よってスクリュー2の先端側でダイ8に近
い位置に配置したセンサピン5が検出する粘弾性体の粘
度と温度とを油圧機構9−1〜9−8それぞれにフィー
ドバックして各ワークピン4−1〜4−8の挿入率を制
御することにより、所望の粘度特性値と温度とをもち、
従って所定のダイスエル比D(%) に制御した粘弾性体
を、高精度断面形状の部材として押出すことが可能とな
り、従来の煩雑な作業を省くことができる上、押出すべ
き粘弾性体のロット内変動及びロット間変動に煩わされ
ることもない。
Therefore, the viscosity and temperature of the viscoelastic body detected by the sensor pin 5 arranged near the die 8 on the tip side of the screw 2 are fed back to the hydraulic mechanisms 9-1 to 9-8, respectively, and the work pins 4 are fed. By controlling the insertion rate of -1 to 4-8, it has a desired viscosity characteristic value and temperature,
Therefore, it becomes possible to extrude a viscoelastic body controlled to a predetermined die swell ratio D (%) as a member having a highly accurate cross-sectional shape, which can save the conventional complicated work and can reduce the viscoelastic body to be extruded. There is no need to be bothered by intra-lot and inter-lot variations.

【0019】さらに各ワークピン4−1〜4−8の挿入
率を制御先には、述べたフィードバックシステムを用い
るのが実際的で有利であり、予め制御装置にインプット
する粘度及び温度の設定値を各ワークピン毎に定めてお
けば、図示は省略したが制御装置と各移動機構(油圧機
構)とを個別に接続して、最も高い効率が得られるよう
に各ワークピンの挿入率を独立で制御することができ
る。
Further, it is practical and advantageous to use the above-mentioned feedback system for controlling the insertion rate of each work pin 4-1 to 4-8, and the set values of the viscosity and the temperature which are input to the control device in advance are set. Although it is not shown in the figure, the control device and each moving mechanism (hydraulic mechanism) can be connected individually and the insertion rate of each work pin can be set independently so that the highest efficiency can be obtained. Can be controlled with.

【0020】[0020]

【実施例】先に述べたスクリュー押出機1と未加硫配合
ゴムとを用い、実施例1はセンサピン5における粘度η
=70ポアズとなるように、列番1〜5のワークピンは
50〜100%の挿入率でコントロールし、列番6〜8
のワークピンは0〜50%の挿入率でコントロールし
て、未加硫ゴム部材を押出した。
[Example] Using the screw extruder 1 and the unvulcanized compounded rubber described above, Example 1 has a viscosity η in the sensor pin 5.
= 70 poise, the work pins of row numbers 1 to 5 are controlled with an insertion rate of 50 to 100%, and the row numbers 6 to 8 are controlled.
The work pin was controlled at an insertion rate of 0 to 50% to extrude the unvulcanized rubber member.

【0021】実施例2は、実施例1と同じワークピンの
挿入率の下で粘度η=70ポアズを保持するようにコン
トロールすることを優先し、列番6〜8のワークピン挿
入率をその絶対値に対しさらに±5%の範囲内で移動さ
せることでセンサピン5の検出温度を100℃として未
加硫ゴム部材を押出した。これら実施例の効果を検証す
るため、試行錯誤を繰り返す従来例としてセンサピン5
を備えずにワークピン4−1〜4−8のみを有するスク
リュー押出機により未加硫ゴム部材を押出した。ダイス
エル比Dの目標値は何れも高さ方向D1 =20%、幅方
向D2 =10%とし、用いた未加硫ゴムは全て同一配合
組成になる。
Example 2 gives priority to control so as to maintain the viscosity η = 70 poise under the same work pin insertion rate as in Example 1, and the work pin insertion rates of the row numbers 6 to 8 are changed. The unvulcanized rubber member was extruded with the temperature detected by the sensor pin 5 set to 100 ° C. by further moving within ± 5% of the absolute value. In order to verify the effects of these embodiments, the sensor pin 5 is used as a conventional example in which trial and error is repeated.
The unvulcanized rubber member was extruded by a screw extruder having no work pins and having only work pins 4-1 to 4-8. The target values for the die swell ratio D are D 1 = 20% in the height direction and D 2 = 10% in the width direction, and the unvulcanized rubbers used have the same composition.

