JPH09276707A - Thin film semiconductor photocatalyst element and reaction device using it - Google Patents

Thin film semiconductor photocatalyst element and reaction device using it

Info

Publication number
JPH09276707A
JPH09276707A JP8114096A JP11409696A JPH09276707A JP H09276707 A JPH09276707 A JP H09276707A JP 8114096 A JP8114096 A JP 8114096A JP 11409696 A JP11409696 A JP 11409696A JP H09276707 A JPH09276707 A JP H09276707A
Authority
JP
Japan
Prior art keywords
light
semiconductor
photocatalyst
film
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8114096A
Other languages
Japanese (ja)
Inventor
Hiroyuki Uchida
裕之 内田
Masahiro Watanabe
政廣 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8114096A priority Critical patent/JPH09276707A/en
Publication of JPH09276707A publication Critical patent/JPH09276707A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thin film semiconductor photocatalyst element which enables rapid decomposition of a harmful material and to provide a reaction device using this element. SOLUTION: This thin film semiconductor photocatalyst element accelerates decomposition of charges and oxygen reduction reaction by the effect of a metal catalyst and addition of PTFE particles, so that rapid decomposition of a harmful material can be performed even when the element is used in a single form. Moreover, the photocatalyst element is deposited on a base body and plural sheets of photocatalyst elements thus prepared are arranged parallel to each other at intervals so as to perform a three-dimensional laminating method of irradiating the element surface with light beams at a small incident angle. Thereby, the decomposition rate and treating ability per unit illuminated area can be largely improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体光触媒に関
するものであり、光触媒作用によって水中又は気相中に
存在するハロゲン化合物やイオウ、窒素化合物等の環境
汚染物質を酸化分解するための膜状半導体光触媒素子と
これを用いた反応装置に係わる。
TECHNICAL FIELD The present invention relates to a semiconductor photocatalyst, and is a film semiconductor for oxidatively decomposing environmental pollutants such as halogen compounds, sulfur, and nitrogen compounds existing in water or gas phase by photocatalysis. The present invention relates to a photocatalyst element and a reaction device using the same.

【0002】[0002]

【従来の技術】近年、大規模に散布される農薬や殺虫剤
による環境水の汚染や、水道水に含まれるトリハロメタ
ン、さらには大気中に放出されるイオウ酸化物、窒素酸
化物、ハロゲン化合物、未燃焼炭化水素等の各種の汚染
物質の処理が問題となっている。
2. Description of the Related Art In recent years, pollution of environmental water by pesticides and insecticides sprayed on a large scale, trihalomethane contained in tap water, sulfur oxides, nitrogen oxides and halogen compounds released into the atmosphere, The treatment of various pollutants such as unburned hydrocarbons has become a problem.

【0003】これらの環境汚染物質を酸化分解する技術
の一つとして、半導体物質の光触媒作用を利用した研究
が行われている。本発明者等は、電気化学協会第62回
大会の講演要旨集ページ164において、貴金属を添加
した酸化チタン光触媒によるトリクロロベンゼンの分解
及びその機構に関する報告をした。図1に示すように、
酸化チタンや酸化タングステンなどの半導体にその禁制
帯幅以上のエネルギーを有する光(多くの場合、近紫外
および紫外線)を照射すると、電子が価電子帯から伝導
帯へと励起される。価電子帯に生成した正孔は半導体表
面の水酸基や水と反応して酸化活性の高いOHラジカル
を生じ、これが有害物質を酸化分解する。一方、伝導帯
に励起された電子は空気中の酸素又は水中の溶存酸素を
還元し、イオン状態の酸素を作る。この酸素もまたさら
にいくつかの経路を経て一部は過酸化水素となり、有害
物の分解に寄与する。すなわち、太陽光あるいは人工光
を半導体物質に照射するだけで、有害成分を無害な物質
に分解できるので、環境の浄化方法の一つとして注目さ
れている。これまでに、酸化チタンなどの光触媒微粒子
を液中に分散、あるいは基材表面に直接コーティング
し、これに太陽光、人工光を照射して分解するなどの提
案がされている。この触媒系は長期間にわたって安定し
た性能を発揮し、極めて経済的であると期待される。し
かし、前者においては触媒粉末の回収が困難で実用化さ
れていない。後者については、トイレなどのタイルに応
用し、脱臭などに応用する試みがなされている。しか
し、その反応速度は小さく、大量の汚染物質の速やかな
除去には適さない。
As one of the techniques for oxidatively decomposing these environmental pollutants, studies utilizing the photocatalytic action of semiconductor substances have been conducted. The present inventors made a report on the decomposition of trichlorobenzene by a titanium oxide photocatalyst added with a noble metal and its mechanism on page 164 of the abstracts of the 62nd convention of the Electrochemical Society of Japan. As shown in FIG.
When a semiconductor such as titanium oxide or tungsten oxide is irradiated with light having an energy higher than its forbidden band width (in most cases, near ultraviolet light and ultraviolet light), electrons are excited from the valence band to the conduction band. The holes generated in the valence band react with hydroxyl groups and water on the semiconductor surface to generate OH radicals having high oxidation activity, which oxidatively decompose harmful substances. On the other hand, the electrons excited in the conduction band reduce oxygen in the air or dissolved oxygen in water to produce ionic oxygen. This oxygen also goes through some routes to become hydrogen peroxide partially and contributes to the decomposition of harmful substances. That is, since harmful substances can be decomposed into harmless substances simply by irradiating the semiconductor substance with sunlight or artificial light, it has attracted attention as one of environmental purification methods. It has been proposed so far that photocatalyst fine particles such as titanium oxide are dispersed in a liquid or directly coated on the surface of a substrate, and then the substrate is irradiated with sunlight or artificial light to decompose it. This catalyst system is expected to be very economical with stable performance over a long period of time. However, in the former case, it is difficult to collect the catalyst powder and it has not been put to practical use. The latter is being applied to tiles such as toilets, and attempts have been made to apply it to deodorization. However, its reaction rate is small and it is not suitable for rapid removal of a large amount of pollutants.

【0004】[0004]

【発明が解決しようとする課題】有害物を迅速に分解す
るには、まず光を十分に半導体物質に照射し、正孔と電
子の電荷分離を効率よく引き起こすことが必要である。
上述の如く、光の照射で価電子帯に生成した正孔は水を
酸化してOHラジカルを発生させることに消費され、ま
た伝導帯電子は酸素分子を還元して酸素イオンを生成さ
せることに消費される。しかし、光触媒では酸化反応と
還元反応が対の反応となって同一速度で進行するため、
正孔又は電子の消費反応のうちの一方の反応が遅いと、
効率よく後続の電荷分離を進行させることができない。
通常は特に、単味の酸化物半導体の酸素還元触媒活性が
低いため還元反応が起こりにくく、酸素の還元反応が電
荷分離反応、従って汚染物質の分解反応を含む全体の律
速反応となりやすい。そこで、電子と正孔の電荷分離を
促進するとともに高い酸素還元触媒能を付与するための
触媒を開発することが不可欠である。
In order to rapidly decompose harmful substances, it is necessary to sufficiently irradiate the semiconductor material with light to efficiently cause charge separation of holes and electrons.
As described above, holes generated in the valence band by light irradiation are consumed to oxidize water to generate OH radicals, and conduction band electrons are used to reduce oxygen molecules to generate oxygen ions. Consumed. However, in the photocatalyst, the oxidation reaction and the reduction reaction are paired reactions and proceed at the same speed.
If one of the consumption reactions of holes or electrons is slow,
The subsequent charge separation cannot proceed efficiently.
Usually, a reduction reaction is unlikely to occur because the oxygen reduction catalytic activity of the plain oxide semiconductor is low, and the reduction reaction of oxygen is apt to be a rate-determining reaction including a charge separation reaction and thus a decomposition reaction of pollutants. Therefore, it is indispensable to develop a catalyst for promoting charge separation between electrons and holes and imparting high oxygen reduction catalytic ability.

【0005】上記2点の改良を加えても、従来の半導体
光触媒素子の構造では、なお溶液中への酸素の溶解度が
低く、またその溶液中の拡散速度も遅い。そこで、これ
らを促進させる新しい半導体光触媒素子の開発が不可欠
である。本発明はこのような事情に鑑みてなされたもの
で、有害物質の迅速な分解が可能になる薄膜半導体光触
媒素子とこれを用いた反応装置を提供することを目的と
する。
Even with the above two improvements, the structure of the conventional semiconductor photocatalyst element still has a low solubility of oxygen in the solution and a slow diffusion rate in the solution. Therefore, development of a new semiconductor photocatalyst element that promotes these is indispensable. The present invention has been made in view of such circumstances, and an object of the present invention is to provide a thin film semiconductor photocatalyst element capable of rapidly decomposing harmful substances and a reaction apparatus using the same.

【0006】[0006]

【課題を解決するための手段】本発明は前記目的を達成
するために、酸素との親和性を持ちかつ気体の流通路を
有する多孔性フッ素化合物膜内に、粒子径が0.005〜5μ
mの半導体光触媒粒子が分散していることを特徴とす
る。また、本発明は前記目的を達成するために、白金、
金、銀、パラジウム、ロジウム、ルテニウム、鉄、コバ
ルト、ニッケル、銅またはそれらの合金のうちから選ば
れた少なくとも1種の触媒を高分散担持された請求項1
の半導体光触媒粒子が、光透過性の無機薄膜でコーティ
ングされた高分子基材、又は光透過性の無機基材、又は
光反射率の高い無機又は金属基材上に保持されたことを
特徴とする。
In order to achieve the above-mentioned object, the present invention has a particle size of 0.005 to 5 μm in a porous fluorine compound film having an affinity for oxygen and a gas flow passage.
The semiconductor photocatalyst particles of m are dispersed. Further, the present invention, in order to achieve the above object, platinum,
A highly dispersed support of at least one catalyst selected from gold, silver, palladium, rhodium, ruthenium, iron, cobalt, nickel, copper or alloys thereof.
Wherein the semiconductor photocatalyst particles are held on a polymer base material coated with a light-transmitting inorganic thin film, or a light-transmitting inorganic base material, or an inorganic or metal base material having a high light reflectance. To do.

【0007】更に、本発明は前記目的を達成するため
に、請求項1又は請求項2の膜状半導体光触媒素子を保
持する基材が板状または繊維状の基材であって、かつ、
この基材に保持された膜状半導体光触媒素子が複数枚間
隔を置いて平行に配置されており、この薄膜半導体光触
媒素子の表面に対して低い入射角を持った光を照射する
光源を備えていることを特徴とする。
Further, in order to achieve the above object, the present invention provides that the substrate holding the film-shaped semiconductor photocatalytic element according to claim 1 is a plate-like or fibrous substrate, and
A plurality of film-shaped semiconductor photocatalyst elements held on this base material are arranged in parallel at intervals, and a light source for irradiating the surface of this thin-film semiconductor photocatalyst element with light having a low incident angle is provided. It is characterized by being

【0008】[0008]

【発明の実施の形態】本発明の薄膜半導体光触媒素子で
は、図2に示すように、微量の金属触媒を担持率で0.1
〜10重量パーセント高分散担持した粒子径が0.005〜5μ
mの半導体光触媒粒子を、気体や液体が流通しやすくす
るため、酸素との親和性を持った微細なファイバー状ま
たは粒子状のフッ素化合物からなる低密度の多孔性膜内
に分散したものである。素子はこのままでは取り扱い性
に欠けるため、光透過性の基材や光反射率の高い金属板
上などに保持して反応装置に組み込む。
BEST MODE FOR CARRYING OUT THE INVENTION In the thin film semiconductor photocatalyst element of the present invention, as shown in FIG.
~ 10% by weight Highly dispersed particle size 0.005 ~ 5μ
The m semiconductor photocatalyst particles are dispersed in a low-density porous film made of a fine fibrous or particulate fluorine compound having an affinity for oxygen in order to facilitate the flow of gas or liquid. . Since the element is not easy to handle as it is, it is held on a light-transmissive base material or a metal plate having a high light reflectance to be incorporated in the reaction apparatus.

【0009】半導体材料としては酸化チタンや酸化タン
グステンなどの微粉末が使われる。粒径は0.005〜5μm
の範囲で、細かい方が比表面積が大きいため反応しやす
い。粒子径が小さく活性の高い酸化物粉末は、アルコキ
シドや塩化物を水溶液やアルコール溶液中で加水分解
し、加熱、乾燥して得られる。金属触媒としては、白
金、金、銀、パラジウム、ロジウム、ルテニウム、鉄、
コバルト、ニッケル、銅及びそれらの合金のうちから選
ばれた少なくとも1種を、半導体光触媒に対して10重
量%以下添加する。金属触媒の担持法は、金属イオンの
溶解している水又はアルコール等の溶液中に半導体光触
媒をいれ、ヒドラジンで化学的に還元析出させたり、光
を照射して半導体に生じた伝導帯電子によって還元析出
させることができる。塩化白金酸を含む2−プロパノー
ル溶液中で白金微粒子を酸化チタンに光析出させた場
合、酸化チタンに対して2〜3wt%の範囲の量で最高
の活性にできる。金属触媒粒径を小さくすればするほ
ど、金属と半導体の接触界面が増えるので、添加量を少
量にすることができる。
As the semiconductor material, fine powder of titanium oxide or tungsten oxide is used. Particle size is 0.005-5 μm
Within the range, a smaller one has a larger specific surface area and is more likely to react. The oxide powder having a small particle size and high activity is obtained by hydrolyzing an alkoxide or chloride in an aqueous solution or an alcohol solution, heating and drying. As the metal catalyst, platinum, gold, silver, palladium, rhodium, ruthenium, iron,
At least one selected from cobalt, nickel, copper and alloys thereof is added in an amount of 10% by weight or less based on the semiconductor photocatalyst. The method of supporting a metal catalyst is to put a semiconductor photocatalyst in a solution of water or alcohol in which metal ions are dissolved, to chemically reduce and precipitate with hydrazine, or to irradiate light with conduction band electrons generated in the semiconductor. It can be reduced and precipitated. When the platinum fine particles are photo-deposited on titanium oxide in a 2-propanol solution containing chloroplatinic acid, the maximum activity can be achieved with an amount in the range of 2 to 3 wt% with respect to titanium oxide. The smaller the particle size of the metal catalyst, the more the contact interface between the metal and the semiconductor increases, so that the addition amount can be reduced.

【0010】半導体光触媒粒子は、ポリテトラフルオロ
エチレン(PTFE)等のフッ素樹脂バインダで固定す
る。フッ素樹脂は酸素との親和性が高く、また多くの有
機物を吸着濃縮し、半導体触媒上へこれらの反応物質を
迅速に供給することができるので、光触媒反応速度を大
幅に向上させる。フッ素樹脂が半導体表面を完全に覆っ
てしまうと光の吸収効率と水の供給速度が落ちる。しか
し、PTFE粒子の懸濁液を超音波ホモジナイザで激し
く攪拌して、粒子に剪断力を与えると微細な繊維にな
り、綿状の多孔性フッ素化合物集合体膜を作ることがで
きる(図2参照)。この集合体の各ファイバーは光触媒
粒子径より細く、互いに絡み合って綿状をなし内部にま
で光を通すことができる。そこで、PTFE粒子の懸濁
液と半導体光触媒粒子を一緒に攪拌すると、ファイバー
間に光触媒粒子が閉じこめられた状態になり、光触媒粒
子の露出している部分に光を直接照射することができ
る。
The semiconductor photocatalyst particles are fixed with a fluororesin binder such as polytetrafluoroethylene (PTFE). The fluororesin has a high affinity with oxygen, and can adsorb and concentrate many organic substances, and rapidly supply these reactants onto the semiconductor catalyst, thereby greatly improving the photocatalytic reaction rate. When the fluororesin completely covers the semiconductor surface, the light absorption efficiency and the water supply speed decrease. However, when a suspension of PTFE particles is vigorously stirred with an ultrasonic homogenizer and a shearing force is applied to the particles, fine fibers are formed, and a cotton-like porous fluorine compound aggregate film can be formed (see FIG. 2). ). Each fiber of this assembly has a diameter smaller than that of the photocatalyst particles, and is entangled with each other to form a cotton shape, which allows light to pass through to the inside. Therefore, when the suspension of PTFE particles and the semiconductor photocatalyst particles are stirred together, the photocatalyst particles are confined between the fibers, and the exposed portion of the photocatalyst particles can be directly irradiated with light.

【0011】フッ素樹脂の添加量は、半導体光触媒に対
して1〜30重量%量配合するが、酸素と水の供給を容
易にして、光の照射効果を妨げない3〜10重量%の範
囲が好ましい。前記の薄膜半導体光触媒素子は、光の透
過を考慮するとその有効厚さが数十マイロクメータ以下
であるので、保持するための適当な基材が必要である。
薄いガラスやポリエチレンテレフタレート等の透光性基
材上に素子膜を形成する(図3参照)。このような場合
は、図4に示すように、3次元積層化できる。すなわ
ち、透明基材両面に固定した光触媒膜を複数枚間隔を置
いて平行に配置して、半導体光触媒の表面に対して低い
入射角で光を照射する。適切な入射角で照射すると、光
は光触媒や基材表面を乱反射して奥まで進入するのに加
えて、透明基材内を多重反射、散乱し、基材両面の光触
媒全体を有効に作用させることができるため、光照射さ
れた単位面積当たりの反応速度が顕著に増加する。
The fluorine resin is added in an amount of 1 to 30% by weight with respect to the semiconductor photocatalyst, but a range of 3 to 10% by weight which facilitates the supply of oxygen and water and does not hinder the light irradiation effect. preferable. The thin-film semiconductor photocatalyst element described above has an effective thickness of several tens of milo-meters or less in consideration of light transmission, and thus a suitable base material for holding the element is required.
An element film is formed on a transparent substrate such as thin glass or polyethylene terephthalate (see FIG. 3). In such a case, three-dimensional lamination can be performed as shown in FIG. That is, a plurality of photocatalyst films fixed on both surfaces of the transparent substrate are arranged in parallel at intervals, and light is irradiated onto the surface of the semiconductor photocatalyst at a low incident angle. When irradiated at an appropriate incident angle, light diffusely reflects on the surface of the photocatalyst and the base material and penetrates deeply, and in addition, multiple reflections and scattering occur inside the transparent base material, and the entire photocatalyst on both sides of the base material effectively acts. Therefore, the reaction rate per unit area irradiated with light is significantly increased.

【0012】また、光の透過性の優れたガラス繊維をP
TFE粒子の懸濁液と半導体光触媒粒子の混合溶液中に
混入して薄膜光触媒素子を担持させることもできる(図
5参照)。この場合は、ガラス繊維が光の通り道になる
ので、光触媒全体を更に有効に作用させることができ
る。なお、透光性基材としては、半導体の禁制帯幅以上
のエネルギーをもつ波長の光(酸化チタンでは波長約40
0 nm以下の可視および紫外線)が透過すればよいので、
必ずしもガラス系材料に限定されるわけではない。例え
ば、光透過性が高く加工性も良好なポリエチレンテレフ
タレートのような高分子材料を用いる。この場合は、高
分子材料自体の光触媒分解を防ぐために、禁制帯幅の大
きい酸化スズなどの無機化合物の薄膜保護コートをポリ
マー表面に施す。
Further, glass fiber having excellent light transmittance is used as P
A thin film photocatalytic element can be supported by mixing it in a mixed solution of a suspension of TFE particles and semiconductor photocatalyst particles (see FIG. 5). In this case, since the glass fiber serves as a path for light, the entire photocatalyst can be made to work more effectively. In addition, as the translucent base material, light with a wavelength having an energy equal to or more than the forbidden band width of the semiconductor (about 40
Visible light and ultraviolet rays of 0 nm or less) should be transmitted,
The material is not necessarily limited to glass materials. For example, a polymer material such as polyethylene terephthalate, which has high light transmittance and good workability, is used. In this case, in order to prevent the photocatalytic decomposition of the polymer material itself, a thin film protective coat of an inorganic compound such as tin oxide having a wide band gap is applied to the polymer surface.

【0013】また、使用する光源の種類によってさらに
光を有効に利用できる形状に基板を加工すると効果的で
ある。例えば、直管型紫外線灯のような場合には、中心
部に光源のはいる穴を設けた基板を積層化すればよい。
光源の種類(波長、平行性、強度など)によって、基材
内を散乱できる距離が異なるので、幾何的配置の最適化
が重要である。
Further, it is effective to process the substrate into a shape that allows more effective use of light depending on the type of light source used. For example, in the case of a straight tube type ultraviolet lamp, a substrate having a hole for receiving a light source at its center may be laminated.
Optimizing the geometrical arrangement is important because the distance over which light can be scattered within the substrate varies depending on the type of light source (wavelength, parallelism, intensity, etc.).

【0014】素子膜を厚くする場合は、光の反射率の高
い金属板やセラミックス板上に膜を形成し、間隔をおい
て複数枚平行に並べ、低い入射角で半導体触媒の表面を
照射する。この方法により、光触媒や基材表面で反射し
て広い範囲で触媒効果を発揮することができる。前記の
薄膜半導体光触媒素子の各種基材への担持には、スクリ
ーンプリント法、ブレードコート法、ディップコート
法、スプレー法等が適用できるが、薄膜半導体光触媒素
子への気体状や液体状反応物の供給や生成物の除去をス
ムーズに進行させるために、充填度を適切に調節する必
要がある。平均粒径0.021μmの酸化チタン粉末と平均粒
径0.3μmのPTFE粒子を用いた場合、1平方センチメ
ータあたり0.7〜2mgの酸化チタンを充填率30〜
70%の範囲で担持することが好ましい。
When the element film is made thick, the film is formed on a metal plate or a ceramic plate having a high light reflectance, a plurality of films are arranged in parallel at intervals, and the surface of the semiconductor catalyst is irradiated at a low incident angle. . By this method, the light can be reflected on the surface of the photocatalyst or the substrate and the catalytic effect can be exhibited in a wide range. For supporting the thin film semiconductor photocatalytic element on various substrates, a screen printing method, a blade coating method, a dip coating method, a spray method or the like can be applied. However, a gaseous or liquid reactant of the thin film semiconductor photocatalytic element can be applied. In order to make the supply and the removal of products proceed smoothly, it is necessary to adjust the filling degree appropriately. When titanium oxide powder having an average particle diameter of 0.021 μm and PTFE particles having an average particle diameter of 0.3 μm are used, 0.7 to 2 mg of titanium oxide per square centimeter is used for a filling factor of 30 to
It is preferable to support in the range of 70%.

【0015】光源として、ブラックライト(紫外線
灯)、低圧水銀灯、高圧水銀灯、超高圧水銀灯あるいは
太陽光などを用いることができる。
As the light source, a black light (ultraviolet lamp), a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp or sunlight can be used.

【0016】[0016]

【実施例】本発明の実施例について説明する。 〔実施例1〕図6は本発明に従って構成した薄膜半導体
光触媒素子膜の製造法の一例を示したものである。図6
のTiO2-PTFEは半導体粒子TiO2とPTFE粒子を基材に薄膜
状に担持したものである。この例では、半導体に市販の
酸化チタン粉末(アナターゼ型、平均粒径0.021μ
m)が、PTFE粒子には市販のテフロンディスパージ
ョン(平均粒径0.3μm、粒子含有率約60wt%)
が用いられている。酸化チタン粉末4gに水10gを加
え、所定量のテフロンディスパージョンを加えた後、超
音波ホモジナイザで10分間攪拌してペーストを調製
し、基材上に塗布した。この例では、スライドガラス基
材(肉厚1mm)の片面にスクリーンプリントする方法
が示されている。表面積と担持強度を増加させるため
に、スライドガラスの両面をあらかじめサンドブラスト
加工(磨りガラス加工)しておいた。PTFE添加量は
1〜30wt%の範囲で、熱処理温度は室温から350℃
の範囲で変化させた。最適PTFE添加量と乾燥後の加
熱処理温度は担体の種類、担持方法によって異なってお
り、図6に示したスライドガラスにペーストをスクリー
ンプリントする方法では、酸化チタンに対し5重量%の
PTFEを添加して室温で乾燥させたものが最高の光触
媒活性を示した。 〔実施例2〕実施例1と同様にしてTiO2-PTFEを作成し
た後、光触媒粒子に金属触媒を高分散担持した。この例
では、所定量の塩化白金酸を含む2−プロパノール溶液
中に前記光触媒膜を浸漬して光照射し、白金微粒子を酸
化チタンに光析出させる方法が示してある。図6の方法
に従う場合、酸化チタンに対して2〜3重量%の範囲の
量で最高の活性を示した。図6の方法によって製造され
た薄膜半導体光触媒素子Pt-TiO2-PTFEの膜厚は3μm、
酸化チタンの担持量は0.9 mg/cm2、PTFE量は0.045
mg/cm2、白金担持量は0.025 mg/cm2であった。 〔比較例1〕比較対照試料として、白金もPTFEも担
持しない単味のTiO2膜を図6の方法により調製した。 〔比較例2〕比較例1のTiO2膜を作成した後、白金を担
持したPt-TiO2膜を図6の方法により調製した。
An embodiment of the present invention will be described. Example 1 FIG. 6 shows an example of a method for producing a thin film semiconductor photocatalytic element film constructed according to the present invention. FIG.
TiO2-PTFE is semiconductor particles TiO2 and PTFE particles supported on a substrate in a thin film form. In this example, commercially available titanium oxide powder (anatase type, average particle size 0.021μ
m), but PTFE particles are commercially available Teflon dispersion (average particle size 0.3 μm, particle content about 60 wt%)
Is used. After adding 10 g of water to 4 g of titanium oxide powder and adding a predetermined amount of Teflon dispersion, the paste was prepared by stirring with an ultrasonic homogenizer for 10 minutes and applied onto a substrate. In this example, a method of screen-printing on one side of a slide glass substrate (thickness 1 mm) is shown. Both sides of the slide glass were previously sandblasted (polished glass) in order to increase the surface area and the supporting strength. The amount of PTFE added is in the range of 1 to 30 wt% and the heat treatment temperature is from room temperature to 350 ° C.
Was changed in the range. The optimum amount of PTFE added and the heat treatment temperature after drying differ depending on the type of carrier and the supporting method. In the method of screen-printing the paste on the slide glass shown in FIG. 6, 5 wt% PTFE was added to titanium oxide. Those dried at room temperature showed the highest photocatalytic activity. [Example 2] After TiO2-PTFE was prepared in the same manner as in Example 1, a metal catalyst was highly dispersed and supported on photocatalyst particles. In this example, a method is shown in which the photocatalytic film is immersed in a 2-propanol solution containing a predetermined amount of chloroplatinic acid and irradiated with light to photoprecipitate platinum fine particles on titanium oxide. When the method of FIG. 6 was followed, it showed the highest activity in amounts ranging from 2-3% by weight with respect to titanium oxide. The thin film semiconductor photocatalyst element Pt-TiO2-PTFE manufactured by the method of FIG. 6 has a film thickness of 3 μm,
Titanium oxide loading is 0.9 mg / cm2, PTFE loading is 0.045
The amount of platinum carried was 0.025 mg / cm2. [Comparative Example 1] As a comparative control sample, a plain TiO2 film on which neither platinum nor PTFE was carried was prepared by the method shown in FIG. [Comparative Example 2] After the TiO2 film of Comparative Example 1 was prepared, a platinum-supported Pt-TiO2 film was prepared by the method shown in FIG.

【0017】これらの光触媒による有害物の分解性能を
測定した例について以下に示す。実施例1、実施例2、
比較例1、比較例2に示すようにして制作した有効面積
5 cm2の各光触媒を、パイレックス製試験管(内径=14
mm、長さ=165 mm)の底部にセットした。水中の有害物
除去試験として、あらかじめ空気飽和した9.1 ppmのト
リクロロベンゼン(TCB)水溶液を8 ml注入し、ゴム製
セプタムで密閉した。これを恒温槽にて25℃に保ちなが
ら、500 Wキセノンランプにより光照射した。TCBは酸化
チタンの光触媒作用により、二酸化炭素と塩化物イオン
に分解されるので、一定時間ごとに溶液を採取してこれ
らの濃度をイオンクロマトグラフにより測定した。ま
た、気相中の有害物除去試験を行う際には、酸化チタン
に吸着する水分量を一定にする目的であらかじめ4.6 To
rrの水蒸気を含む空気を1時間流した後、セプタムで密
閉した。この試験管に、トリクロロエチレン(TCE)蒸
気を0.1 vol%濃度となるように注入し、消費電力15 Wの
紫外線灯(ブラックライト)で光照射した。TCEは光触
媒反応により、二酸化炭素と塩酸に分解されるので、一
定時間ごとに試験管内の気体を採取し、二酸化炭素濃度
をガスクロマトグラフにより定量した。これらの測定結
果を表1に示す。
An example of measuring the decomposition performance of harmful substances by these photocatalysts is shown below. Example 1, Example 2,
Effective area produced as shown in Comparative Example 1 and Comparative Example 2
Pyrex test tube (inner diameter = 14
mm, length = 165 mm). As a test for removing harmful substances in water, 8 ml of a 9.1 ppm trichlorobenzene (TCB) aqueous solution that had been air-saturated in advance was injected, and the container was sealed with a rubber septum. This was irradiated with light from a 500 W xenon lamp while keeping it at 25 ° C in a constant temperature bath. Since TCB is decomposed into carbon dioxide and chloride ions by the photocatalytic action of titanium oxide, the solutions were sampled at regular intervals and their concentrations were measured by ion chromatography. In addition, when performing a harmful substance removal test in the gas phase, in order to keep the amount of water adsorbed on titanium oxide constant, 4.6 To
Air containing water vapor of rr was allowed to flow for 1 hour and then sealed with a septum. Trichlorethylene (TCE) vapor was injected into this test tube so that the concentration was 0.1 vol%, and light was irradiated with an ultraviolet lamp (black light) with a power consumption of 15 W. Since TCE is decomposed into carbon dioxide and hydrochloric acid by a photocatalytic reaction, the gas in the test tube was sampled at regular intervals and the carbon dioxide concentration was quantified by gas chromatography. Table 1 shows the measurement results.

【0018】〔表1〕 いずれの場合も、空実験すなわち、有害物を含まない状
態での光照射、有害物は存在するが光触媒がない状態で
の光照射、ならびに、有害物と光触媒存在時の暗時の反
応では、二酸化炭素も塩酸も生成せず、有害物が光触媒
作用のみによって分解していることが確認できた。表1
から明らかなように、光触媒層に金属触媒とPTFEを
添加することにより、液相中および気相中の有害物の分
解速度を大幅に向上させることができる。特に、溶存酸
素の還元反応が遅い水中でPTFEの効果が大きく、Pt
-TiO2-PTFEの水中TCB分解活性は単味TiO2の2倍以上高
いことがわかる。 〔実施例3〕次に、3次元積層型光触媒反応の実験例に
ついて説明する。前記実施例2のPt-TiO2-PTFE光触媒を
パイレックススライドガラス基材(26 mmx38 mm)の両
面に担持したもの(片面の有効作用面積:10 cm2)を10
枚積層化し、パイレックス製試験容器に図7に示すよう
にセットした。有害物除去実験は前記の実験と同様にし
て行ったが、装置の大型化に伴い、TCB水溶液量は70 m
l、0.1 vol%のTCEを含む空気の量は120 mlとした。光は
基板断面に対して入射角30度で照射した。 図8に水中
のTCBの分解特性を示す。光触媒を積層化して斜め方向
から光照射することにより、TCB分解反応のみかけの1
次反応速度定数は単一膜に垂直に光照射した場合の約4
倍にも高められ、単一膜の約1/4の時間(40分)で
迅速にCO2まで完全分解できた。光照射30分後の単位光
照射面積当たりの分解量を比較すると、積層化により、
塩化物イオンへの分解量で12倍、CO2への分解量で約
5倍に増加させることができた。
[Table 1] In either case, blank experiments, i.e., light irradiation in the state of containing no harmful substances, light irradiation in the state of containing harmful substances but no photocatalyst, and reaction in the dark in the presence of harmful substances and photocatalyst, Neither carbon dioxide nor hydrochloric acid was produced, and it was confirmed that the harmful substances were decomposed only by the photocatalytic action. Table 1
As is clear from the above, by adding the metal catalyst and PTFE to the photocatalyst layer, the decomposition rate of the harmful substances in the liquid phase and the gas phase can be significantly improved. Especially in water where the reduction reaction of dissolved oxygen is slow, the effect of PTFE is great,
-It can be seen that the TCB decomposition activity of TiO2-PTFE in water is more than twice as high as that of plain TiO2. Example 3 Next, an experimental example of a three-dimensional layered photocatalytic reaction will be described. The Pt-TiO2-PTFE photocatalyst of Example 2 supported on both sides of a Pyrex slide glass base material (26 mm x 38 mm) (effective surface area on one side: 10 cm2) was 10
The sheets were laminated and set in a Pyrex test container as shown in FIG. The harmful substance removal experiment was performed in the same manner as the above experiment, but the amount of TCB solution was 70 m
The amount of air containing 0.1% by volume of TCE was 120 ml. The light was applied to the cross section of the substrate at an incident angle of 30 degrees. Figure 8 shows the decomposition characteristics of TCB in water. By stacking photocatalysts and irradiating light obliquely, only 1
The second reaction rate constant is about 4 when a single film is vertically irradiated.
The CO2 can be rapidly decomposed to complete decomposition in about 1/4 of the time (40 minutes) of a single membrane. Comparing the decomposition amount per unit light irradiation area after 30 minutes of light irradiation, by layering,
It was possible to increase the amount of decomposition into chloride ions by 12 times, and the amount of decomposition into CO2 by about 5 times.

【0019】図9に空気中のTCEの分解特性を示す。積
層型装置でのTCEの分解速度は単一膜の約2倍に増加
し、60分で完全分解できた。単位光照射面積当たりの
TCE分解処理量も2倍以上に高められた。基材の肉厚を
薄くして、積層度を上げれば、さらに高い特性が期待で
きる。
FIG. 9 shows the decomposition characteristics of TCE in air. The decomposition rate of TCE in the stack type device was increased to about twice that of a single film, and it was possible to completely decompose in 60 minutes. Per unit of light irradiation area
The amount of TCE decomposition treatment was also more than doubled. If the thickness of the base material is reduced and the degree of stacking is increased, even higher characteristics can be expected.

【0020】[0020]

【発明の効果】上記の実施例から明らかなように、本発
明の薄膜半導体光触媒素子では、金属触媒とPTFE粒子の
付与によって電荷分離と酸素還元反応を加速できるた
め、単一の使用においても迅速な有害物の分解除去が可
能になる。さらに、基材に担持した光触媒素子を複数枚
間隔を置いて平行に配置して、半導体光触媒の表面に対
して低い入射角で光を照射する3次元積層化方式によ
り、分解速度、単位光照射面積当たりの処理能力ともに
大幅に向上させることができる。
As is apparent from the above examples, in the thin film semiconductor photocatalyst element of the present invention, the charge separation and the oxygen reduction reaction can be accelerated by the addition of the metal catalyst and the PTFE particles. It is possible to decompose and remove harmful substances. Further, the photocatalytic element supported on the base material is arranged in parallel at a plurality of intervals to irradiate light at a low incident angle to the surface of the semiconductor photocatalyst by the three-dimensional stacking method, and the decomposition rate and unit light irradiation. The processing capacity per area can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、金属触媒を担持した半導体光触媒によ
る有害物の分解反応の原理
FIG. 1 is a principle of decomposition reaction of harmful substances by a semiconductor photocatalyst supporting a metal catalyst.

【図2】図2は、本発明の薄膜半導体光触媒素子の作動
原理
FIG. 2 is a working principle of the thin film semiconductor photocatalytic element of the present invention.

【図3】図3は、本発明の薄膜半導体光触媒素子の光透
過性基材への保持の一実施例
FIG. 3 is an example of holding the thin film semiconductor photocatalyst element of the present invention on a light transmissive substrate.

【図4】図4は、本発明の一実施例である3次元積層型
光触媒反応装置とその光照射方法
FIG. 4 is a three-dimensional layered photocatalytic reaction device according to an embodiment of the present invention and a light irradiation method thereof.

【図5】図5は、本発明の薄膜半導体光触媒素子のガラ
ス繊維への保持の一実施例
FIG. 5 is an example of holding the thin film semiconductor photocatalyst element of the present invention on a glass fiber.

【図6】図6は、本発明の光触媒膜の作成方法(実施例
1、2および比較例1、2)
FIG. 6 is a method for producing a photocatalyst film of the present invention (Examples 1 and 2 and Comparative Examples 1 and 2).

【図7】図7は、本発明の一実施例である3次元積層型
光触媒反応実験装置
FIG. 7 is a three-dimensional layered photocatalytic reaction experimental apparatus which is an embodiment of the present invention.

【図8】図8は、単位光照射面積当たりのTCBの二酸化
炭素、塩化物イオンへの分解量。本発明による3次元積
層型光触媒反応実験装置に斜めから光照射(光照射面
積:16.1 cm2)した場合と単一膜(5 cm2)に垂直に光照
射した場合の比較。
FIG. 8 is a decomposition amount of TCB into carbon dioxide and chloride ions per unit irradiation area. Comparison between the case where the three-dimensional laminated photocatalytic reaction experimental device according to the present invention is obliquely irradiated with light (light irradiation area: 16.1 cm 2) and the case where the single film (5 cm 2) is vertically irradiated.

【図9】図9は、単位光照射面積当たりのTCEの二酸化
炭素への分解量。本発明による3次元積層型光触媒反応
実験装置に斜めから光照射(光照射面積:12.2 cm2)し
た場合と単一膜(10 cm2)に垂直に光照射した場合の比
較。
FIG. 9 is the decomposition amount of TCE into carbon dioxide per unit of light irradiation area. Comparison between the case where the three-dimensional laminated photocatalytic reaction experimental apparatus according to the present invention is obliquely irradiated with light (light irradiation area: 12.2 cm 2) and the case where the single film (10 cm 2) is vertically irradiated.

【符号の説明】[Explanation of symbols]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酸素との親和性を持ちかつ気体の流通路を
有する多孔性フッ素化合物膜内に、粒子径が0.005〜5μ
mの半導体光触媒粒子が分散していることを特徴とする
膜状半導体光触媒素子。
1. A particle size of 0.005 to 5 μm in a porous fluorine compound film having an affinity for oxygen and having a gas flow passage.
A film-like semiconductor photocatalytic element, wherein m semiconductor photocatalytic particles are dispersed.
【請求項2】白金、金、銀、パラジウム、ロジウム、ル
テニウム、鉄、コバルト、ニッケル、銅またはそれらの
合金のうちから選ばれた少なくとも1種の触媒を高分散
担持された請求項1の半導体光触媒粒子が、光透過性の
無機薄膜でコーティングされた高分子基材、又は光透過
性の無機基材、又は光反射率の高い無機又は金属基材上
に保持されたことを特徴とする膜状半導体光触媒素子。
2. The semiconductor according to claim 1, wherein at least one catalyst selected from the group consisting of platinum, gold, silver, palladium, rhodium, ruthenium, iron, cobalt, nickel, copper or alloys thereof is highly dispersed and supported. A film characterized in that the photocatalyst particles are held on a polymer base material coated with a light-transmitting inorganic thin film, a light-transmitting inorganic base material, or an inorganic or metal base material having a high light reflectance. Semiconductor photocatalyst element.
【請求項3】請求項1又は請求項2の膜状半導体光触媒
素子を保持する基材が板状または繊維状の基材であっ
て、かつ、この基材に保持された膜状半導体光触媒素子
が複数枚間隔を置いて平行に配置されており、この薄膜
半導体光触媒素子の表面に対して低い入射角を持った光
を照射する光源を備えていることを特徴とする半導体光
触媒反応装置。
3. A film-shaped semiconductor photocatalyst element, wherein the base material holding the film-shaped semiconductor photocatalyst element according to claim 1 or 2 is a plate-like or fibrous base material and is held by this base material. Are arranged in parallel at a plurality of intervals and are equipped with a light source for irradiating the surface of the thin film semiconductor photocatalytic element with light having a low incident angle.
JP8114096A 1996-04-11 1996-04-11 Thin film semiconductor photocatalyst element and reaction device using it Pending JPH09276707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8114096A JPH09276707A (en) 1996-04-11 1996-04-11 Thin film semiconductor photocatalyst element and reaction device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8114096A JPH09276707A (en) 1996-04-11 1996-04-11 Thin film semiconductor photocatalyst element and reaction device using it

Publications (1)

Publication Number Publication Date
JPH09276707A true JPH09276707A (en) 1997-10-28

Family

ID=14629019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8114096A Pending JPH09276707A (en) 1996-04-11 1996-04-11 Thin film semiconductor photocatalyst element and reaction device using it

Country Status (1)

Country Link
JP (1) JPH09276707A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005413A1 (en) * 1996-08-05 1998-02-12 Nippon Sheet Glass Co., Ltd. Photocatalyst and process for the preparation thereof
US6882459B2 (en) 2000-09-01 2005-04-19 Akira Fujishima Photoreactive devices, translucent members, ornaments, anticorrosive devices, devices for reducing oxygen and devices for controlling growth of microorganisms
JP2020172716A (en) * 2019-04-09 2020-10-22 東ソー株式会社 Manufacturing method of fluororesin staple fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005413A1 (en) * 1996-08-05 1998-02-12 Nippon Sheet Glass Co., Ltd. Photocatalyst and process for the preparation thereof
US6882459B2 (en) 2000-09-01 2005-04-19 Akira Fujishima Photoreactive devices, translucent members, ornaments, anticorrosive devices, devices for reducing oxygen and devices for controlling growth of microorganisms
JP2020172716A (en) * 2019-04-09 2020-10-22 東ソー株式会社 Manufacturing method of fluororesin staple fiber

Similar Documents

Publication Publication Date Title
Choi Pure and modified TiO 2 photocatalysts and their environmental applications
Nie et al. Room-temperature catalytic oxidation of formaldehyde on catalysts
Ji et al. Ordered mesoporous CeO2 synthesized by nanocasting from cubic Ia3d mesoporous MCM-48 silica: formation, characterization and photocatalytic activity
Kosaka et al. Comparison among the methods for hydrogen peroxide measurements to evaluate advanced oxidation processes: application of a spectrophotometric method using copper (II) ion and 2, 9-dimethyl-1, 10-phenanthroline
Ochiai et al. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification
CN104039450B (en) Light-catalysed metal oxide nano-material, pass through H2the purposes that the manufacture method that-plasma carries out processing, the debirs in water purify
Zorn et al. Catalytic and photocatalytic oxidation of ethylene on titania-based thin-films
Ohko et al. Photocatalytic oxidation of nitrogen dioxide with TiO2 thin films under continuous UV-light illumination
US20030150707A1 (en) Apparatus and method for photocatalytic purification and disinfection of fluids
JP2006256901A (en) Hydrogen production apparatus, hydrogen production method and hydrogen production system
Paz Composite titanium dioxide photocatalysts and the" adsorb & shuttle" approach: a review
Ibhadon et al. Photocatalytic activity of surface modified TiO2/RuO2/SiO2 nanoparticles for azo-dye degradation
CA2444385A1 (en) Apparatus and method for phtocatalytic purification and disinfection of water and ultrapure water
Ramanathan et al. Sol-gel derived ormosil-exfoliated graphite− TiO2 composite floating catalyst: photodeposition of copper
Yun et al. Reduction of nitrate in secondary effluent of wastewater treatment plants by Fe 0 reductant and Pd–Cu/graphene catalyst
Pei et al. Preparation and photocatalytic properties of TiO 2-Al 2 O 3 composite loaded catalysts
Pal et al. Size and structure-dependent photocatalytic activity of jingle-bell-shaped silica-coated cadmium sulfide nanoparticles for methanol dehydrogenation
JP2002320862A (en) Photocatalyst thin film in which metal is supported on titanium oxide thin film
KR100925247B1 (en) Photocatalyst, synthetic method and its application for wastewater treatment
CN110893341A (en) Photocatalyst dispersion liquid, photocatalyst composite material and photocatalyst device
JPH11335187A (en) Photocatalyst module and equipment for photocatalyst
JPH09276707A (en) Thin film semiconductor photocatalyst element and reaction device using it
JP2009262049A (en) Photocatalytic structure and method for producing the same
Mansouri et al. Synthesis and characterization of N-Doped ZnO-γAl2O3 nanoparticles for photo-catalytic application
Ghowsi et al. Synthesize of ZnO/NPs and investigation of its effect in reduction of electrochemical charge transfer resistance; application of it for photodecomposition of calcon (CI 15705) dye in various media

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080618

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090618

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees