JPH09276835A - Purification of contaminated soil - Google Patents

Purification of contaminated soil

Info

Publication number
JPH09276835A
JPH09276835A JP8091489A JP9148996A JPH09276835A JP H09276835 A JPH09276835 A JP H09276835A JP 8091489 A JP8091489 A JP 8091489A JP 9148996 A JP9148996 A JP 9148996A JP H09276835 A JPH09276835 A JP H09276835A
Authority
JP
Japan
Prior art keywords
contaminated
air
region
area
microbial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8091489A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Azumaya
良行 東家
Masahiro Kawaguchi
正浩 川口
Etsuko Sugawa
悦子 須川
Akira Kuriyama
朗 栗山
Akira Watanabe
彰 渡辺
Masatoshi Iio
正俊 飯尾
Yuri Chiaki
由里 千秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Raito Kogyo Co Ltd
Original Assignee
Canon Inc
Raito Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Raito Kogyo Co Ltd filed Critical Canon Inc
Priority to JP8091489A priority Critical patent/JPH09276835A/en
Publication of JPH09276835A publication Critical patent/JPH09276835A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate a problem of secondary pollution, in purifying contaminated soil at a position lower than a ground water level, by arranging water pumping-up equipments sucking underground water up to a position lower than a contaminated stratum in a state surrounding a contaminated region and passing contaminated air through a bacteria decomposing region to purify the same to discharge purified air from the ground. SOLUTION: A plurality of water pumping-up equipments 1 are connected to a pump 3 in a state surrounding a contaminated region (c) so that the respective leading points of them are set to a position lower than the contaminated region (c). Sand columns 4 high in voids are formed around the water pumping-up equipments and air injection pipes covering the surfaces of the sand columns 4 are connected to the exhaust port of a pump 7 to supply air to the contaminated region (c) from the pump 7 through the sand columns 4. Further, an injection pipe 8 is connected to a decomposing bacteria soln. tank 16 and a bacteria activating soln. tank 17 to inject bacteria and a bacteria activating substance into the contaminated region (c) from an injection port. The part of the injection pipe 8 above the injection port is also covered with a sand column 9 and the suction pipe 10 covering the surface of the sand column 9 is connected to the suction port of the pump 7 to suck air in the ground.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、地下水位よりも深
い位置に存在する汚染土壌の浄化方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a method for cleaning contaminated soil existing at a position deeper than the groundwater level.

【0002】[0002]

【従来の技術】近年の急速な科学技術の進歩は大量の化
学物質や化成品を生みだしている。これらの多くは環境
中に徐々に蓄積しながら自然を汚染している。なかで
も、人類の生活の場である陸圏は人為的汚染の影響を最
も受けやすく、環境水が循環していることを考えると、
陸圏の環境汚染は地球レベルへと拡大していく深刻な問
題である。これまでによく知られた土壌(陸圏)の汚染
物質としては、ガソリンなどの炭化水素、PCBなどの有
機塩素化合物、ダイオキシンなどの催奇性を有する農
薬、あるいはトルエン、キシレン、ベンゼンなどの揮発
性有機溶剤などが挙げられる。なかでもトリクロロエチ
レン(TCE)やテトラクロロエチレン(PCE)などの有機
塩素化合物は精密部品の洗浄やドライクリーニングなど
においてかつて大量に使用され、その漏洩による土壌や
地下水の大規模な汚染の実体が明らかになりつつある。
さらに、これら有機塩素化合物の催奇性や発がん性が指
摘され、生物界へも極めて重大な影響を及ぼすことがわ
かったため、汚染源の遮断はもちろん、すでに汚染が拡
大した土壌や地下水の浄化は早急に解決すべき課題とな
っている。
2. Description of the Related Art The rapid progress of science and technology in recent years has produced a large amount of chemical substances and chemical products. Many of these pollute nature as they gradually accumulate in the environment. Above all, considering that the land area, where human beings live, is most likely to be affected by human pollution and environmental water circulates,
Environmental pollution in the land area is a serious problem that spreads to the global level. Well-known soil (terrestrial) pollutants include hydrocarbons such as gasoline, organochlorine compounds such as PCBs, teratogenic pesticides such as dioxins, and volatile substances such as toluene, xylene, and benzene. Examples include organic solvents. In particular, organochlorine compounds such as trichlorethylene (TCE) and tetrachlorethylene (PCE) were once used in large amounts in the cleaning of precision parts and dry cleaning, and the substance of large-scale pollution of soil and groundwater due to their leakage is becoming clear. is there.
Furthermore, since teratogenicity and carcinogenicity of these organochlorine compounds have been pointed out and it has been found that they have a very serious impact on the living world, it is urgently necessary not only to cut off pollution sources but also to clean soils and groundwaters where pollution has already spread. It has become a problem to be solved.

【0003】有機塩素化合物で汚染された土壌の浄化方
法としては、汚染土壌を掘り起こして加熱処理する方
法、汚染土壌から真空抽出する方法、あるいは汚染物質
を分解する能力を有する微生物を注入する方法などが挙
げられる。
As a method for cleaning soil contaminated with organic chlorine compounds, a method of excavating the contaminated soil and heat treatment, a method of vacuum extraction from the contaminated soil, or a method of injecting a microorganism capable of decomposing the pollutant, etc. Is mentioned.

【0004】加熱処理法ではほとんど完全に土壌から汚
染物質を取り除くことが可能であるが、土壌掘削が必要
であるから建造物下の浄化処理は困難であり、また掘削
・加熱処理に要する費用が膨大となるため広範囲な汚染
土壌の浄化にも適用困難である。さらに、土壌中から加
熱蒸発させた有機塩素化合物は大気汚染の原因になるの
で、活性炭等に吸着して回収する必要があるが、この使
用済みの活性炭をさらに処理する必要が生じる。
Although the heat treatment method can almost completely remove pollutants from soil, soil excavation is necessary, so that purification treatment under a building is difficult, and the cost required for excavation and heat treatment is high. Since it is huge, it is difficult to apply it to the purification of a wide range of contaminated soil. Further, since the organic chlorine compound that is heated and evaporated from the soil causes air pollution, it is necessary to adsorb it on activated carbon or the like to recover it, but it is necessary to further treat this used activated carbon.

【0005】これに対して、真空抽出法や微生物利用法
は汚染土壌を掘削する必要がないため安価で簡便である
上、建造物等で地表を使用中の土壌でも地表を使用した
まま修復作業を行うことができる利点がある。しかし、
真空抽出法は数ppm以下の低濃度の有機塩素化合物の除
去効率が低い上に、加熱処理と同様に回収した有機塩素
化合物を改めて処理をする必要がある。そこで、公開公
報平7−185252では、吸引した被処理ガスを活性
炭で吸着し、その活性炭を再処理する為に流動床を用い
ることによりコンパクトな地上設備を提案しているが、
処理用地上設備が必要なことには変わりない。一方、微
生物浄化方法は、土壌に元来生息する土壌の分解微生物
を利用する方法と土壌に元来生息しない外来の分解微生
物を利用する方法に分けられる。前者の場合は、分解活
性を高めるための栄養素、インデューサ、酸素、増殖刺
激剤などの菌活性化物質を土壌に注入して浄化を行う。
また後者の場合は、外来微生物を土壌に注入するととも
に、分解活性を高めるための菌活性化物質の注入を行
う。例えば、有機塩素化合物分解能を有する微生物で単
離された報告は、TCE分解菌としては、Welchia alkenop
hila sero 5 (USP 4877736,ATCC 53570)、 Welchia alk
enophila sero 33 (USP 4877736, ATCC 53571)、Methyl
ocystis sp. strain M (Agric. Biol. Chem., 53, 2903
(1989)、Biosci.Biotech. Biochem., 56, 486 (199
2)、同56, 736 (1992))、Methylosinus trichosprium O
B3b (Am. Chem. Soc. Natl. Meet. Dev. Environ. Micr
obiol.,29,365 (1989)、Appl. Environ. Microbiol., 5
5, 3155 (1989)、Appl. Biochem.Biotechnol., 28, 877
(1991)、特開平02-92274号公報、特開平03-292970号公
報)、Methylomonas sp. MM2(Appl. Environ. Microbio
l., 57, 236 (1991))、Alcaligenes denitrificans ss
p. xylosoxidans JE75(Arch. microbiol., 154,410 (1
990))、Alcaligenes eutrophus JMP134(Appl. Enviro
n. Microbiol.,56, 1179 (1990))Mycobacterium vacca
e JOB5(J. Gen. Microbiol., 82,163 (1974)、Appl. E
nviron. Microbiol., 54, 2960 (1989)、ATCC 2967
8)、Pseudomonas putida BH (下水道協会誌, 24, 27
(1987))、Acinetobactor sp.strain G4 (Appl. Enviro
n. Microbiol., 52, 383 (1986)、同53, 949 (1987)、
同54, 951 (1989)、同56, 279 (1990)、同57, 193 (199
1)、USP 4925802,ATCC 53617、この菌は初めPseudomona
s cepaciaと分類されていたが、Acinetobactor sp.に変
更された)、Pseudomonas mendocina KR-1 (Bio/Techno
l., 7, 282 (1989))、Pseudomonas putida F1 (Appl. E
nviron.Microbiol.,54, 1703 (1988)、同54, 2578 (198
8))、Pseudomonas fluorescens PFL12(Appl. Environ.
Microbiol.,54, 2578(1988))、Pseudomonas putida K
WI-9(特開平06-70753号公報)、Pseudomonascepacia K
K01(特開平06-227769号公報)、Nitrosomonas europae
a(Appl.Environ. Microbiol.,56, 1169 (1990))、Lac
tobacillus vaginalis sp.nov(Int.J.Syst. Bacterio
l., 39, 368 (1989)、ATCC 49540)等が知られている。
これらの分解菌、すべて、TCEを分解するために、その
分解誘導物質として芳香族化合物やメタン等の化学物質
を必要とする。このような外来微生物と、分解活性を高
めるための菌活性化物質の注入する場合、できる限り少
量の微生物あるいは化学物質などを目的としている修復
領域に広く注入し、これにより汚染物質を分解して土壌
浄化を行うことが経済的に望まれる。このため、微生物
浄化処理は修復領域の土壌空隙を満たすほどの薬液量を
土壌に注入して行っており、広範な修復領域に対しては
膨大な薬液量が必要となる、という欠点がある。また、
この注入した微生物や菌活性化物質を一定地域に封じ込
めることや、処理作業終了後に土中で増殖した分解菌や
土壌中に残留した菌活性物質の回収が困難であるため、
これらによる土壌の二次汚染の問題がある。
On the other hand, the vacuum extraction method and the microbial utilization method are inexpensive and simple because there is no need to excavate contaminated soil, and repair work is carried out even on soil where the ground surface is being used in a building or the like while using the ground surface. There is an advantage that can be done. But,
The vacuum extraction method has a low efficiency of removing low-concentration organic chlorine compounds of several ppm or less, and it is necessary to treat the recovered organic chlorine compounds again as in the heat treatment. Therefore, in Japanese Laid-Open Patent Publication No. 7-185252, a compact ground facility is proposed by adsorbing the sucked target gas with activated carbon and using a fluidized bed to reprocess the activated carbon.
It still requires the above-ground equipment for processing. On the other hand, the method for microbial purification is divided into a method of using the degrading microorganisms of the soil originally inhabiting the soil and a method of using an exogenous degrading microorganism not originally inhabiting the soil. In the former case, bacteria, such as nutrients, inducers, oxygen, and growth stimulants for enhancing decomposition activity are injected into the soil for purification.
In the latter case, the foreign microorganisms are injected into the soil, and the bacteria activator for increasing the decomposition activity is injected. For example, a report isolated from a microorganism capable of degrading an organochlorine compound is, as a TCE-degrading bacterium, Welchia alkenop.
hila sero 5 (USP 4877736, ATCC 53570), Welchia alk
enophila sero 33 (USP 4877736, ATCC 53571), Methyl
ocystis sp. strain M (Agric. Biol. Chem., 53, 2903
(1989), Biosci. Biotech. Biochem., 56, 486 (199
2), ibid., 56, 736 (1992)), Methylosinus trichosprium O
B3b (Am. Chem. Soc. Natl. Meet. Dev. Environ. Micr
obiol., 29,365 (1989), Appl. Environ. Microbiol., 5
5, 3155 (1989), Appl. Biochem. Biotechnol., 28, 877.
(1991), JP-A-02-92274, JP-A-03-292970), Methylomonas sp.MM2 (Appl. Environ. Microbio
l., 57, 236 (1991)), Alcaligenes denitrificans ss.
p. xylosoxidans JE75 (Arch. microbiol., 154,410 (1
990)), Alcaligenes eutrophus JMP134 (Appl. Enviro
n. Microbiol., 56, 1179 (1990)) Mycobacterium vacca
e JOB5 (J. Gen. Microbiol., 82,163 (1974), Appl. E
nviron. Microbiol., 54, 2960 (1989), ATCC 2967
8), Pseudomonas putida BH (Sewer Association Journal, 24, 27
(1987)), Acinetobactor sp.strain G4 (Appl. Enviro
n. Microbiol., 52, 383 (1986), same 53, 949 (1987),
54, 951 (1989), 56, 279 (1990), 57, 193 (199)
1), USP 4925802, ATCC 53617, this fungus was initially Pseudomona
s cepacia, but changed to Acinetobactor sp.), Pseudomonas mendocina KR-1 (Bio / Techno
l., 7, 282 (1989)), Pseudomonas putida F1 (Appl. E
nviron.Microbiol., 54, 1703 (1988), 54, 2578 (198)
8)), Pseudomonas fluorescens PFL12 (Appl. Environ.
Microbiol., 54, 2578 (1988)), Pseudomonas putida K
WI-9 (Japanese Patent Laid-Open No. 06-70753), Pseudomonas cepacia K
K01 (Japanese Patent Laid-Open No. 06-227769), Nitrosomonas europae
a (Appl.Environ.Microbiol., 56, 1169 (1990)), Lac
tobacillus vaginalis sp.nov (Int.J.Syst.Bacterio
l., 39, 368 (1989), ATCC 49540), etc. are known.
All of these degrading bacteria require chemical substances such as aromatic compounds and methane as degrading inducers in order to degrade TCE. When injecting such foreign microorganisms and fungal activators to enhance their degrading activity, inject as much microorganisms or chemicals as possible into the intended repair area to decompose pollutants. It is economically desirable to perform soil purification. For this reason, the microbial purification treatment is carried out by injecting into the soil a sufficient amount of the chemical liquid to fill the soil voids in the repair region, and there is a disadvantage that a huge amount of the chemical liquid is required for a wide repair region. Also,
Because it is difficult to contain the injected microorganisms and fungal activators in a certain area, and it is difficult to recover the degrading bacteria that proliferated in the soil after the treatment work and the fungal active substances that remained in the soil,
There is a problem of secondary pollution of soil due to these.

【0006】このように、真空抽出法と微生物浄化法に
は加熱処理法を上回る利点はあるのだが、それぞれ欠点
も持っている。
Thus, although the vacuum extraction method and the microbial purification method have advantages over the heat treatment method, they also have drawbacks.

【0007】そこで、公開公報平6−254537およ
び平7−112176では、真空抽出法と微生物浄化法
を組み合わせ、汚染土壌中の有機塩素化合物で汚染され
た空気や地下水を真空吸引して地上のバイオリアクタに
導き、その中で分解処理する方法が提案されている。こ
れは、有機塩素化合物を微生物分解することによって真
空抽出法の欠点である回収した有機塩素化合物の再処理
を不要にすることと、微生物分解リアクタを設置するこ
とによって微生物浄化方法の欠点である薬液注入の問題
や二次汚染の問題を解決することを目的としている。
Therefore, in Japanese Laid-Open Patent Publications Nos. 6-254537 and 7-112176, a vacuum extraction method and a microbial purification method are combined, and air or groundwater contaminated with organic chlorine compounds in contaminated soil is vacuum-sucked to remove the above-mentioned biotechnology. A method of leading to a reactor and performing decomposition treatment therein has been proposed. This is because the microbial decomposition of the organic chlorine compound eliminates the need for reprocessing of the recovered organic chlorine compound, which is a drawback of the vacuum extraction method, and the installation of a microbial decomposition reactor is a drawback of the microbial purification method. It aims to solve injection problems and cross-contamination problems.

【0008】[0008]

【発明が解決しようとする課題】上記の従来の汚染土壌
の浄化方法は、そのほとんどが地下水位よりも上の不飽
和帯水層を対象にしたものであり、地下水中もしくは地
下水位より下の汚染土壌を処理する方法ではない。トリ
クロロエチレンに代表される有機塩素系化合物は、一般
に比重が重く、土壌汚染の場合、不透水層まで地中を落
下する。このため、地下水位の上面よりも低い位置に高
濃度汚染源が存在する可能性が高い。このような状況で
は、真空抽出の効率、微生物浄化に必要な酸素の供給等
ままならない。
Most of the above-mentioned conventional methods for purifying contaminated soil are intended for unsaturated aquifers above the groundwater level, and are used for groundwater or below the groundwater level. It is not a method of treating contaminated soil. Organochlorine compounds represented by trichlorethylene generally have a high specific gravity, and in the case of soil pollution, they fall down to the impermeable layer in the ground. For this reason, there is a high possibility that a high-concentration pollution source exists at a position lower than the upper surface of the groundwater level. In such a situation, the efficiency of vacuum extraction and the supply of oxygen necessary for microbial purification do not remain.

【0009】[0009]

【課題を解決するための手段】本発明は、上記問題点を
解決するためになされたもので、地下水位よりも低い位
置の揮発性有機塩素化合物で汚染された土壌を浄化する
方法であって、汚染領域を包囲する状態に、汚染層より
低い位置まで、地下水を吸引するための揚水設備を複数
設置し、この揚水設備周囲に礫などで高間隙率の層を設
け、この揚水設備群によって地下水を吸引することによ
って地下水位を浄化対象とする汚染地層よりも低い位置
まで低下させ、汚染地層を強制的に通気層として形成し
た後、この高間隙率の層を通して空気を地中に供給す
る。そして揚水設備に包囲された中央部に微生物活性化
物質注入用パイプと空気吸引用パイプをほぼ同位置に設
置し、微生物活性化物質注入用パイプにより微生物活性
化物質を注入し分解領域を形成する。空気吸引パイプに
より分解領域に汚染空気を通過させ、浄化させた後、空
気を吸引し地中より排出することによって行うことを特
徴とするものである。
The present invention has been made to solve the above problems, and is a method for purifying soil contaminated with a volatile organic chlorine compound at a position lower than the groundwater level. In the state surrounding the contaminated area, a plurality of pumping equipment for sucking groundwater is installed up to a position lower than the contaminated layer, and a layer with a high porosity such as gravel is provided around this pumping equipment. By sucking groundwater, the groundwater level is lowered to a position lower than the contaminated stratum to be purified, the contaminated stratum is forcibly formed as a ventilation layer, and then air is supplied to the ground through this high porosity layer. . Then, a pipe for injecting microbial activating substance and a pipe for inhaling air are installed at almost the same position in the central part surrounded by the pumping equipment, and the microbial activating substance is injected by the pipe for injecting microbial activating substance to form a decomposition region. . The method is characterized in that polluted air is passed through the decomposition region by an air suction pipe to be purified, and then the air is sucked and discharged from the ground.

【0010】さらに、地下水位よりも低い位置の揮発性
有機塩素化合物で汚染された土壌を浄化する方法であっ
て、汚染領域を包囲する状態で、汚染地層よりも低い位
置まで、地下水を吸引するための揚水設備を設置し、こ
の揚水施設周囲に高間隙率の層を設け、この揚水設備群
よって地下水を吸引することによって地下水位を浄化対
象とする汚染地層よりも低い位置まで低下させ、汚染地
層を強制的に通気層として形成した後、この高間隙率の
層を通して空気を地中に供給する。また揚水設備に包囲
された中央部に汚染物質分解微生物及び微生物活性化物
質注入用パイプと空気吸引用パイプをほぼ同位置に設置
し、汚染物質分解微生物及び微生物活性化物質注入用パ
イプにより汚染物質分解微生物及び微生物活性化物質を
注入し分解領域を形成する。空気吸引用パイプにより分
解領域に汚染空気を通過させ、浄化させた後、空気を吸
引し地中より排出することによって行うことを特徴とす
る汚染土壌の浄化方法である。
Further, it is a method of purifying soil contaminated with a volatile organic chlorine compound at a position lower than the groundwater level, in which groundwater is sucked to a position lower than the contaminated stratum in a state of surrounding the contaminated area. A pumping facility is installed for this purpose, a layer with a high porosity is provided around this pumping facility, and groundwater is sucked by this pumping facility group to lower the groundwater level to a position lower than the contaminated stratum to be purified, thereby causing pollution. After the formation is forcibly formed as a ventilation layer, air is fed into the ground through this high porosity layer. In addition, a pipe for injecting pollutant degrading microorganisms and microbial activators and an air suction pipe were installed at approximately the same position in the center surrounded by the pumping equipment, and contaminants were decomposed by the pipes for injecting pollutant degrading microorganisms and microbial activators. Injecting degrading microorganisms and microbial activators to form degrading areas. This is a method for purifying contaminated soil, which is performed by passing contaminated air through a decomposition region through an air suction pipe to purify it and then sucking the air and discharging it from the ground.

【0011】微生物の分解活性を高める物質としては栄
養素、インデューサ、酸素、増殖刺激剤などが挙げられ
る。
Examples of substances that enhance the decomposition activity of microorganisms include nutrients, inducers, oxygen, and growth stimulants.

【0012】また、土壌内部の温度は気温に比べて変化
が少なく、特別な加温、冷却、保温設備を用いることな
く一年を通して一定の温度の微生物環境を容易に提供で
きる。
Further, the temperature inside the soil does not change much as compared with the temperature, and it is possible to easily provide a microbial environment having a constant temperature throughout the year without using special heating, cooling and heat-retaining equipment.

【0013】本発明における微生物とは、細菌、微細藻
類、かび、放線菌、原生動物を含み、特に産業上有益な
ものは、細菌である。
The microorganisms in the present invention include bacteria, microalgae, molds, actinomycetes, and protozoa, and the bacteria particularly useful in industry are bacteria.

【0014】そして特に、JM1株(FERM BP−
5352)は、その強い有機化合物分解活性およびイン
ジューサフリーの性質力から本発明の実施に好適に用い
られる。なおこの菌については、寄託時にはコリネバク
テリウムに属するものと認識していたが、その後の研究
でこの点若干の疑問を生じたので現時点では単にJM1
株と呼ぶ。
In particular, the JM1 strain (FERM BP-
5352) is preferably used in the practice of the present invention because of its strong activity of decomposing organic compounds and the nature of inducer-free property. It was noted that this bacterium was recognized as belonging to Corynebacterium at the time of depositing, but since some questions were raised in this respect in the subsequent research, at present it is simply JM1.
Call it a stock.

【0015】JM1菌学的性質 グラム染色性及び形態:グラム陰性桿菌 各培地における生育 BHIA:生育良好 MacConkey:生育可能 コロニーの色:クリーム色 至適温度:25℃>30℃>35℃ 運動性:陰性(半流動培地) TSI(slant/butt):アルカリ/アルカ
リ、H2S(−) オキシダーゼ:陽性(弱) カタラーゼ:陽性 糖の発酵 グルコース:陰性 シュクロース:陰性 ラフィノース:陰性 ガラクトース:陰性 マルトース:陰性 ウレアーゼ:陽性 エスクリン加水分解(β−グルコシダーゼ):陽性 硝酸還元:陰性 インドール産性:陰性 グルコース酸性化:陰性 アルギニンジヒドロラーゼ:陰性 ゼラチン加水分解(プロテアーゼ):陰性 β−ガラクトシダーゼ:陰性 各化合物の同化 グルコース:陰性 L−アラビノース:陰性 D−マンノース:陰性 D−マンニトール:陰性 N−アセチル−D−グルコサミン:陰性 マルトース:陰性 グルコン酸カリウム:陰性 n−カプリン酸:陽性 アジピン酸:陰性 dl−リンゴ酸:陽性 クエン酸ナトリウム:陽性 酢酸フェニル:陰性 以下に、実施例をもって本発明を説明するが、これらは
本発明の範囲をなんら限定するものではない。
JM1 mycological properties Gram stainability and morphology: Gram-negative bacilli Growth on each medium BHIA: Good growth MacConkey: Viable Colony color: Cream Optimum temperature: 25 ° C> 30 ° C> 35 ° C Motility: Negative (semi-fluid medium) TSI (slant / butt): alkali / alkaline, H 2 S (−) oxidase: positive (weak) catalase: positive sugar fermentation glucose: negative sucrose: negative raffinose: negative galactose: negative maltose: Negative urease: Positive Esculin hydrolysis (β-glucosidase): Positive Nitrate reduction: Negative Indole productivity: Negative Glucose acidification: Negative Arginine dihydrolase: Negative Gelatin hydrolysis (protease): Negative β-galactosidase: Negative Assimilation of each compound Glucose: negative L-arabinose: negative D-mannose: negative D-mannitol: negative N-acetyl-D-glucosamine: negative maltose: negative Potassium gluconate: negative n-capric acid: positive adipic acid: negative dl-malic acid: positive citric acid Sodium: Positive Phenyl acetate: Negative Hereinafter, the present invention will be described with reference to Examples, but these do not limit the scope of the present invention in any way.

【0016】[0016]

【実施例】第一図は本発明の実施に用いられる設備の構
成の一例を示す概念図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a conceptual diagram showing an example of the configuration of equipment used for implementing the present invention.

【0017】1は揚水設備で、吸水用のパイプと先端の
ポイントからなり、先端のポイントが汚染領域cよりも
低い位置になるよう設置されている。これら揚水設備1
は汚染領域cを包囲する状態で配置されており、パイプ
2を介しポンプ3に接続している。揚水設備1の先端の
ポイントは小孔を開口したノズルであり、パイプ2を介
しポンプ3により負圧を与えることにより地下水を地上
に吸引する。
Reference numeral 1 is a pumping equipment, which comprises a pipe for absorbing water and a point at the tip, and is installed so that the point at the tip is lower than the contaminated area c. These pumping equipment 1
Is arranged so as to surround the contaminated area c, and is connected to the pump 3 via the pipe 2. The point at the tip of the pumping equipment 1 is a nozzle with small holes opened, and a negative pressure is applied by a pump 3 via a pipe 2 to suck groundwater to the ground.

【0018】礫(平均粒径10mm以上が望ましい)など
で構成された高間隙率の砂柱4は揚水設備1の周りを覆
っている。また、砂柱4は表面が注気パイプ5で覆われ
ており地盤と絶縁されているが下部は汚染領域cに露出
している。これら注気パイプ5はパイプ6を介しポンプ
7の排気口に接続しておりポンプ7からの空気を砂柱4
を介して汚染領域cに供給できるようになっている。
A sand column 4 having a high porosity composed of gravel (preferably having an average particle size of 10 mm or more) covers the pumping equipment 1. In addition, the surface of the sand pillar 4 is covered with an air injection pipe 5 and is insulated from the ground, but the lower part is exposed in the contaminated area c. These insufflation pipes 5 are connected to the exhaust port of the pump 7 via the pipes 6, and the air from the pump 7 is fed into the sand column 4
It can be supplied to the contaminated region c via.

【0019】8は注入パイプで注入口から汚染物質分解
微生物(例えば汚染物質がTCEなら、JM1株等)及
び微生物活性化物質を汚染領域cに注入するためのもの
でありパイプ13、ポンプ14、バルブ15を介して汚
染物質分解微生物を含む分解菌液タンク16、微生物活
性化物質を含む菌活性液タンク17に接続している。注
入パイプ8の注入口より上部は礫などで構成された高間
隙率の砂柱9で周囲を覆われている。砂柱9は表面が吸
気パイプ10で覆われており下部は地盤内に露出してい
る。吸気パイプ10はバルブ11、パイプ12を介して
ポンプ7の吸気口に接続しており、ポンプ7で負圧を与
えることにより地中の空気を吸引する。
Reference numeral 8 is an injection pipe for injecting a pollutant-degrading microorganism (for example, JM1 strain if the pollutant is TCE) and a microbial-activating substance from the injection port into the contaminated region c by a pipe 13, a pump 14, The valve 15 is connected to a tank 16 for decomposing bacteria containing a microorganism decomposing pollutants and a tank 17 for a bacteria active solution containing a microorganism activating substance. The area above the injection port of the injection pipe 8 is covered with a sand column 9 made of gravel or the like and having a high porosity. The surface of the sand pillar 9 is covered with an intake pipe 10, and the lower portion is exposed in the ground. The intake pipe 10 is connected to the intake port of the pump 7 via a valve 11 and a pipe 12, and a negative pressure is applied by the pump 7 to suck the air in the ground.

【0020】次に浄化方法について説明する。Next, the purification method will be described.

【0021】汚染領域cを包囲する揚水設備1群にポン
プ3で負圧を供給し揚水設備1の先端のポイントより地
下水を地上に吸引することで、自然状態の地下水位W1
を浄化対象となる汚染領域cよりも低い位置W2まで低
下させる。地下水位を低下させることで、それまで地下
水内に存在していた汚染領域cが、通気可能な状態とな
る。
A negative pressure is supplied by the pump 3 to the group of pumping equipment 1 surrounding the contaminated area c, and groundwater is sucked to the ground from a point at the tip of the pumping equipment 1, whereby the groundwater level W1 in a natural state is obtained.
Is lowered to a position W2 lower than the contaminated area c to be cleaned. By lowering the groundwater level, the contaminated region c, which has been present in the groundwater until then, becomes ready for ventilation.

【0022】通気可能な状態の汚染領域cに、バルブ1
1を締めポンプ14を駆動することで、注入パイプ8に
より汚染物質分解微生物及び微生物活性化物質を注入し
分解領域bを形成する。汚染物質分解微生物及び微生物
活性化物質の注入は、同時に行ってもいいし、またバル
ブ15で流路を切り替えることにより順次行っても良
い。
In the contaminated area c which can be vented, the valve 1
By closing 1 and driving the pump 14, the pollutant-degrading microorganisms and the microorganism-activating substance are injected by the injection pipe 8 to form the decomposition region b. The pollutant-degrading microorganisms and the microorganism-activating substance may be injected at the same time or sequentially by switching the flow path with the valve 15.

【0023】注入が終わればバルブ11を開け、ポンプ
7で負圧を供給し、地盤内の空気を砂柱9を経由し吸気
パイプ10で吸引する。これにより分解領域bの気体が
吸引されるため、汚染領域c内の汚染物質を含んだ空気
が分解領域bへ流れ、汚染領域c周辺のきれいな空気が
汚染領域cへ流れる。分解領域bでは、空気中の汚染物
質を微生物が好気性分解を行うため流入する空気の浄化
が行われる。汚染領域cでは、流入したきれいな空気に
汚染物質が拡散し、結果として汚染領域cの汚染濃度が
減少し浄化が進行する。吸気パイプ10で吸引されたき
れいな空気は、パイプ12、ポンプ7、パイプ6、注気
パイプ5群、砂柱4群を経て地中に戻される。
When the injection is completed, the valve 11 is opened, a negative pressure is supplied by the pump 7, and the air in the ground is sucked by the intake pipe 10 via the sand pillar 9. As a result, the gas in the decomposition area b is sucked, so that the air containing the contaminants in the contamination area c flows to the decomposition area b, and the clean air around the contamination area c flows to the contamination area c. In the decomposition region b, inflowing air is purified because microorganisms aerobically decompose pollutants in the air. In the contaminated region c, contaminants diffuse into the inflowing clean air, and as a result, the contaminated concentration in the contaminated region c decreases and purification proceeds. The clean air sucked by the intake pipe 10 is returned to the ground through the pipe 12, the pump 7, the pipe 6, the gas injection pipe 5 group, and the sand column 4 group.

【0024】このように、(1)汚染領域周辺のきれい
な空気が汚染領域cに流れ込み汚染物質を吸い込むこと
で汚染領域cの濃度を下げ、(2)汚染物質を含んだ空
気が分解領域bに流れ込むことで汚染物質を微生物によ
り分解させ、(3)再びきれいになった空気を汚染領域
cの周辺に戻す、ことにより地中の空気を循環させ、汚
染土壌の浄化が進行する。
As described above, (1) the clean air around the polluted area flows into the polluted area c and sucks the pollutant to lower the concentration of the polluted area c, and (2) the air containing the pollutant enters the decomposed area b. The pollutants are decomposed by microorganisms by flowing in, and (3) the clean air is returned to the vicinity of the contaminated region c, whereby the underground air is circulated and the contaminated soil is purified.

【0025】本実施例では、汚染物質分解微生物及び微
生物活性化物質を注入し分解領域bを形成したが、微生
物活性化物質のみを注入し地中の土着菌を活性すること
で分解領域bを形成しても良い。
In the present embodiment, the decomposing region b was formed by injecting the pollutant degrading microorganisms and the microbial activator, but the degrading region b was formed by injecting only the microbial activator and activating the indigenous bacteria in the ground. You may form.

【0026】また第二図に示すように、パイプ6にポン
プ18を接続しポンプ18の吸引口は大気に開放し、ま
たポンプ7の排気口を大気に開放することで、大気中の
きれいな空気を地中に送り込み、地中から吸引した空気
は大気中に放出するようにしても良い。この時、吸気パ
イプ10内に設けた汚染物質濃度センサー19で汚染濃
度を常にモニタリングし、コントロール装置20でポン
プ7及び18を制御することで大気中への汚染物質の放
出を防ぐ。
Further, as shown in FIG. 2, a pump 18 is connected to the pipe 6, the suction port of the pump 18 is opened to the atmosphere, and the exhaust port of the pump 7 is opened to the atmosphere, so that clean air in the atmosphere is obtained. The air may be sent into the ground and the air sucked from the ground may be released into the atmosphere. At this time, the pollutant concentration sensor 19 provided in the intake pipe 10 constantly monitors the pollutant concentration, and the control device 20 controls the pumps 7 and 18 to prevent the pollutant from being released into the atmosphere.

【0027】さらに配管とバルブを追加し、バルブの切
り替えでポンプ18の吸引口とポンプ7の排気口を接続
し循環系にも切り替えられるようにしても良い。
It is also possible to add a pipe and a valve, and connect the suction port of the pump 18 and the exhaust port of the pump 7 by switching the valve so that the circulation system can be switched.

【0028】[0028]

【発明の効果】以上、説明してきたように、本発明によ
り、広範囲の地下水位より下の有機分汚染土壌の微生物
浄化を低コストで、非常に効率よく、必要により閉鎖系
として安全に行うことが出来る。
As described above, according to the present invention, microbial purification of organic matter-contaminated soil below a wide range of groundwater level can be performed at low cost, very efficiently, and safely as a closed system if necessary. Can be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する設備の構成の一例を示す概念
図。
FIG. 1 is a conceptual diagram showing an example of the configuration of equipment for implementing the present invention.

【図2】本発明の実施の一例を示す図。FIG. 2 is a diagram showing an example of implementation of the present invention.

【符号の説明】[Explanation of symbols]

1 場水設備 2 パイプ 3 ポンプ 4 砂柱 5 注気パイプ 6 パイプ 7 ポンプ 8 注入パイプ 9 砂柱 10 吸気パイプ 11 バルブ 12 パイプ 13 パイプ 14 ポンプ 15 バルブ 16 分解菌液タンク 17 菌活性液タンク 18 ポンプ 19 センサー 20 コントロール装置 b 分解領域 c 汚染領域 W1 自然状態の地下水位 W2 低下した地下水位 1 Water Facilities 2 Pipes 3 Pumps 4 Sand Pillars 5 Gas Pipes 6 Pipes 7 Pumps 8 Injection Pipes 9 Sand Pillars 10 Intake Pipes 11 Valves 12 Pipes 13 Pipes 14 Pumps 15 Valves 16 Decomposing Bacteria Liquid Tanks 17 Bacterial Active Liquid Tanks 18 Pumps 19 Sensor 20 Control Device b Decomposition Area c Contamination Area W1 Natural Groundwater Level W2 Reduced Groundwater Level

───────────────────────────────────────────────────── フロントページの続き (72)発明者 須川 悦子 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 栗山 朗 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 渡辺 彰 東京都千代田区九段北4丁目2番35号 ラ イト工業株式会社内 (72)発明者 飯尾 正俊 東京都千代田区九段北4丁目2番35号 ラ イト工業株式会社内 (72)発明者 千秋 由里 東京都千代田区九段北4丁目2番35号 ラ イト工業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Etsuko Sugawa 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Akira Kuriyama 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Co., Ltd. (72) Inventor Akira Watanabe 4-23, Kudankita 4-chome, Chiyoda-ku, Tokyo Lait Kogyo Co., Ltd. (72) Inventor Masatoshi Iio 4-35, Kudankita 4-chome, Chiyoda-ku, Tokyo Lait Kogyo Co., Ltd. (72) Inventor Yuri Chiaki 4-23, Kudankita 4-chome, Chiyoda-ku, Tokyo Light Industrial Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 地下水位よりも低い位置の揮発性物質で
汚染された土壌を浄化する方法であって、汚染地層より
も低い位置まで地下水を吸引するための揚水設備を汚染
領域を包囲する状態に設置し、該揚水設備周囲に高間隙
率の層を設け、この揚水設備群によって地下水を吸引す
ることにより地下水位を浄化対象とする汚染地層よりも
低い位置まで低下させ、汚染地層を強制的に通気層とし
て形成し、該高間隙率の層を通して空気を地中に供給
し、揚水設備に包囲された中央部に微生物分解領域を形
成し、該微生物分解領域近傍に設けた空気吸引用パイプ
により空気を吸引することによって、該微生物分解領域
に汚染空気を通過させ浄化させた後、地中より排出する
汚染土壌の浄化方法。
1. A method for purifying soil contaminated with volatile substances at a position lower than the groundwater level, which encloses a contaminated area with a pumping facility for sucking groundwater to a position lower than the contaminated stratum. The groundwater level is lowered to a position lower than the contaminated stratum to be purified by suctioning groundwater by the pumping facility group, and the contaminated stratum is forcibly installed. As a ventilation layer, air is supplied to the ground through the layer having a high porosity, a microbial decomposition region is formed in the central portion surrounded by the pumping equipment, and an air suction pipe is provided near the microbial decomposition region. A method for purifying contaminated soil, in which contaminated air is passed through the microbial decomposition region for purification by suctioning air by means of the above method and then discharged from the ground.
【請求項2】 該揮発性物質が、炭化水素であることを
特徴とする請求項1記載の汚染土壌の浄化方法。
2. The method for purifying contaminated soil according to claim 1, wherein the volatile substance is a hydrocarbon.
【請求項3】 該炭化水素が、有機塩素化合物、また
は、芳香族化合物であることを特徴とする請求項2記載
の汚染土壌の浄化方法。
3. The method for purifying contaminated soil according to claim 2, wherein the hydrocarbon is an organic chlorine compound or an aromatic compound.
【請求項4】 該炭化水素が、燃料であることを特徴と
する請求項2記載の汚染土壌の浄化方法。
4. The method for purifying contaminated soil according to claim 2, wherein the hydrocarbon is a fuel.
【請求項5】 該有機塩素化合物が、トリクロロエチレ
ン、テトラクロロエチレンであることを特徴とする請求
項3記載の汚染土壌の浄化方法。
5. The method for cleaning contaminated soil according to claim 3, wherein the organic chlorine compound is trichloroethylene or tetrachloroethylene.
【請求項6】 揚水設備に包囲された中央部に設けた汚
染物質分解微生物活性化物質注入用パイプにより微生物
活性化物質を注入することで分解領域を形成することを
特徴とする請求項1記載の汚染土壌の浄化方法。
6. The decomposition region is formed by injecting a microbial activating substance through a pipe for pollutant-decomposing microbial activating substance injection pipe provided in a central portion surrounded by a water pumping facility. Method for cleaning contaminated soil.
【請求項7】 揚水設備に包囲された中央部に設けた汚
染物質分解微生物及び汚染物質分解微生物活性化物質注
入用パイプにより汚染物質分解微生物及び微生物活性化
物質を注入することで分解領域を形成することを特徴と
する請求項1記載の汚染土壌の浄化方法。
7. A decomposition region is formed by injecting a pollutant-degrading microorganism and a microorganism-activating substance through a pipe for injecting a pollutant-degrading microorganism and a contaminant-degrading microorganism-activating substance provided in a central portion surrounded by a pumping facility. The method for purifying contaminated soil according to claim 1, wherein
【請求項8】 地下水位よりも低い位置に形成されてい
る揮発性物資で汚染されている土壌の領域(汚染領域)
を微生物浄化する方法であって、 汚染領域よりも低い位置まで地下水を吸引する場水手段
を、汚染領域を包囲する状態に複数設置し、 該揚水手段に近接して少なくとも汚染領域に到る間隙率
の大きい領域を設け、該揚水手段により地下水を吸引し
てその水位を汚染領域より低い位置に下げて汚染領域を
通気可能とし、 汚染領域の上部に設けた気液注入排出手段を通じて空気
を供給して汚染領域の少なくとも一部に微生物分解領域
を形成させ、 該気液注入排出手段に負圧を与えて前記間隙率の大きい
領域から汚染領域を経て該気液注入排出手段に到る空気
の流れを形成させて行なうことを特徴とする汚染土壌の
浄化方法。
8. An area of soil contaminated with volatile substances formed at a position lower than groundwater level (contaminated area)
A method for microbial purification of water, in which a plurality of ground water means for sucking groundwater to a position lower than the contaminated area are installed in a state of surrounding the contaminated area, and a gap reaching at least the contaminated area is provided close to the pumping means. An area with a high rate is provided, groundwater is sucked by the pumping means and the water level is lowered to a position lower than the contaminated area so that the contaminated area can be ventilated, and air is supplied through the gas-liquid injection and discharge means provided above the contaminated area. Then, a microbial decomposition region is formed in at least a part of the contaminated region, and a negative pressure is applied to the gas-liquid injection / exhaust means to remove air from the region having a large porosity through the contaminated region to the gas-liquid injection / discharge device. A method for purifying contaminated soil, characterized by performing a flow.
【請求項9】 微生物分解領域には気液注入排出手段を
通して汚染物資分解微生物及び又は微生物活性化物資を
供給する手段を間欠的に併用することを特徴とする請求
項8に記載の方法。
9. The method according to claim 8, wherein a means for supplying the pollutant-degrading microorganisms and / or the microbial activated material through the gas-liquid injection / discharge means is intermittently used in the microbial decomposition area.
JP8091489A 1996-04-12 1996-04-12 Purification of contaminated soil Pending JPH09276835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8091489A JPH09276835A (en) 1996-04-12 1996-04-12 Purification of contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8091489A JPH09276835A (en) 1996-04-12 1996-04-12 Purification of contaminated soil

Publications (1)

Publication Number Publication Date
JPH09276835A true JPH09276835A (en) 1997-10-28

Family

ID=14027839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8091489A Pending JPH09276835A (en) 1996-04-12 1996-04-12 Purification of contaminated soil

Country Status (1)

Country Link
JP (1) JPH09276835A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514534A (en) * 2003-12-19 2007-06-07 テレコ How to remove pollutants from contaminated soil
JP2011167596A (en) * 2010-02-16 2011-09-01 Kumagai Gumi Co Ltd Method of cleaning underground oil-contaminated area

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514534A (en) * 2003-12-19 2007-06-07 テレコ How to remove pollutants from contaminated soil
JP2011167596A (en) * 2010-02-16 2011-09-01 Kumagai Gumi Co Ltd Method of cleaning underground oil-contaminated area

Similar Documents

Publication Publication Date Title
JPH09276841A (en) Method and apparatus for purifying contaminated soil
KR101691424B1 (en) Complex Purification System of Oil-polluted Underground Water by Physical and Biological
JP4671073B2 (en) In-situ repair method for soil contaminated with organic matter
EP0800873B1 (en) Process for soil remediation and apparatus used therefor
JPH09276840A (en) Purification of contaminated soil
JPH09276837A (en) Method for purifying polluted soil
JPH09276835A (en) Purification of contaminated soil
JP3693740B2 (en) Purification method for contaminated soil
JP3374230B2 (en) How to restore contaminated groundwater and soil
JP3645650B2 (en) Reactor-type contaminated soil purification method and apparatus
JP2000287679A (en) Decomposition of gaseous organic chlorine compound by bioreactor and apparatus therefor
JPH11216457A (en) Purification of contaminated soil
JP3217694B2 (en) Contaminated soil purification method and apparatus
JP3374228B2 (en) How to restore contaminated groundwater and soil
JPH09276843A (en) Method for increasing decomposition-activity of bacteria
JP3217693B2 (en) Contaminated soil purification method and contaminated soil purification device
JPH09276836A (en) Cassette style reactor type polluted soil purifying apparatus and soil purifying method using the apparatus
JP3374232B2 (en) How to restore contaminated groundwater and soil
JP3461238B2 (en) Organic compound biodegradation method and environmental restoration method
JP3401660B2 (en) How to restore contaminated groundwater and soil
JP3222658B2 (en) Contaminated soil repair device and contaminated soil repair method using the same
JP2000005741A (en) Original site purifying system of contaminated soil by microorganisms
JP2000140869A (en) Biological repairing/cleaning method of water polluted with organic chlorine compound, using reactor capable of controlling dilution ratio, and device therefor
JP2000202239A (en) Bioreactor and microorganism decomposing method using same
JP3374229B2 (en) How to restore contaminated groundwater and soil