【0022】ダイ8を出た直後の実施例1、2及び従来
例の未加硫配合ゴムの粘度、温度及びダイスエル比それ
ぞれの値をゴム押出中に間欠的に10回測定し、得られ
た値からそれぞれにつき平均値xm と「ばらつき」(標
準偏差σ)とを計算した。計算結果を表1に示す。表1
にてダイスエル比Dは先に示した数式に従い求め、高さ
方向は比D1 (%)、幅方向は比D2 (%)で示し、粘
度(P)はポアズ(gr/cm・s)をあらわす。
The values of viscosity, temperature and die swell ratio of the unvulcanized compounded rubbers of Examples 1 and 2 and the conventional example immediately after leaving the die 8 were obtained by intermittently measuring 10 times during rubber extrusion. The average value x m and “variation” (standard deviation σ) were calculated for each value. Table 1 shows the calculation results. Table 1
The die swell ratio D is calculated according to the above-mentioned mathematical formula, and the height direction is expressed as the ratio D 1 (%), and the width direction is expressed as the ratio D 2 (%), and the viscosity (P) is the poise (gr / cm · s). Represents

【0023】[0023]

【表1】 [Table 1]

【0024】表1の結果から、粘度のみを70Pにコン
トロールした実施例1でも従来例に比し粘度及び温度の
目標値に対する平均値のずれは小さく、しかも「ばらつ
き」が大幅に改善され、その結果ゴム押出部材のダイス
エル比の平均値は目標値に近い値が得られ、かつ「ばら
つき」も大幅に低減されることがわかり、実施例1に温
度コントロールを加えた実施例2では目標値と平均値と
が一致し、さらに「ばらつき」が著しく小さく抑えら
れ、ダイスエル特性が完璧に近いレベルに制御されてい
ることがわかる。
From the results shown in Table 1, even in Example 1 in which only the viscosity was controlled to 70P, the deviation of the average values of the viscosity and the temperature from the target values was smaller than in the conventional example, and the "variation" was greatly improved. As a result, it was found that the average value of the die swell ratio of the rubber extruded member was close to the target value, and the "variation" was also significantly reduced. In Example 2 in which temperature control was added to Example 1, It can be seen that the average values agree with each other, the "variation" is suppressed to a significantly small level, and the die swell characteristics are controlled to a level close to perfection.

【0025】[0025]

【発明の効果】この発明によれば、スクリュー先端部に
設けたセンサピンが検出する粘弾性体の粘度及び温度と
多数本のワークピンの挿入率との間にフィードバックシ
ステムを介在させることにより、従来のスクリュー押出
機による予備実験はもとより押出機稼働中での余分な調
整を施す必要はなく、しかも摩耗によるダイ交換にわず
らわされることなく、高い効率の下で、しかも高精度な
断面形状をもつ粘弾性体部材、なかでも未加硫配合ゴム
部材を押出可能なピン付きスクリュー押出機における粘
弾性体のダイスエル制御方法を提供することができる。
According to the present invention, a feedback system is provided between the viscosity and temperature of a viscoelastic body detected by a sensor pin provided at the tip of a screw and the insertion rate of a large number of work pins. Preliminary experiments with the screw extruder, as well as extra adjustments during the operation of the extruder are unnecessary, and there is no need for die replacement due to wear, high efficiency, and highly accurate cross-sectional shape. It is possible to provide a method for controlling a die swell of a viscoelastic body in a screw extruder with a pin capable of extruding a viscoelastic body member having the above, and particularly, an unvulcanized compounded rubber member.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明によるダイスエル制御方法に供する一
実施例のスクリュー押出機のスクリューとシリンダとの
透視要部側面図である。
FIG. 1 is a side view of an essential part of a screw and a cylinder of a screw extruder according to an embodiment used in a die swell control method according to the present invention.

【図2】図1に示すスクリュー押出機のII−II線に沿う
断面図である。
2 is a sectional view taken along line II-II of the screw extruder shown in FIG.

【図3】図1に示すスクリュー押出機に適用する一実施
例のセンサピンの一部断面図である。
FIG. 3 is a partial cross-sectional view of a sensor pin of one embodiment applied to the screw extruder shown in FIG.

【図4】スクリュー回転数をパラメータとするダイスエ
ルと粘度との関係を示す線図である。
FIG. 4 is a diagram showing a relationship between die swell and viscosity with a screw rotation speed as a parameter.

【図5】粘度をパラメータとする粘弾性体温度とダイス
エルとの関係を示す線図である。
FIG. 5 is a diagram showing the relationship between the temperature of a viscoelastic body and the die swell with viscosity as a parameter.

【図6】ワークピンの挿入率をパラメータとするワーク
ピンの列番と粘度との関係を示す線図である。
FIG. 6 is a diagram showing the relationship between work pin row numbers and viscosities with the work pin insertion rate as a parameter.

【図7】ワークピンの挿入率をパラメータとするワーク
ピンの列番と温度との関係を示す線図である。
FIG. 7 is a diagram showing the relationship between the work pin row number and the temperature, with the work pin insertion rate as a parameter.

【符号の説明】[Explanation of symbols]

1 スクリュー押出機 2 スクリュー 3 シリンダ 4(4−1〜4−8) ワークピン 5 センサピン 6 ホッパ 7 押出ヘッド 8 ダイ 9(9−1〜9−8) 油圧機構 10 ストレーンゲージ 11 温度検出器 1 Screw Extruder 2 Screw 3 Cylinder 4 (4-1 to 4-8) Work Pin 5 Sensor Pin 6 Hopper 7 Extrusion Head 8 Die 9 (9-1 to 9-8) Hydraulic Mechanism 10 Strain Gauge 11 Temperature Detector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 押出機のスクリュー軸線方向に沿って多
数本のスクリュー半径方向ピンを複数列配列して成るス
クリュー押出機により粘弾性体を押出すにあたり、 多数本のピンのうち押出機のスクリュー先端に最も近い
最先端ピンを粘弾性体特性検出用センサピンとし、その
残余ピンは粘弾性体の可塑化を助勢するワークピンと
し、 上記センサピンはスクリュー回転により搬送される粘弾
性体のセンサピンに作用する搬送抵抗より粘弾性体の粘
度を検出すると同時にセンサピンの先端に設けた温度セ
ンサにより粘弾性体の温度を検出し、 上記ワークピンは各ピンにそれぞれ連結した移動機構に
よりスクリュー半径方向に移動自在とし、 センサピンが検出した粘弾性体の粘度及び温度を各ワー
クピンの移動機構にフィードバックしてワークピンの粘
弾性体に対する挿入深さを制御することを特徴とする、
ピン付きスクリュー押出機における粘弾性体のダイスエ
ル制御方法。
1. When a viscoelastic body is extruded by a screw extruder formed by arranging a large number of screw radial direction pins in a plurality of rows along the screw axial direction of the extruder, the screw of the extruder is used among the large number of pins. The most advanced pin closest to the tip is the sensor pin for detecting the viscoelastic body characteristics, the remaining pin is the work pin that assists the plasticization of the viscoelastic body, and the sensor pin is the sensor pin of the viscoelastic body conveyed by the screw rotation. The temperature of the viscoelastic body is detected by the temperature sensor provided at the tip of the sensor pin at the same time as the viscosity of the viscoelastic body is detected from the acting transport resistance, and the work pins are moved in the radial direction of the screw by the moving mechanism connected to each pin. The viscoelastic body's viscosity and temperature detected by the sensor pin are fed back to the movement mechanism of each work pin. And controlling the insertion depth for the viscoelastic body,
Die swell control method for viscoelastic body in screw extruder with pin.
【請求項2】 センサピンが検出した粘弾性体の粘度及
び温度の信号値を入力し、入力した信号値と予めインプ
ットした粘度及び温度の設定値との差を演算し、演算し
た差に応じて各ワークピンのスクリュー半径方向移動を
制御する制御装置を介し、移動機構は差信号がゼロにな
るまで各ワークピンの挿入深さをスクリュー軸線方向配
列位置毎に制御する請求項1に記載した粘弾性体のダイ
スエル制御方法。
2. A signal value of viscosity and temperature of a viscoelastic body detected by a sensor pin is input, a difference between the input signal value and a previously input set value of viscosity and temperature is calculated, and the difference is calculated according to the calculated difference. The viscous component according to claim 1, wherein the movement mechanism controls the insertion depth of each work pin for each screw axial direction arrangement position until the difference signal becomes zero, via a control device that controls the screw radial direction movement of each work pin. Control method for die swell of elastic body.
JP8096863A 1996-04-18 1996-04-18 Method for controlling die swell of viscoelastic material in screw extruder with pin Pending JPH09277353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8096863A JPH09277353A (en) 1996-04-18 1996-04-18 Method for controlling die swell of viscoelastic material in screw extruder with pin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8096863A JPH09277353A (en) 1996-04-18 1996-04-18 Method for controlling die swell of viscoelastic material in screw extruder with pin

