JPH09275379A - Method and device for measuring adjacent channel leakage power - Google Patents

Method and device for measuring adjacent channel leakage power

Info

Publication number
JPH09275379A
JPH09275379A JP8084995A JP8499596A JPH09275379A JP H09275379 A JPH09275379 A JP H09275379A JP 8084995 A JP8084995 A JP 8084995A JP 8499596 A JP8499596 A JP 8499596A JP H09275379 A JPH09275379 A JP H09275379A
Authority
JP
Japan
Prior art keywords
frequency band
signal
carrier
adjacent channel
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8084995A
Other languages
Japanese (ja)
Inventor
Toshiaki Takiguchi
敏明 滝口
Jun Aoki
純 青木
Fumi Nakamura
文 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8084995A priority Critical patent/JPH09275379A/en
Publication of JPH09275379A publication Critical patent/JPH09275379A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analogue/Digital Conversion (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Noise Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure an adjacent channel leakage power of a transmitter at a high dynamic level by providing an arithmetic unit used to control amplification of a signal of a normal system to measure a carrier power and a signal of a notch system amplifying a signal at a detuned frequency band other than the carrier frequency. SOLUTION: An arithmetic unit 18 controls switches 11A, 11B to the position of an amplifier 12 to receive an input signal of a normal system. The input signal is optimizingly amplified by the amplifier 12 and the optimized input level is given to an A/D converter 15. Then the switches 11A, 11B are thrown to the position of the notch system. The input level of the input signal is optimized by an amplifier 13 and given to a band limit filter 14, in which a carrier frequency band signal is blocked and the resulting signal is fed to an A/D converter 15. The digital signal obtained by the A/D converter 15 is stored in a waveform memory 16. Then a correction value obtained in the case of arithmetic operation of the normal system is taken into acount and the arithmetic unit 18 executes Fourier transformation similarly to the case with the signal of the normal system so as to measure the adjacent channel leakage power at the deturned frequency band.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ディジタル無線通
信方式における高ダイナミック隣接チャネル漏洩電力測
定方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly dynamic adjacent channel leakage power measuring method and apparatus in a digital wireless communication system.

【0002】[0002]

【従来の技術】近年、日本におけるディジタル通信方式
として、PHS(第2世代コードレス電話システム)、
PDC(ディジタル自動車電話システム)が主流となっ
てきており、測定器分野においても、ディジタル通信方
式に対応した高精度の測定器開発がタイムリーに要求さ
れている。
2. Description of the Related Art In recent years, PHS (second generation cordless telephone system) has been used as a digital communication system in Japan.
PDC (Digital Car Phone System) is becoming mainstream, and in the field of measuring instruments, development of highly accurate measuring instruments corresponding to the digital communication system is required in a timely manner.

【0003】以下に従来の隣接チャネル漏洩電力測定に
ついて説明する。図4は、従来の隣接チャネル漏洩電力
測定装置の構成を示すブロック図である。入力端41よ
り入力信号を受けて、適正レベルにするための増幅回路
42と、アナログ信号をディジタル信号に変換するため
のA/D変換器43と、変換されたデータを格納する波
形メモリ44と、記憶された波形メモリ44からディジ
タル信号により演算をおこなうための演算装置45と、
演算結果を記憶する演算メモリ46とを備えている。
The conventional adjacent channel leakage power measurement will be described below. FIG. 4 is a block diagram showing a configuration of a conventional adjacent channel leakage power measuring device. An amplifier circuit 42 for receiving an input signal from the input terminal 41 and setting it to an appropriate level, an A / D converter 43 for converting an analog signal into a digital signal, and a waveform memory 44 for storing the converted data. An arithmetic unit 45 for performing an arithmetic operation from the stored waveform memory 44 with a digital signal,
And a calculation memory 46 for storing the calculation result.

【0004】以上のように構成された場合の動作につい
て以下に説明する。入力端より入力信号を受けて演算装
置にて演算するために、アナログ信号をディジタル信号
に変換するA/D変換器43を使用する。ディジタル変
換された信号は波形メモリ44に取り込まれ演算メモリ
46に転送される。演算装置45を使用し測定をおこな
う場合には、通常A/D変換器43を使用する。A/D
変換器43が12ビット分解能であれば単体が補償する
ダイナミックレンジとして68dB程度有している。し
かし、ディジタル通信方式にて送出許容誤差を含め測定
器として67dB以上の測定能力が必要とされている。
The operation in the case of the above configuration will be described below. An A / D converter 43 for converting an analog signal into a digital signal is used in order to receive an input signal from the input end and perform an operation in an arithmetic unit. The digitally converted signal is taken into the waveform memory 44 and transferred to the arithmetic memory 46. When the measurement is performed using the arithmetic unit 45, the A / D converter 43 is usually used. A / D
If the converter 43 has a 12-bit resolution, it has about 68 dB as a dynamic range to be compensated by itself. However, the digital communication system requires a measuring capability of 67 dB or more as a measuring instrument including a transmission allowable error.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、A/D変換器のダイナミックレンジにて
制限されてしまうため、送出許容誤差を含めた規格を高
ダイナミックにて測定することは困難であった。
However, in the above-mentioned conventional configuration, the dynamic range of the A / D converter is limited, so that it is difficult to measure the standard including the transmission allowable error with high dynamics. Met.

【0006】本発明は上記従来の問題点を解決するもの
で、A/D変換器は従来のダイナミックレンジの同等品
を使用しながら、高ダイナミックレンジを確保できる隣
接チャネル漏洩電力測定方法および装置を提供すること
を目的とする。
The present invention solves the above-mentioned conventional problems by providing an adjacent channel leakage power measuring method and apparatus capable of ensuring a high dynamic range while using an A / D converter having an equivalent conventional dynamic range. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明は、測定対象周波数帯域をフラットに通過させ
るノーマル系にて搬送波電力を測定し、搬送帯域を阻止
しかつ離調周波数帯を増幅するノッチ系にて離調周波数
帯電力を測定し、前記ノーマル系において測定された搬
送波電力と前記ノッチ系において増幅された離調周波数
帯電力から隣接チャネル漏洩電力を演算により求める構
成としたものである。
In order to achieve the above object, the present invention measures carrier power in a normal system in which a frequency band to be measured is allowed to pass flatly to block the carrier band and to set a detuning frequency band. A configuration in which the detuning frequency band power is measured by an amplifying notch system, and the adjacent channel leakage power is calculated by the carrier power measured in the normal system and the detuning frequency band power amplified in the notch system. Is.

【0008】以上により、ノーマル系の取り込みで有効
とした搬送波電力と、ノッチ系の取り込みで有効とした
離調周波数電力を演算装置により、各々フーリエ変換
(以下、FFTと称す)した測定結果を用いて合成する
ことでA/D変換器で制限されたダイナミックレンジを
超えた測定が可能となる。
As described above, the carrier wave power that is effective in the normal system and the detuning frequency power that is effective in the notch system are respectively Fourier-transformed (hereinafter referred to as FFT) by the arithmetic unit. By synthesizing by combining, it becomes possible to measure beyond the dynamic range limited by the A / D converter.

【0009】[0009]

【発明の実施の形態】本発明の請求項1に記載の発明
は、ディジタル無線通信方式において、測定対象周波数
帯域をフラットに通過させるノーマル系にて搬送波電力
を測定し、搬送帯域を阻止しかつ離調周波数帯を増幅す
るノッチ系にて離調周波数帯電力を測定し、前記ノーマ
ル系において測定された搬送波電力と前記ノッチ系にお
いて増幅された離調周波数帯電力から隣接チャネル漏洩
電力を演算により求めるものであり、ノーマル系とノッ
チ系の演算メモリに格納された結果から装置内の内部雑
音に隠れている低いレベルの信号の測定ができるという
作用を有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is a digital radio communication system, in which the carrier power is measured by a normal system that passes the frequency band to be measured flat, and the carrier band is blocked. The detuning frequency band power is measured by the notch system that amplifies the detuning frequency band, and the adjacent channel leakage power is calculated from the carrier power measured in the normal system and the detuning frequency band power amplified in the notch system. This has the effect that a low-level signal hidden by internal noise in the device can be measured from the results stored in the normal type and notch type arithmetic memories.

【0010】また、請求項2に記載の発明は、入力信号
の搬送波周波数帯と離調周波数帯の系を切換えるスイッ
チ手段と、前記搬送波周波数帯のレベル最適化をおこな
う増幅器と、前記搬送波周波数帯を減衰させる帯域制限
フィルタと、前記離調周波数帯を増幅する増幅器と、ア
ナログ信号をディジタル信号に変換するA/D変換器と
を備え、上記スイッチ手段により入力信号の系を切換え
て搬送波電力値と隣接チャネル漏洩電力値とを演算する
ものであり、A/D変換器で制限されたダイナミックレ
ンジを超えた測定が可能となるという作用を有する。
Further, the invention according to claim 2 is a switch means for switching between a carrier frequency band and a detuning frequency band system of an input signal, an amplifier for optimizing the level of the carrier frequency band, and the carrier frequency band. A band limiting filter for attenuating the detuning frequency band, an amplifier for amplifying the detuning frequency band, and an A / D converter for converting an analog signal into a digital signal, and the system of the input signal is switched by the switch means to set the carrier power value. And the adjacent channel leakage power value are calculated, which has the effect of enabling measurement beyond the dynamic range limited by the A / D converter.

【0011】以下、本発明の実施の形態について図1〜
図3を参照しながら説明する。 (実施の形態1)図1は、本実施の形態における隣接チ
ャネル漏洩電力測定装置の構成を示すブロック図であ
る。図1において、11A、11Bは入力信号を切り換
えるスイッチであり、後述の演算装置18からの制御信
号により制御される。12はノーマル系の取り込み時に
後述のA/D変換器15の入力レベルの最適化をおこな
う増幅器であり、13はノッチ系の取り込み時にA/D
変換器15の適正レベル化をおこなう増幅器である。1
4はノッチ系の取り込み時に搬送波周波数帯域を阻止す
る帯域制限フィルタである。15はノーマル系およびノ
ッチ系のアナログ信号をディジタル信号に変換するため
のA/D変換器であり、16はディジタル変換された信
号を格納する波形メモリである。17は演算装置18の
演算結果を記憶する演算メモリであり、演算メモリ17
と演算を実行する演算装置18とで演算ブロックを構成
している。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. (Embodiment 1) FIG. 1 is a block diagram showing a configuration of an adjacent channel leakage power measuring apparatus according to the present embodiment. In FIG. 1, 11A and 11B are switches for switching input signals, which are controlled by a control signal from an arithmetic unit 18 described later. Reference numeral 12 is an amplifier for optimizing the input level of an A / D converter 15, which will be described later, at the time of taking in the normal system, and 13 is A / D at the time of taking in the notch system.
This is an amplifier that adjusts the level of the converter 15 to an appropriate level. 1
Reference numeral 4 is a band limiting filter that blocks the carrier frequency band when the notch system is taken in. Reference numeral 15 is an A / D converter for converting normal type and notch type analog signals into digital signals, and 16 is a waveform memory for storing the digitally converted signals. Reference numeral 17 denotes an arithmetic memory that stores the arithmetic result of the arithmetic unit 18.
And an arithmetic unit 18 for executing the arithmetic constitute an arithmetic block.

【0012】図2は、図1に示すA/D変換器15の周
波数特性を示している。図2において、21はノーマル
系の周波数特性であり、22はノッチ系の周波数特性で
ある。23A、23B、23C、23Dは規格で設定さ
れている隣接チャネル漏洩電力測定周波数帯を示し、2
4A、24B、24C、24Dは、ノーマル系周波数特
性に対するノッチ系のダイナミックレンジの拡大レベル
を示す。このレベルは予め信号発生器(以下SGと称
す)から必要周波数帯にて周波数を可変させる手法によ
り、各系のレベル差から、ノーマル系の周波数特性21
とノッチ系の周波数特性22を測定しておく。ここで算
出された値は、補正値として予め演算メモリ17に格納
しておく。
FIG. 2 shows frequency characteristics of the A / D converter 15 shown in FIG. In FIG. 2, reference numeral 21 is a normal frequency characteristic, and 22 is a notch frequency characteristic. 23A, 23B, 23C, and 23D indicate adjacent channel leakage power measurement frequency bands set by the standard.
4A, 24B, 24C, and 24D indicate the expansion level of the notch dynamic range with respect to the normal frequency characteristic. For this level, the frequency characteristic of the normal system is calculated from the level difference of each system by a method of varying the frequency in advance in a required frequency band from a signal generator (hereinafter referred to as SG).
And the frequency characteristic 22 of the notch system are measured. The value calculated here is stored in advance in the calculation memory 17 as a correction value.

【0013】以下、上記実施の形態の動作について、図
3のフロー図を参照して説明する。ノーマル系の入力信
号を取り込むために演算装置18によりスイッチ11
A,11Bを増幅器12の側に制御する。入力信号は、
増幅器12により入力レベルの最適化が行われてA/D
変換器15に印加される。A/D変換器15にてA/D
変換されたディジタル信号を波形メモリ16に格納す
る。演算装置18は波形メモリ16からディジタル信号
を読みだし、フーリエ変換(FFT)を実行して取り込
んだ波形の搬送波電力を演算し演算メモリ17に格納す
る。
The operation of the above embodiment will be described below with reference to the flowchart of FIG. The switch 11 is operated by the arithmetic unit 18 to capture a normal input signal.
A and 11B are controlled to the amplifier 12 side. The input signal is
The input level is optimized by the amplifier 12 for A / D
It is applied to the converter 15. A / D with A / D converter 15
The converted digital signal is stored in the waveform memory 16. The arithmetic unit 18 reads the digital signal from the waveform memory 16, executes the Fourier transform (FFT), calculates the carrier power of the waveform that has been taken in, and stores it in the arithmetic memory 17.

【0014】次に、ノッチ系にスイッチ11A,11B
を切り換える。入力信号は、増幅器13により入力レベ
ルの最適化が行われた後に、帯域制限フィルタ14によ
り搬送波周波数帯域が阻止され、A/D変換器15に印
加される。A/D変換器15にてA/D変換されたディ
ジタル信号は波形メモリ16に格納される。ノーマル系
の演算の際に求めた前記補正値を加味して、演算装置1
8によりノーマル系と同様にしてFFTを実行し、離調
周波数帯の隣接チャネル漏洩電力を測定する。これによ
り、A/D変換器15のダイナミックレンジを超えた測
定が可能となる。
Next, switches 11A and 11B are added to the notch system.
Switch. After the input level of the input signal is optimized by the amplifier 13, the carrier frequency band is blocked by the band limiting filter 14 and applied to the A / D converter 15. The digital signal A / D converted by the A / D converter 15 is stored in the waveform memory 16. In consideration of the correction value obtained in the normal system calculation, the calculation device 1
8, the FFT is executed in the same manner as the normal system, and the adjacent channel leakage power in the detuning frequency band is measured. This enables measurement beyond the dynamic range of the A / D converter 15.

【0015】以上のように、上記実施の形態によれば、
搬送波電力を取り込むノーマル系と、帯域阻止フィルタ
により搬送波周波数帯を阻止し、隣調周波数帯を増幅し
取り込むノッチ系を切り換えて測定することにより、ノ
ーマル系の取り込みで有効とした搬送波電力と、ノッチ
系の取り込みで有効とした離調周波数電力を演算装置に
より、各々FFTした測定結果を用いて合成することで
A/D変換器で制限されたダイナミックレンジを超えた
測定が可能となり、装置内の内部雑音に隠れている低い
レベルの信号の測定を実現する構成を有している。
As described above, according to the above embodiment,
By switching and measuring the normal system that captures the carrier power and the notch system that blocks the carrier frequency band by a band elimination filter and amplifies the adjacent tone frequency band and captures the carrier power and the notch The detuning frequency power validated by the system is combined by the calculation device using the FFT measurement results, which enables measurement beyond the dynamic range limited by the A / D converter. It has a configuration that realizes measurement of low level signals hidden in internal noise.

【0016】[0016]

【発明の効果】以上のように、本発明によれば、搬送波
電力電力を測定するノーマル系と、搬送波周波数帯を帯
域制限フィルタにより減衰させ、それ以外の離調周波数
帯を増幅させて、装置内の内部雑音に隠れている低いレ
ベルの信号を増幅するノッチ系を構成し演算装置によ
り、それぞれの系の測定結果を演算することでA/D変
換器で制限されたダイナミックレンジを超えて測定でき
るという効果を有する。
As described above, according to the present invention, the normal system for measuring the carrier power and the carrier frequency band are attenuated by the band limiting filter, and the other detuned frequency bands are amplified, and the device A notch system that amplifies low-level signals hidden in the internal noise of the system is constructed, and the measurement results of each system are calculated by a calculation device to measure the dynamic range limited by the A / D converter. It has the effect of being able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態における隣接チャネル漏洩
電力測定装置のブロック図
FIG. 1 is a block diagram of an adjacent channel leakage power measuring device according to an embodiment of the present invention.

【図2】同実施の形態における周波数特性図FIG. 2 is a frequency characteristic diagram in the same embodiment.

【図3】同実施の形態における動作を示すフロー図FIG. 3 is a flowchart showing an operation in the same embodiment.

【図4】従来の隣接チャネル漏洩電力測定装置のブロッ
ク図
FIG. 4 is a block diagram of a conventional adjacent channel leakage power measuring device.

【符号の説明】[Explanation of symbols]

11A,11B スイッチ 12 増幅器 13 増幅器 14 帯域制限フィルタ 15 A/D変換器 16 波形メモリ 17 演算メモリ 18 演算装置 11A, 11B switch 12 amplifier 13 amplifier 14 band limiting filter 15 A / D converter 16 waveform memory 17 arithmetic memory 18 arithmetic unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ディジタル無線通信方式において、測定
対象周波数帯域をフラットに通過させるノーマル系にて
搬送波電力を測定し、搬送帯域を阻止しかつ離調周波数
帯を増幅するノッチ系にて離調周波数帯電力を測定し、
前記ノーマル系において測定された搬送波電力と前記ノ
ッチ系において増幅された離調周波数帯電力から隣接チ
ャネル漏洩電力を演算により求めることを特徴とする隣
接チャネル漏洩電力測定方法。
1. In a digital wireless communication system, a detuning frequency is measured by a notch system that measures carrier power in a normal system that passes the frequency band to be measured flatly and that blocks the carrier band and amplifies the detuning frequency band. Measure the power
An adjacent channel leakage power measuring method is characterized in that an adjacent channel leakage power is calculated from the carrier power measured in the normal system and the detuning frequency band power amplified in the notch system.
【請求項2】 入力信号の搬送波周波数帯と離調周波数
帯の系を切換えるスイッチ手段と、前記搬送波周波数帯
のレベル最適化をおこなう増幅器と、前記搬送波周波数
帯を減衰させる帯域制限フィルタと、前記離調周波数帯
を増幅する増幅器と、アナログ信号をディジタル信号に
変換するA/D変換器とを備え、上記スイッチ手段によ
り入力信号の系を切換えて搬送波電力値と隣接チャネル
漏洩電力値とを演算することを特徴とする隣接チャネル
漏洩電力測定装置。
2. A switch means for switching between a carrier frequency band and a detuning frequency band system of an input signal, an amplifier for optimizing the level of the carrier frequency band, a band limiting filter for attenuating the carrier frequency band, and An amplifier for amplifying the detuning frequency band and an A / D converter for converting an analog signal into a digital signal are provided, and the input signal system is switched by the switch means to calculate the carrier power value and the adjacent channel leakage power value. An adjacent channel leakage power measuring device characterized by:
JP8084995A 1996-04-08 1996-04-08 Method and device for measuring adjacent channel leakage power Pending JPH09275379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8084995A JPH09275379A (en) 1996-04-08 1996-04-08 Method and device for measuring adjacent channel leakage power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8084995A JPH09275379A (en) 1996-04-08 1996-04-08 Method and device for measuring adjacent channel leakage power

Publications (1)

Publication Number Publication Date
JPH09275379A true JPH09275379A (en) 1997-10-21

Family

ID=13846223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8084995A Pending JPH09275379A (en) 1996-04-08 1996-04-08 Method and device for measuring adjacent channel leakage power

Country Status (1)

Country Link
JP (1) JPH09275379A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065672A1 (en) * 2001-02-13 2002-08-22 Advantest Corporation Adjacent channel leakage power ratio measuring apparatus, channel power measuring apparatus, method, program, and record medium with recorded program
JP2007082264A (en) * 2006-12-13 2007-03-29 Fujitsu Ltd Adaptive control apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065672A1 (en) * 2001-02-13 2002-08-22 Advantest Corporation Adjacent channel leakage power ratio measuring apparatus, channel power measuring apparatus, method, program, and record medium with recorded program
US7123000B2 (en) 2001-02-13 2006-10-17 Advantest Corporation Adjacent channel leakage power ratio measuring apparatus, channel power measuring apparatus method, program, and recording medium with recording the program
JP2007082264A (en) * 2006-12-13 2007-03-29 Fujitsu Ltd Adaptive control apparatus

Similar Documents

Publication Publication Date Title
US20080054880A1 (en) Measurement device, method, program, and recording medium
JP6738359B2 (en) Signal generator and its output level adjusting method
CN104076202B (en) signal analysis device and signal analysis method
JP5036109B2 (en) Radio transmission apparatus and mobile station apparatus
JPH09275379A (en) Method and device for measuring adjacent channel leakage power
JPH08293748A (en) Automatic gain controller, mobile terminal equipment automatic gain control method
JPH10285059A (en) Level control circuit and communication equipment
JP2001217885A (en) Amplification system
JP3916897B2 (en) Measuring instrument with calibration function and calibration method using the same
JP3557020B2 (en) Fading simulator for digital communication
JP3606903B2 (en) Volume level adjustment device
US11909420B2 (en) Signal generation apparatus and linearity correction method thereof
JP7495092B2 (en) High frequency output device and high frequency output stabilization method
RU2302074C2 (en) Frequency correction method and automatic device for realization of the method
JP4100216B2 (en) Wireless adjustment system and wireless adjustment method
JP4424534B2 (en) Passband adjusting device and wireless terminal device
JP4289744B2 (en) Signal generator
CN115714949A (en) Audio playing device and control method thereof
JPH11284672A (en) Digital modulated signal generating device
JPH08163086A (en) Spread spectrum radio equipment
Bernard Microphone Intermodulation Distortion Measurements using the High Pressure Microphone Calibrator Type 4221
JPH0983385A (en) Fm receiver
JP2000196497A (en) Narrow band interference wave limit device and communication equipment using it
JPH11326426A (en) Noise adding method, and device
JPH11225392A (en) Frequency characteristic correction method