JPH09275779A - Raising of plant and apparatus for raising - Google Patents

Raising of plant and apparatus for raising

Info

Publication number
JPH09275779A
JPH09275779A JP11976496A JP11976496A JPH09275779A JP H09275779 A JPH09275779 A JP H09275779A JP 11976496 A JP11976496 A JP 11976496A JP 11976496 A JP11976496 A JP 11976496A JP H09275779 A JPH09275779 A JP H09275779A
Authority
JP
Japan
Prior art keywords
plant
light
fluctuation component
growing
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11976496A
Other languages
Japanese (ja)
Other versions
JP3763160B2 (en
Inventor
Norifumi Hirota
憲史 弘田
Junji Hirama
淳司 平間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP11976496A priority Critical patent/JP3763160B2/en
Publication of JPH09275779A publication Critical patent/JPH09275779A/en
Application granted granted Critical
Publication of JP3763160B2 publication Critical patent/JP3763160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To regulate nutrient ingredients in a plant such as a glucide and vitamins with a small irradiation dose, promote the growth and reduce the power consumption by irradiating a plant with specific artificial light and raising the plant without changing the emission spectrum. SOLUTION: A plant 12 is irradiated with artificial light having a fluctuation component imparted to the luminance to promote the growth and raise the plant 12. The artificial light is a continuous light in the manner of a time series or intermittent pulsed light. The fluctuation component is preferably imparted to the luminance of the continuous light or the period and/or the luminance of the pulsed light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、植物に人工光を照
射して植物の生長を促進する植物育成方法および育成装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plant growing method and a growing device for irradiating a plant with artificial light to promote the growth of the plant.

【0002】[0002]

【従来の技術】従来、屋内での植物育成用人口光源とし
て、蛍光ランプあるいは高圧放電灯等の高輝度ランプが
用いられているが、これらの光源は発光のエネルギー効
率が悪く、また、ランプ点灯時における発熱防止のため
空調設備の併用が必要であり、更に植物の育成に無関係
な波長域の放射により無駄なエネルギーの消費が行われ
る等の欠点が指摘されていた。
2. Description of the Related Art Conventionally, fluorescent lamps or high-intensity lamps such as high-pressure discharge lamps have been used as artificial light sources for growing plants indoors. However, these light sources have poor energy efficiency of light emission and the lamp lighting. It has been pointed out that it is necessary to use an air conditioner together to prevent heat generation, and radiation of wavelengths unrelated to plant growth consumes unnecessary energy.

【0003】これらの光源の問題点を解決するものとし
てLED(発光ダイオード)が有用的であると考えられ
ていたが、植物の育成に必要である青色光を放射するL
EDがなかったため、植物育成用光源としての実用化は
ほとんど進まなかった。
Although LEDs (light emitting diodes) were considered to be useful as means for solving the problems of these light sources, L which emits blue light necessary for growing plants is used.
Since there was no ED, practical application as a light source for growing plants has hardly progressed.

【0004】1993年に高輝度の青色光を放射するL
EDの開発に成功し,LEDによる植物育成の試みが始
まった。青色LEDと赤色LEDを適当な割合で混合し
た光源を作成することによって、いろいろな植物の正常
な形態での育成の可能性が示唆された(園芸学会誌64
別1(1995):390−391)。
In 1993, L emitting high-intensity blue light
We succeeded in developing ED, and started an attempt to grow plants using LEDs. The possibility of growing various plants in a normal form was suggested by making a light source in which blue LEDs and red LEDs were mixed in an appropriate ratio (Journal of the Horticultural Society of Japan 64
Another 1 (1995): 390-391).

【0005】更に、周期100μs以下、デューティ比
50%、消費電力100W/m2 でLEDをパルス点灯
させると、連続光を比較して約20%の生育促進効果が
認められた(日本植物工場学会平成7年度大会、学術講
演要旨集:17−2)。
Further, when the LED was pulse-lighted with a cycle of 100 μs or less, a duty ratio of 50% and a power consumption of 100 W / m 2 , a growth promoting effect of about 20% was recognized in comparison with continuous light (Japan Plant Factory Society). 1995 Annual Meeting, Academic Lecture Summary: 17-2).