Publications (1)

Publication Number Publication Date
JPH09277353A true JPH09277353A (en) 1997-10-28

Family

ID=14176296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8096863A Pending JPH09277353A (en) 1996-04-18 1996-04-18 Method for controlling die swell of viscoelastic material in screw extruder with pin

Country Status (1)

Country Link
JP (1) JPH09277353A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149035A (en) * 2016-02-25 2017-08-31 横浜ゴム株式会社 Apparatus and method for extruding rubber
CN108724432A (en) * 2018-05-28 2018-11-02 庄凯 The device for automatically molding prepared for mortar
JP2019081287A (en) * 2017-10-30 2019-05-30 横浜ゴム株式会社 Rubber extrusion device and method
JP2021024123A (en) * 2019-07-31 2021-02-22 横浜ゴム株式会社 Apparatus for manufacturing rubber extrudate and method for predicting shape of rubber extrudate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149035A (en) * 2016-02-25 2017-08-31 横浜ゴム株式会社 Apparatus and method for extruding rubber
JP2019081287A (en) * 2017-10-30 2019-05-30 横浜ゴム株式会社 Rubber extrusion device and method
CN108724432A (en) * 2018-05-28 2018-11-02 庄凯 The device for automatically molding prepared for mortar
CN108724432B (en) * 2018-05-28 2023-06-20 庄凯 Automatic forming device for mortar preparation
JP2021024123A (en) * 2019-07-31 2021-02-22 横浜ゴム株式会社 Apparatus for manufacturing rubber extrudate and method for predicting shape of rubber extrudate

Similar Documents

Publication Publication Date Title
US8121721B2 (en) Extrusion of articles
JPS5952060B2 (en) adjustable die mechanism
JPS5890928A (en) Method and device for manufacturing tubular preformer
US20180050479A1 (en) Gear pump extruding machine
JPS60178019A (en) Method and device for extrusion-molding plastic pipe
US20040032040A1 (en) Plastics extruder dimension and viscosity control system and method
US4137028A (en) Apparatus for the extrusion of tubular bodies of synthetic-resin material
JPH09277353A (en) Method for controlling die swell of viscoelastic material in screw extruder with pin
WO2021075081A1 (en) Extruder and method for producing strands
JP2020044773A (en) Rubber extrusion method and apparatus
JPH0474173B2 (en)
US20030132552A1 (en) Process for controlling the manufacturing of dimensionally varying tubular members
WO1995006557A1 (en) Method of and apparatus for extrusion molding
US11396120B2 (en) Rubber extrusion device and method for manufacturing rubber extrudate
JP2006305881A (en) Parison wall-thickness control circuit and method for adjusting wall thickness of blow molding machine using the circuit
JP4708842B2 (en) Conveyor conveyor control device and conveyor method
JP2002160281A (en) Rubber molding method and device
JP2004160719A (en) Method and apparatus for controlling blow molding machine
JPS62202712A (en) Method of extruding parison and its device
JPS5888637A (en) Die rheometer
Kalyon et al. An adjustable gap in-line rheometer
JPH0538260A (en) Extrusion-molding apparatus for sheet material
JP7287120B2 (en) Apparatus and method for producing rubber extrudates
JP2017149035A (en) Apparatus and method for extruding rubber
JPH05104604A (en) Manufacture and device for weatherstrip