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、発光
スペクトルを変えることなく、光の輝度及びパルス周期
を電気的に制御できる特性に注目し、連続光或いはパル
ス光でより効率良く植物を生育させることができる植物
育成方法及び育成装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to pay attention to the characteristic that the brightness of light and the pulse period can be electrically controlled without changing the emission spectrum. An object of the present invention is to provide a plant growing method and a growing device capable of growing a plant.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の方法は、植物に人工光を照射して植物の成
長を促進する植物育成方法において、前記人工光の輝度
にゆらぎ成分を与えることを特徴とする。
In order to achieve the above object, the method of the present invention is a plant growing method for accelerating the growth of a plant by irradiating the plant with artificial light. Is given.

【0008】また、本発明の方法は、植物に人工光を照
射して植物の生長を促進する植物育成方法において、前
記人工光は時系列的に連続する連続光であり、この連続
光の輝度にゆらぎ成分を与えることを特徴とする。
Further, the method of the present invention is a plant growing method for irradiating a plant with artificial light to promote the growth of the plant, wherein the artificial light is continuous light which is continuous in time series, and the brightness of the continuous light is high. It is characterized by giving a fluctuation component to the.

【0009】また、本発明の方法は、植物に人工光を照
射して植物の生長を促進する植物育成方法において、前
記人工光は時系列的に断続するパルス光であり、このパ
ルス光の周期および/または輝度にゆらぎ成分を与える
ことを特徴とする。ここで、前記ゆらぎ成分は、パルス
光の非発光周期に付与してもよく、或いは、パルス光の
発光周期に付与してもよい。
Further, the method of the present invention is a plant growing method for irradiating a plant with artificial light to promote the growth of the plant, the artificial light being pulsed light which is intermittent in time series, and the cycle of the pulsed light. And / or providing a fluctuation component to the brightness. Here, the fluctuation component may be added to the non-light emission cycle of the pulsed light, or may be added to the light emission cycle of the pulsed light.

【0010】また、本発明の装置は、植物に人口光を照
射する発光ダイオードと、この発光源に駆動電流を供給
する駆動手段と、前記駆動電流にゆらぎ成分を混入させ
る制御信号を前記駆動手段に与える制御手段とを備えた
ことを特徴とする。ここで、前記発光ダイオードは、具
体的には、複数の赤色発光ダイオード、複数の緑色発光
ダイオードおよび複数の青色発光ダイオードを含む発光
ダイオード群から成る。前記発光ダイオードに駆動電流
を供給する際に、前記駆動電流を時系列的に連続する電
流として、制御手段は前記駆動電流の振幅にゆらぎ成分
を与えるようにしてもよく、また、別の態様では、前記
駆動電流を時系列的に断続するパルス電流とし、制御手
段は前記パルス電流のオフデューティの周期またはオン
デューティの周期にゆらぎ成分を与えるようにしてもよ
い。
Further, the device of the present invention comprises a light emitting diode for irradiating a plant with artificial light, a driving means for supplying a driving current to the light emitting source, and a control signal for mixing a fluctuation component into the driving current. And a control means for giving to. Here, the light emitting diode specifically includes a light emitting diode group including a plurality of red light emitting diodes, a plurality of green light emitting diodes, and a plurality of blue light emitting diodes. When supplying a drive current to the light emitting diode, the drive current may be a current that is continuous in time series, and the control means may give a fluctuation component to the amplitude of the drive current. The drive current may be a pulse current that is intermittently time-sequential, and the control means may give a fluctuation component to the off-duty cycle or the on-duty cycle of the pulse current.

【0011】以上の本発明に係る植物育成方法および育
成装置によれば、少ない照射量で植物内成分の糖質、ビ
タミン類等の栄養成分を調節して生長促進を図ることが
でき、また消費電力の軽減を達成することができる。
According to the plant growing method and growing apparatus of the present invention described above, it is possible to adjust the nutrient components such as sugars and vitamins in the plant with a small irradiation amount to promote the growth, and to consume the plant. Power savings can be achieved.

【0012】[0012]

【発明の実施の形態】以下、図面に基づいて本発明の好
適な実施の形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below with reference to the drawings.

【0013】(I)原理 一般に、植物体に人口光を照射すると、植物の葉に電圧
(葉面電位)が発生し、この葉面電位による植物内のイ
オン電流量と植物の成長とが関係していることは知られ
ている。この場合に、照射する人口光に「ゆらぎ成分」
を与えることにより、照射光がより自然光に近づくこと
となり、ゆらぎ成分を付加した結果、植物内の電位が高
電位となってイオン電流が増加し、植物の生長が促進さ
れることが確認された。
(I) Principle In general, when a plant body is irradiated with artificial light, a voltage (leaf surface potential) is generated on the leaf of the plant, and the ionic current amount in the plant due to the leaf surface potential is related to the growth of the plant. It is known to be doing. In this case, the “fluctuation component” is added to the artificial light that is emitted.
It was confirmed that the irradiation light became closer to natural light by adding the fluctuation component, and as a result, the potential inside the plant became high potential, the ionic current increased, and the growth of the plant was promoted. .

【0014】図2に、光源としてLEDを用い、植物体
(例えば、ウコギ科のカポック等)にゆらぎ成分を付加
したLEDからの光を照射した場合、ゆらぎ成分を付加
しない場合の葉面電位を測定し、その葉面電位の変化
(葉面電位差)を示す。光照射条件を次のように設定し
て葉面電位の測定を行った。なお、測定系の構成は後述
する植物育成装置とともに説明する。 測定条件は、次
の通りである 期間T1…LED=ON (点灯)、周期的ゆらぎ成分
付加 期間T2…LED=OFF(消灯) 期間T1…LED=ON (点灯)、周期的ゆらぎ成分
なし 図2からわかるように、ゆらぎ成分を付加した期間T1
での葉面電位差δ1(約1.37mV)は、ゆらぎ成分
を付加しない期間T3での葉面電位差δ2(約1.22
mV)に対して明らかに高い値を示している。なお、図
2に示されるように、LEDのON、OFF時の葉面電
位波形では、LEDがONになると、2分程度の過分極
が生じた後、数mVの脱分極が生じ、5分程度で平衡値
に達する。脱分極値は、LEDの輝度と相関関係があ
る。
In FIG. 2, when an LED is used as a light source and light is emitted from an LED in which a fluctuation component is added to a plant body (eg, Kapok of the family Araliaceae), the leaf potential when the fluctuation component is not added is shown. It is measured and the change in leaf potential (leaf potential difference) is shown. The light irradiation conditions were set as follows, and the leaf surface potential was measured. The configuration of the measurement system will be described together with the plant growing device described later. The measurement conditions are as follows: period T1 ... LED = ON (lighting), periodic fluctuation component addition period T2 ... LED = OFF (lighting off) period T1 ... LED = ON (lighting), no periodic fluctuation component As can be seen from the period T1 in which the fluctuation component is added
The leaf surface potential difference δ1 (about 1.37 mV) of the leaf potential difference δ2 (about 1.22) during the period T3 in which the fluctuation component is not added.
It shows a clearly high value for mV). As shown in FIG. 2, in the leaf potential waveform when the LED is turned on and off, when the LED is turned on, hyperpolarization of about 2 minutes occurs, followed by depolarization of several mV and 5 minutes. The equilibrium value is reached in some degree. The depolarization value has a correlation with the brightness of the LED.

【0015】このような実験を10回繰り返し、その値
をランダマイズした図を図3に示す。この図3からわか
るように、LEDにゆらぎ成分を付加した場合には、葉
面電位差量δの値が高くなっている(平均値の差の検定
結果において危険率5%で有意差有り)。このように、
ゆらぎ成分を付加することにより、葉面電位の上昇、イ
オン電流の増加が可能であり、植物をより効率良く活性
化し、生長促進を図ることができるのである。
FIG. 3 shows a diagram in which such an experiment is repeated 10 times and the values are randomized. As can be seen from FIG. 3, when the fluctuation component is added to the LED, the value of the leaf surface potential difference amount δ is high (there is a significant difference at the risk rate of 5% in the test result of the average value difference). in this way,
By adding the fluctuation component, the leaf surface potential can be increased and the ionic current can be increased, so that the plant can be activated more efficiently and the growth can be promoted.

【0016】(II)植物育成装置 図1に、上記原理を応用した本発明に係る植物育成装置
の実施の形態を示す。この植物育成装置は葉面電位の測
定系を含んでいる。
(II) Plant Growing Device FIG. 1 shows an embodiment of a plant growing device according to the present invention to which the above principle is applied. This plant growing device includes a measurement system of leaf surface potential.

【0017】図1において、シールドボックス10内に
は、育成対象である植物体12が配置されている。この
植物体12に面して、光源となるLED基板14が配置
されているいる。
In FIG. 1, a plant 12 to be grown is arranged in a shield box 10. An LED substrate 14 serving as a light source is arranged facing the plant body 12.

【0018】LED基板14は、赤色LED、緑色LE
Dおよび青色LEDを含む高輝度型LED素子が多数
(例えば、数100個)配置されて成る。このLED基
板14と植物体12とは、光の照射効率上、相互に接近
しているのが好ましい。この点に関し、従来の光源では
発熱量が多く、植物への熱的影響が無視できなかった
が、本実施の形態では温度上昇の少ないLEDを使用し
ているため、光源の発熱による植物体12への熱的影響
を考慮しなくてよく、したがって光の照射効率の向上が
可能である。以上のLED基板14は、コンピュータ1
6により制御される。
The LED board 14 is a red LED and a green LE.
A large number (for example, several hundreds) of high-intensity LED elements including D and blue LEDs are arranged. The LED substrate 14 and the plant 12 are preferably close to each other in terms of light irradiation efficiency. In this regard, the conventional light source generates a large amount of heat, and the thermal influence on the plant cannot be ignored. However, in the present embodiment, since the LED with a small temperature rise is used, the plant body 12 due to the heat generation of the light source 12 is used. It is not necessary to consider the thermal influence on the light, and therefore, the irradiation efficiency of light can be improved. The LED board 14 is the computer 1
Controlled by 6.

【0019】コンピュータ16としては、パーソナルコ
ンピュータの使用が可能であり、メモリ内に格納された
光照射制御ログラムにしたがって、LED基板14の輝
度制御を行う。この輝度制御に当たっては、後述するよ
うに、1/f〜1/f2 のゆらぎ制御が行われる。
A personal computer can be used as the computer 16, and the brightness of the LED substrate 14 is controlled according to the light irradiation control program stored in the memory. In this brightness control, fluctuation control of 1 / f to 1 / f 2 is performed as described later.

【0020】パソコン16からの制御出力信号(例え
ば、8ビット)は出力ポート18を介してD/A変換ボ
ード20によりアナログ電圧信号(例えば、数ボルト)
に変換され、変換されたアナログ電圧信号はV/I変換
ボード22により駆動電流に変換されてLED基板14
に供給される。
A control output signal (for example, 8 bits) from the personal computer 16 is an analog voltage signal (for example, several volts) by the D / A conversion board 20 via the output port 18.
And the converted analog voltage signal is converted into a driving current by the V / I conversion board 22,
Is supplied to.

【0021】(III)ゆらぎ制御 図3〜図8に本実施の形態によるゆらぎ成分が付加され
た各種の光波形を示す。これらのゆらぎ制御の光波形の
うち、いずれを用いるかは、育成対象である植物体12
の種類や育成態様(植物の大きさ、形状等)に合わせて
適宜選択して採用する。ゆらぎ成分自体は1/f〜1/
2 のゆらぎ成分であり、その付加の態様として、照射
光の種類には連続光とパルス光の2種類が考えられ、ゆ
らぎ成分の態様には図3〜図8に示すようなものがあ
る。
(III) Fluctuation Control FIGS. 3 to 8 show various optical waveforms to which the fluctuation component according to the present embodiment is added. Which of these fluctuation-controlling optical waveforms is used depends on the plant 12 to be grown.
It is appropriately selected and adopted according to the type and growing mode (size, shape, etc. of plant). The fluctuation component itself is 1 / f to 1 /
It is a fluctuation component of f2, and two types of irradiation light can be considered as continuous light and pulsed light as modes of addition, and there are modes of fluctuation component as shown in FIGS. 3 to 8. .

【0022】図3に、照射光に連続光を用い、この連続
光に輝度ゆらぎを付加する例を示す。この例では、連続
光の振幅にゆらぎ成分に対応した変化が与えられてゆら
ぎ制御が行われる。実際には、図示するように時間幅t
1の周期ごとに振幅値を変化させることにより、ゆらぎ
の付加が可能である。
FIG. 3 shows an example in which continuous light is used as irradiation light and brightness fluctuation is added to this continuous light. In this example, a change corresponding to the fluctuation component is given to the amplitude of the continuous light, and the fluctuation control is performed. In practice, the time width t
Fluctuations can be added by changing the amplitude value for each cycle.

【0023】図5は、照射光にパルス光を使用し、この
パルス光の非発光周期にゆらぎ成分を付加する例を示し
ている。すなわち、パルス光の波高値は一定であり、パ
ルス光の発光時間幅t2は一定に維持され、非発光周期
t3がゆらぎ成分に対応して変化するよう制御される。
FIG. 5 shows an example in which pulsed light is used as the irradiation light and a fluctuation component is added to the non-emission cycle of this pulsed light. That is, the crest value of the pulsed light is constant, the emission time width t2 of the pulsed light is maintained constant, and the non-emission period t3 is controlled so as to change corresponding to the fluctuation component.

【0024】図6は照射光にパルス光が使用され、この
パルス光の発光周期にゆらぎ成分を付加する例を示す。
すなわち、非発光時間幅t4は一定に設定されるが、パ
ルス光の発光時間幅t4がゆらぎ成分に応じて変化する
よう制御される。
FIG. 6 shows an example in which pulsed light is used as the irradiation light and a fluctuation component is added to the light emission cycle of this pulsed light.
That is, the non-light emission time width t4 is set constant, but the light emission time width t4 of the pulsed light is controlled so as to change according to the fluctuation component.

【0025】図7は照射光にパルス光が使用され、パル
ス光に段階的な輝度ゆらぎが与えられる例を示す。すな
わち、パルス光の発光時間t6が一定に設定されるとと
もに、パルス光の非発光時間幅t7も一定に設定され、
発光輝度がゆらぎ成分に応じて段階的に変化するよう制
御される。
FIG. 7 shows an example in which pulsed light is used as the irradiation light and the pulsed light is given stepwise brightness fluctuation. That is, the light emission time t6 of the pulse light is set constant, and the non-light emission time width t7 of the pulse light is also set constant.
The emission brightness is controlled so as to change stepwise according to the fluctuation component.

【0026】図8は、パルス光が使用され、パルス光に
段階的な輝度ゆらぎが与えられるとともに、パルス光の
非発光周期にゆらぎ成分が与えられる例を示す。すなわ
ち、パルス光の発光時間幅t8は一定に設定されるが、
発光輝度が段階的に変化し、且つ、非発光時間幅t9
がゆらぎ成分に対応して変化するよう制御される。
FIG. 8 shows an example in which pulsed light is used, the pulsed light is given stepwise luminance fluctuations, and a fluctuation component is given to the non-emission cycle of the pulsed light. That is, the emission time width t8 of the pulsed light is set to be constant,
The emission brightness changes stepwise, and the non-emission time width t9
Is controlled so as to change in accordance with the fluctuation component.

【0027】次に、再び図1を参照して、葉面電位測定
系について説明する。LED基板14からの照射光の植
物体12への影響は、照射によって発生する葉面電位を
測定することにより評価されることは先に述べた通りで
ある。この葉面電位の測定検出について、図1に示す植
物体12の葉の拡大図Aを用いて以下説明する。
Next, the leaf surface potential measuring system will be described with reference to FIG. 1 again. As described above, the influence of the irradiation light from the LED substrate 14 on the plant 12 is evaluated by measuring the leaf surface potential generated by the irradiation. The measurement and detection of the leaf surface potential will be described below with reference to the enlarged view A of the leaf of the plant 12 shown in FIG.

【0028】葉24の主葉脈26には、葉面電位検出用
のプローブである皿電極(Ag−Acl)28(+
側)、30(−側)が配置されている。なお、植物体1
2の葉面電位を測定する際には、外部からの磁界や電界
等の影響によるノイズを除去するために、植物体12を
電磁・静電シールドボックス10内に収容して葉面電位
を測定し、シールドボックス10は内部の温度・湿度が
常に一定になるように管理される。
A main electrode vein 26 of the leaf 24 has a dish electrode (Ag-Acl) 28 (+) which is a probe for detecting a leaf surface potential.
Side) and 30 (-side) are arranged. In addition, plant 1
2. When measuring the leaf surface potential, the plant body 12 is housed in the electromagnetic / electrostatic shield box 10 in order to remove noise due to the influence of an external magnetic field or electric field, and the leaf surface potential is measured. However, the shield box 10 is managed so that the internal temperature and humidity are always constant.

【0029】LED基板14からの光の照射により、植
物体12の葉面電位が変化すると、皿電極28、30で
の検出電位は好感度・低ノイズ型の差動増幅器32によ
り増幅され、その増幅検出電位はA/D変換ボード34
によりディジタル値に変換された後、入力ポート36を
介してコンピュータ16に入力される。
When the leaf potential of the plant 12 changes due to the irradiation of light from the LED substrate 14, the potential detected at the dish electrodes 28 and 30 is amplified by the differential amplifier 32 of good sensitivity and low noise. Amplification detection potential is A / D conversion board 34
After being converted into a digital value by, the data is input to the computer 16 through the input port 36.

【0030】コンピュータ16は、この入力信号に基づ
いて、LED基板14からの照射による植物体の影響を
分析評価し、その測定結果を外部に表示し、また、LE
D基板14からの光の照射量のフィードバック制御、あ
るいはLED基板14と植物体12との相対距離を一定
に保つようフィードバック制御を行う。
Based on this input signal, the computer 16 analyzes and evaluates the effect of the plant body due to the irradiation from the LED substrate 14, displays the measurement result on the outside, and also LE
Feedback control of the irradiation amount of light from the D substrate 14 or feedback control is performed so as to keep the relative distance between the LED substrate 14 and the plant 12 constant.

【0031】必要な場合には、LED基板14の高さ位
置を植物体12の成長に合わせて自動調整するようにす
ることができる。この自動高さ調整は、例えば、LED
基板14にフォトトランジスタ等の光センサを設け、L
EDの葉面での反射光を光センサによって検出し、検出
光が所定の値になるようにLED基板14を適当な駆動
手段(モータ、流体圧シリンダ等)により制御するよう
に構成する。
If necessary, the height position of the LED substrate 14 can be automatically adjusted according to the growth of the plant body 12. This automatic height adjustment is performed by, for example, LED
An optical sensor such as a phototransistor is provided on the substrate 14, and L
The light reflected on the leaf surface of the ED is detected by an optical sensor, and the LED substrate 14 is controlled by an appropriate driving means (motor, fluid pressure cylinder, etc.) so that the detected light has a predetermined value.

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
植物育成用発光源からの光の輝度および/または周期に
ゆらぎを付加しており、植物への照射量が同じであった
としてもゆらぎを付加しない場合と比較して植物を効率
的に育成することができる。
As described above, according to the present invention,
Fluctuations are added to the brightness and / or cycle of the light from the light source for growing plants, and even if the amount of irradiation to the plants is the same, the plants are efficiently grown compared to the case where no fluctuation is added. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係る植物育成装置の構成
を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a plant growing device according to an embodiment of the present invention.

【図2】LEDからの光にゆらぎ成分を付加した場合と
ゆらぎ成分を付加しない場合との葉面電位波形を示すグ
ラフ図である。
FIG. 2 is a graph showing leaf surface potential waveforms when a fluctuation component is added to light from an LED and when a fluctuation component is not added.

【図3】LEDからの光にゆらぎ成分を付加した場合と
ゆらぎ成分を付加しない場合との葉面電位変化量を示す
グラフ図である。
FIG. 3 is a graph showing a leaf surface potential change amount when a fluctuation component is added to light from an LED and when a fluctuation component is not added.

【図4】連続光に段階的な輝度ゆらぎを与えた光波形図
である。
FIG. 4 is an optical waveform diagram in which continuous light is given stepwise brightness fluctuations.

【図5】パルス光の非発光周期にゆらぎ成分を与えた光
波形図である。
FIG. 5 is an optical waveform diagram in which a fluctuation component is added to the non-emission cycle of pulsed light.

【図6】パルス光の発光周期にゆらぎ成分を与えた光波
形図である。
FIG. 6 is an optical waveform diagram in which a fluctuation component is added to the light emission cycle of pulsed light.

【図7】パルス光に段階的な輝度ゆらぎを与えた光波形
図である。
FIG. 7 is an optical waveform diagram in which pulsed light is given stepwise brightness fluctuations.

【図8】パルス光に段階的な輝度ゆらぎを与えるととも
に、該パルス光の非発光周期にゆらぎ成分を与えた光波
形図である。
FIG. 8 is an optical waveform diagram in which the pulsed light is given a stepwise luminance fluctuation and a fluctuation component is given to the non-light emission cycle of the pulsed light.

【符号の説明】[Explanation of symbols]

10 シールドボックス 12 植物体 14 LED基板 16 コンピュータ 24 葉 26 主葉脈 28 +皿電極 30 −皿電極 δ1、δ2 葉面電位差 10 shield box 12 plant 14 LED substrate 16 computer 24 leaf 26 main leaf vein 28 + plate electrode 30-plate electrode δ1, δ2 leaf surface potential difference

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 植物に人工光を照射して植物の生長を促
進する植物育成方法において、前記人工光の輝度にゆら
ぎ成分を与えることを特徴とする植物育成方法。
1. A method for growing plants, which comprises irradiating a plant with artificial light to promote the growth of the plant, wherein a fluctuation component is added to the brightness of the artificial light.
【請求項2】 植物に人工光を照射して植物の生長を促
進する植物育成方法において、前記人工光は時系列的に
連続する連続光であり、この連続光の輝度にゆらぎ成分
を与えることを特徴とする植物育成方法。
2. A method for growing a plant, which comprises irradiating a plant with artificial light to promote the growth of the plant, wherein the artificial light is continuous light that is continuous in time series, and a fluctuation component is added to the brightness of the continuous light. A method for growing plants, characterized by:
【請求項3】 植物に人工光を照射して植物の生長を促
進する植物育成方法において、前記人工光は時系列的に
断続するパルス光であり、このパルス光の周期および/
または輝度にゆらぎ成分を与えることを特徴とする植物
育成方法。
3. A method for growing a plant, which comprises irradiating a plant with artificial light to promote the growth of the plant, wherein the artificial light is pulsed light that is intermittent in time series, and the period of the pulsed light and / or
Alternatively, a method for growing a plant is characterized by providing a fluctuation component to brightness.
【請求項4】 植物に人口光を照射する発光ダイオード
と、この発光源に駆動電流を供給する駆動手段と、前記
駆動電流にゆらぎ成分を混入させる制御信号を前記駆動
手段に与える制御手段とを備えたことを特徴とする植物
育成装置。
4. A light emitting diode for irradiating a plant with artificial light, a drive means for supplying a drive current to the light emitting source, and a control means for giving a control signal for mixing a fluctuation component to the drive current to the drive means. A plant growing device characterized by being provided.
JP11976496A 1996-04-17 1996-04-17 Plant growing method and growing apparatus Expired - Fee Related JP3763160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11976496A JP3763160B2 (en) 1996-04-17 1996-04-17 Plant growing method and growing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11976496A JP3763160B2 (en) 1996-04-17 1996-04-17 Plant growing method and growing apparatus

Publications (2)

Publication Number Publication Date
JPH09275779A true JPH09275779A (en) 1997-10-28
JP3763160B2 JP3763160B2 (en) 2006-04-05

Family

ID=14769612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11976496A Expired - Fee Related JP3763160B2 (en) 1996-04-17 1996-04-17 Plant growing method and growing apparatus

Country Status (1)

Country Link
JP (1) JP3763160B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062070A1 (en) * 2000-02-22 2001-08-30 Ccs Inc. Illuminator for plant growth
WO2002003777A1 (en) 2000-07-07 2002-01-17 Cosmo Plant Co.,Ltd Method of producing plants, plant cultivating device, and light-emitting panel
JP2002223636A (en) * 2001-01-29 2002-08-13 Rabo Sufia Kk Plant culture device using bulk type lens
JP2011182781A (en) * 2010-02-15 2011-09-22 Institute Of National Colleges Of Technology Japan Plant cultivation system
US9526215B2 (en) 2013-03-05 2016-12-27 Xiant Technologies, Inc. Photon modulation management system
US9560837B1 (en) 2013-03-05 2017-02-07 Xiant Technologies, Inc. Photon modulation management system for stimulation of a desired response in birds
US9844209B1 (en) 2014-11-24 2017-12-19 Xiant Technologies, Inc. Photon modulation management system for stimulation of a desired response in birds
US10182557B2 (en) 2013-03-05 2019-01-22 Xiant Technologies, Inc. Photon modulation management system for stimulation of a desired response in birds
EP3284337A4 (en) * 2015-04-14 2019-02-20 Kowa Company, Ltd. Illumination system for plant cultivation
JP2020061969A (en) * 2018-10-16 2020-04-23 学校法人立命館 Plant production method and light source system
US10638669B2 (en) 2014-08-29 2020-05-05 Xiant Technologies, Inc Photon modulation management system
US11058889B1 (en) 2017-04-03 2021-07-13 Xiant Technologies, Inc. Method of using photon modulation for regulation of hormones in mammals
US11278009B2 (en) 2013-03-05 2022-03-22 Xiant Technologies, Inc. Photon modulation management system for stimulation of a desired response in birds

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062070A1 (en) * 2000-02-22 2001-08-30 Ccs Inc. Illuminator for plant growth
JPWO2001062070A1 (en) * 2000-02-22 2004-01-15 シーシーエス株式会社 Lighting equipment for growing plants
US8074397B2 (en) 2000-02-22 2011-12-13 Ccs Inc. Illuminator for plant growth
WO2002003777A1 (en) 2000-07-07 2002-01-17 Cosmo Plant Co.,Ltd Method of producing plants, plant cultivating device, and light-emitting panel
JP2002223636A (en) * 2001-01-29 2002-08-13 Rabo Sufia Kk Plant culture device using bulk type lens
JP2011182781A (en) * 2010-02-15 2011-09-22 Institute Of National Colleges Of Technology Japan Plant cultivation system
US10182557B2 (en) 2013-03-05 2019-01-22 Xiant Technologies, Inc. Photon modulation management system for stimulation of a desired response in birds
US10609909B2 (en) 2013-03-05 2020-04-07 Xiant Technologies, Inc. Photon modulation management system for stimulation of a desired response in birds
US11278009B2 (en) 2013-03-05 2022-03-22 Xiant Technologies, Inc. Photon modulation management system for stimulation of a desired response in birds
US9907296B2 (en) 2013-03-05 2018-03-06 Xiant Technologies, Inc. Photon modulation management system for stimulation of a desired response in birds
US9526215B2 (en) 2013-03-05 2016-12-27 Xiant Technologies, Inc. Photon modulation management system
US9560837B1 (en) 2013-03-05 2017-02-07 Xiant Technologies, Inc. Photon modulation management system for stimulation of a desired response in birds
US10638669B2 (en) 2014-08-29 2020-05-05 Xiant Technologies, Inc Photon modulation management system
US11832568B2 (en) 2014-08-29 2023-12-05 Xiant Technologies, Inc. Photon modulation management system
US10709114B2 (en) 2014-11-24 2020-07-14 Xiant Technologies, Inc. Photon modulation management system for stimulation of a desired response in birds
US9844209B1 (en) 2014-11-24 2017-12-19 Xiant Technologies, Inc. Photon modulation management system for stimulation of a desired response in birds
US11470822B2 (en) 2014-11-24 2022-10-18 Xiant Technologies, Inc. Photon modulation management system for stimulation of a desired response in birds
US10225899B2 (en) 2015-04-14 2019-03-05 Kowa Company, Ltd. Light system for plant cultivation
EP3284337A4 (en) * 2015-04-14 2019-02-20 Kowa Company, Ltd. Illumination system for plant cultivation
US11058889B1 (en) 2017-04-03 2021-07-13 Xiant Technologies, Inc. Method of using photon modulation for regulation of hormones in mammals
US11833366B2 (en) 2017-04-03 2023-12-05 Xiant Technologies, Inc. Method of using photon modulation for regulation of hormones in mammals
JP2020061969A (en) * 2018-10-16 2020-04-23 学校法人立命館 Plant production method and light source system

Also Published As

Publication number Publication date
JP3763160B2 (en) 2006-04-05

Similar Documents

Publication Publication Date Title
JP3763160B2 (en) Plant growing method and growing apparatus
CN1246913C (en) Illuminator for plant growth
US6554450B2 (en) Artificial lighting apparatus for young plants using light emitting diodes as light source
US6028694A (en) Illumination device using pulse width modulation of a LED
US8299722B2 (en) Time division light output sensing and brightness adjustment for different spectra of light emitting diodes
US6474838B2 (en) Artificial lighting apparatus for young plants using light emitting diodes as light source
RU2256305C2 (en) Controlled-illumination lighting unit built around light-emitting diodes (alternatives)
FI88245C (en) FOERFARANDE OCH ANORDNING FOER BELYSNING AV FROEN OCH PLANTOR
US20010047618A1 (en) Lighting apparatus capable of adjusting light quality, duty ratio and frequency in a plant growth chamber using light emitting diodes
TWI526118B (en) Led brightness control by variable frequency modulation
CN1947471A (en) Method and apparatus for optimizing power efficiency in light emitting device arrays
CN104936355A (en) Led lighting system with accurate current control
WO2010068538A1 (en) Light emitting diode based lighting system with time division ambient light feedback response
US4449075A (en) Electroluminescent lamp driver
JP2006304610A (en) Method and device for cultivating lettuce
JP3163826U (en) Plant lighting system
US11950548B2 (en) Growth enhancement using scalar effects and light frequency manipulation
US20070252530A1 (en) Efficient lighting
KR101394486B1 (en) light irradition apparatus for plant
JPH1041068A (en) Driving of electroluminescent element
JPS61146122A (en) Illumination apparatus for growing plant
US20060232501A1 (en) Method and apparatus for implementing a pulse skip method of controlling light intensity
Ferguson et al. Imitating broadband diurnal light variations using solid state light sources
CN210381396U (en) PWM constant current source drive control device
JPS60105435A (en) Illumination apparatus for growing plant

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060109

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees