JPH09275192A - Semiconductor storage device and its driving method - Google Patents

Semiconductor storage device and its driving method

Info

Publication number
JPH09275192A
JPH09275192A JP8110073A JP11007396A JPH09275192A JP H09275192 A JPH09275192 A JP H09275192A JP 8110073 A JP8110073 A JP 8110073A JP 11007396 A JP11007396 A JP 11007396A JP H09275192 A JPH09275192 A JP H09275192A
Authority
JP
Japan
Prior art keywords
ferroelectric
cell
electrode
line
ferroelectric capacitors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8110073A
Other languages
Japanese (ja)
Other versions
JP2933004B2 (en
Inventor
Yukihiko Maejima
幸彦 前島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8110073A priority Critical patent/JP2933004B2/en
Publication of JPH09275192A publication Critical patent/JPH09275192A/en
Application granted granted Critical
Publication of JP2933004B2 publication Critical patent/JP2933004B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Dram (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain larger ferroelectric area in a memory cell using two ferroelectric capacitors and two cell transistors, by forming the cell by laminating two ferroelectric capacitors, and using an electrode sandwiched between two ferroelectric substances as a control voltage input line. SOLUTION: In a cell structure, a word line 1 is polysilicon, a lower electrode 2 of a ferroelectric capacitor is lamination structure of Pt/Ti, a ferroelectric substance 3 is PZT, an intermediate electrode 4 is Pt, an upper electrode 5 of ferroelectric substance is Pt, a bit line 6 is Al, a local wiring 7 is Al, an interlayer insulating film 9 is SiO2 , and a bit line 11 is Al. In this constitution, ferroelectric capacitors Cf0 and Cf1 are constituted by using PZT, and laminated. The upper electrode 5 and the lower electrode 2 are connected with a cell transistor Tr0 and a cell transistor Tr1, respectively. The intermediate electrode 4 is used as a plate line. As a result, the areas of Cf0 and Cf1 can be made larger than the conventional case.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体記憶装置に
関し、特に、強誘電体容量を用いた半導体メモリの構造
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory device, and more particularly to the structure of a semiconductor memory using a ferroelectric capacitor.

【0002】[0002]

【従来の技術】半導体と強誘電体、例えば、チタン酸ジ
ルコン鉛(Pb(ZrxTi1-x)O3、以下、PZTと
略称)を用いた容量を組み合わせた、いわゆる強誘電体
メモリは強誘電体の残留分極を利用して“1”、“0”
を記憶する。これが電源を切断しても保持されるため
に、不揮発性メモリとして動作することが知られてい
る。
2. Description of the Related Art A so-called ferroelectric memory in which a semiconductor and a ferroelectric, for example, lead zirconate titanate (Pb (Zr x Ti 1-x ) O 3 ; hereinafter, abbreviated as PZT) is combined is used. "1", "0" using remanent polarization of ferroelectrics
Is stored. It is known that this operates as a non-volatile memory because it is retained even when the power is turned off.

【0003】この強誘電体メモリの基本的な構成とし
て、図3に、その単位セルの一例として、文献(IEEE J
ournal of Solid-State Circuits, vol. 25, No.5, p11
71)に記載の回路構成を示す。
As a basic configuration of this ferroelectric memory, FIG. 3 shows an example of a unit cell of the reference (IEEE J
ournal of Solid-State Circuits, vol. 25, No.5, p11
71) shows the circuit configuration.

【0004】図3を参照して、単位セルは、通常nチャ
ネルのMOSFETからなる2つのセルトランジスタT
r0、Tr1と、2つの強誘電体容量Cf0、Cf1を
組み合わせた構成とされている。このセルは、強誘電体
容量Cf0、セルトランジスタTr0、ビット線BL、
プレート線PL、ワード線WLからなるセル0と、強誘
電体容量Cf1、トランジスタTr1、ビット線BL
プレート線PL、ワード線WLからなるセル1と、を組
み合わせたものと考えることができる。
Referring to FIG. 3, a unit cell is normally composed of two cell transistors T each composed of an n-channel MOSFET.
r0, Tr1 and two ferroelectric capacitors Cf0, Cf1 are combined. This cell includes a ferroelectric capacitor Cf0, a cell transistor Tr0, a bit line BL,
A cell 0 composed of a plate line PL and a word line WL, a ferroelectric capacitor Cf1, a transistor Tr1, a bit line BL 2 ,
It can be considered as a combination of the cell 1 including the plate line PL and the word line WL.

【0005】図3に示したセルで用いられる強誘電体容
量Cf0及びCf1の分極と印加電圧の関係を図4に示
す。これは強誘電体のヒステリシスとして知られている
特性であり、印加電圧を正に振ってから零に落とした場
合、正の残留分極が残り、印加電圧を負に振ってから零
に落とした場合には負の残留分極が残る。このセルにお
いては、ビット線BL、BL、プレート線PL、ワード
線WLに印加する電圧を制御し、Tr0、Tr1をオン
オフし、Cf0、Cf1に加わる電圧を制御してそれぞ
れの残留分極を制御、或いは読み出す動作を行う。例え
ば、信号“1”の書き込み時にはCf0に負の残留分極
を与え、同時にCf1には正の残留分極を与えるように
する。
FIG. 4 shows the relationship between the polarization of the ferroelectric capacitors Cf0 and Cf1 used in the cell shown in FIG. 3 and the applied voltage. This is a characteristic known as the hysteresis of a ferroelectric substance. When the applied voltage is swung positively and then dropped to zero, positive remanent polarization remains, and when the applied voltage is swung negative and dropped to zero. Remains a negative remnant polarization. In this cell, the voltage applied to the bit lines BL, BL , the plate line PL, and the word line WL is controlled, Tr0 and Tr1 are turned on and off, and the voltage applied to Cf0 and Cf1 is controlled to control the remanent polarization of each. Alternatively, the reading operation is performed. For example, at the time of writing the signal "1", Cf0 is given a negative remanent polarization, and at the same time, Cf1 is given a positive remanent polarization.

【0006】逆に、信号“0”の書き込み時には、Cf
0に正の残留分極を与え、Cf1には負の残留分極を与
えるようにする。残留分極の正負に応じて、その信号読
み出し線、すなわちビット線BL及びBLに現れる電圧
のレベルが変わり、正の時には電圧が低、負の時には高
となる。従って、“1”、“0”に応じてBL及びBL
に現れる電圧のレベルが変わり、“1”の時には、B
L:高、BL:低となり、“0”の時には、BL:低、
BL:高となる。従って、BLとBLの電位差の正負を
判別することによって“1”、“0”を判別することが
できる。
On the contrary, when writing the signal "0", Cf
A positive remanent polarization is given to 0, and a negative remanent polarization is given to Cf1. The level of the voltage appearing on the signal read line, that is, the bit lines BL and BL changes depending on whether the remanent polarization is positive or negative. The voltage is low when the voltage is positive and high when the voltage is negative. Therefore, BL and BL depending on “1” and “0”
The level of the voltage appearing at is changed, and when it is "1", B
L: high, BL : low, and when "0", BL: low,
BL : High. Therefore, "1" and "0" can be discriminated by discriminating whether the potential difference between BL and BL is positive or negative.

【0007】ここで、“1”、“0”の判定をするため
に、ビット線BL、BLの電位差を見るために、単位セ
ルにおいて2つずつの強誘電体容量、セルトランジスタ
を有している。セルの外部で参照信号レベルを設定し、
これと読み出し時のBLの電圧を比べることでCf0の
残留分極の正負の判定を行っても良く、この場合にはC
f1、Tr1、BLは必要が無いために、単位セルの構
成要素が減り、メモリの高密度化には有利である。
Here, in order to determine "1" or "0", to see the potential difference between the bit lines BL and BL , each unit cell has two ferroelectric capacitors and two cell transistors. There is. Set the reference signal level outside the cell,
It may be possible to judge whether the remanent polarization of Cf0 is positive or negative by comparing this with the voltage of BL at the time of reading. In this case, C
Since f1, Tr1, and BL are not necessary, the number of constituent elements of the unit cell is reduced, which is advantageous for increasing the density of the memory.

【0008】また、メモリセルの外部に予め強誘電体容
量に正負の残留分極を与えた構造(いわゆるダミーセ
ル)を設置しておき、これを用いて参照信号として設定
しても単位セルは同様の構造にすることができる。この
場合、メモリセル複数個に対してダミーセルを1回使用
することができるために、やはり高密度化には有利であ
る。
Further, even if a structure (so-called dummy cell) in which positive and negative remanent polarization is given to the ferroelectric capacitor is installed outside the memory cell in advance and it is used as a reference signal, the unit cell is the same. Can be structured. In this case, the dummy cell can be used once for a plurality of memory cells, which is also advantageous for increasing the density.

【0009】しかし、一般に、強誘電体容量には疲労と
いう現象が発生することが知られている。これは、強誘
電体に印加する電圧を正負に変化するサイクルを多く加
えると残留分極の値が小さくなるという性質である。例
えば、PZTの場合には、109回のサイクルでその残
留分極値は元の半分以下になることが知られている。こ
のために、実際は、先に述べた読み出し時のBLの電位
は、同じ“1”の場合でも、書き込み、読み出しサイク
ルが増えると変化することになり、外部から参照信号レ
ベルを設定するのが困難である。
However, it is generally known that a phenomenon called fatigue occurs in the ferroelectric capacitor. This is the property that the value of the remanent polarization becomes smaller as the number of cycles for changing the voltage applied to the ferroelectric substance to positive and negative is added. For example, in the case of PZT, it is known that the residual polarization value becomes half or less of the original value after 10 9 cycles. Therefore, in actuality, the potential of BL at the time of reading described above changes as the number of write and read cycles increases, even if the same "1" is set, and it is difficult to set the reference signal level externally. Is.

【0010】また、メモリセルの外部にダミーセルを設
置する方式の場合、1個のダミーセルに対応したメモリ
セルのうちの1個が読み出されるたびに、このダミーセ
ルはアクセスされることになる。従って、ダミーセルの
アクセスされる回数がメモリセルのアクセスされる回数
と比べて著しく多くなり、メモリセルの強誘電体容量が
疲労していなくとも、ダミーセルの強誘電体容量が疲労
してその用をなさなくなる。
Further, in the case of the method of installing the dummy cell outside the memory cell, this dummy cell is accessed every time one of the memory cells corresponding to one dummy cell is read. Therefore, the number of times the dummy cell is accessed becomes significantly larger than the number of times the memory cell is accessed, and even if the ferroelectric capacity of the memory cell is not fatigued, the ferroelectric capacity of the dummy cell is fatigued and its use is reduced. I will not do it.

【0011】図3に示した構造の単位セルを用いたメモ
リにおいては、ビット線BLとBLの高低をその差分を
見ることにより判定するため、これらの欠点を有さな
い。従って、強誘電体容量の疲労の影響が出にくいとい
う特徴を有しているために、メモリとして安定した動作
をし、有効である。
The memory using the unit cell having the structure shown in FIG. 3 does not have these drawbacks because the height of the bit lines BL and BL is determined by looking at the difference. Therefore, since it has a characteristic that the influence of the fatigue of the ferroelectric capacitor is unlikely to occur, it is effective as a stable memory operation.

【0012】図3の回路図の単位セルを実現する構造
を、図7(A)にその平面図、同図中D−D′方向の断
面図を図7(B)、同図中E−E′方向の断面図を図7
(C)に示す。
A structure for realizing the unit cell of the circuit diagram of FIG. 3 is shown in a plan view of FIG. 7A, and a cross-sectional view taken along the line DD 'in FIG. 7B. FIG. 7 is a sectional view in the E ′ direction.
It is shown in (C).

【0013】図7において、1はワード線(セルトラン
ジスタのゲートで材質はポリシリコン)、3はPZT、
5は強誘電体上部電極(Pt)、6はビット線(A
l)、7は局所配線(Al)、8はシリコンn+層、9
は層間膜SiO2、10はシリコンp型層、11はビッ
ト線(Al)、12はプレート線或いは強誘電体容量下
部電極(Pt/Ti、すなわち、Ti上にPtを成膜し
た積層構造)である。
In FIG. 7, 1 is a word line (the gate of a cell transistor is made of polysilicon), 3 is PZT,
5 is a ferroelectric upper electrode (Pt), 6 is a bit line (A)
l), 7 are local wiring (Al), 8 is a silicon n + layer, 9
Is an interlayer film SiO 2 , 10 is a silicon p-type layer, and 11 is a bit layer.
Wires (Al) and 12 are plate wires or a ferroelectric capacitor lower electrode (Pt / Ti, that is, a laminated structure in which Pt is deposited on Ti).

【0014】この例においては、強誘電体容量Cf0、
Cf1は同一のプレート線12上に形成されており、そ
れぞれがTr0、Tr1を介してビット線6、ビット線
11に接続されている。この構造のセルは強誘電体容量
とセルトランジスタ1個ずつからなるセルが縦に2つ接
続したものと考えることができる。
In this example, the ferroelectric capacitance Cf0,
Cf1 is formed on the same plate line 12, and is connected to the bit line 6 and the bit line 11 via Tr0 and Tr1, respectively. The cell having this structure can be considered as two vertically connected cells each including a ferroelectric capacitor and a cell transistor.

【0015】[0015]

【発明が解決しようとする課題】図7に示した従来のセ
ルの構造の問題点を以下に述べる。
Problems of the structure of the conventional cell shown in FIG. 7 will be described below.

【0016】強誘電体容量の残留分極値が大きい方が信
号読み出し時の信号となる電圧も大きくなること等、デ
バイス動作上有利であるのは明らかであるが、残留分極
値は強誘電体容量の面積に比例するため、この面積を大
きく設定する方がデバイス動作上の裕度が大きくなり望
ましい。
It is clear that the larger the remanent polarization value of the ferroelectric capacitor is, the larger the voltage that becomes a signal at the time of signal reading becomes, which is advantageous in device operation. However, the remanent polarization value is the ferroelectric capacitor. Since it is proportional to the area of the device, it is preferable to set this area to be large because the operational margin of the device becomes large.

【0017】しかしながら、図7に示した従来のセル構
造においては、強誘電体容量が2個必要であるために、
この面積を大きくとることは困難である。従って、強誘
電体容量の面積を小さくせざるをえず、大きな残留分極
を得ることが不可能である。
However, since the conventional cell structure shown in FIG. 7 requires two ferroelectric capacitors,
It is difficult to make this area large. Therefore, the area of the ferroelectric capacitor must be reduced, and it is impossible to obtain a large remanent polarization.

【0018】また、図5、図6にその例を示した様に、
強誘電体容量には、常に正負のパルスを入力して書き込
み、読み出しを行うため、疲労が問題になる。
Further, as shown in the examples in FIGS. 5 and 6,
Fatigue becomes a problem because positive and negative pulses are always input to the ferroelectric capacitor for writing and reading.

【0019】この対処としては、強誘電体の面積を大き
くして残留分極を大きくすれば同じ程度の動作サイクル
を経た場合でも、疲労後の残留分極を大きくすることが
できるためにその使用可能サイクルは増える。しかし、
図7に示した従来のセル構造では、強誘電体容量の面積
を大きくとることは困難であるため、上記対処は不可能
となる。
As a countermeasure against this, if the area of the ferroelectric substance is increased to increase the remanent polarization, the remanent polarization after fatigue can be increased even if the same operation cycle is passed, and therefore, the usable cycle thereof. Will increase. But,
In the conventional cell structure shown in FIG. 7, it is difficult to increase the area of the ferroelectric capacitor, so the above measures cannot be taken.

【0020】本発明は、上記事情に鑑みて為されたもの
であって、その目的は、2個ずつの強誘電体容量、セル
トランジスタを用いたメモリセルにおいて、より大きな
強誘電体面積を得ることのできるセル構造を提供するこ
とにある。
The present invention has been made in view of the above circumstances, and an object thereof is to obtain a larger ferroelectric area in a memory cell using two ferroelectric capacitors and two cell transistors. It is to provide a cell structure capable of doing so.

【0021】[0021]

【課題を解決するための手段】上記目的を達成するた
め、本発明の半導体メモリは、単位メモリセルが2個の
強誘電体容量と2個のトランジスタからなる半導体メモ
リにおいて、2個の強誘電体容量が積層して形成され、
前記2個の強誘電体に挟まれた電極を前記セルへの制御
電圧入力線として用いているという特徴を有する。
In order to achieve the above object, the semiconductor memory of the present invention is a semiconductor memory in which a unit memory cell is composed of two ferroelectric capacitors and two transistors. Formed by stacking body volumes,
The electrode sandwiched between the two ferroelectrics is used as a control voltage input line to the cell.

【0022】この構造のメモリに対しては従来と全く同
様の駆動方法を適用することができる。前記強誘電体と
しては、Pb(ZrxTi1-x)O3、SrBi2Ta29
等が用いられる。
A driving method exactly the same as the conventional one can be applied to the memory having this structure. As the ferroelectric, Pb (Zr x Ti 1- x) O 3, SrBi 2 Ta 2 O 9
Are used.

【0023】[0023]

【作用】本発明においては、単位セルを構成する2個の
強誘電体容量を積層構造とし、2個に挟まれた中間電極
をプレート線として用いる。これにより、従来例よりも
強誘電体面積を大きくとることができる。
In the present invention, the two ferroelectric capacitors forming the unit cell have a laminated structure, and the intermediate electrode sandwiched between the two is used as a plate line. As a result, the ferroelectric area can be made larger than in the conventional example.

【0024】[0024]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0025】本発明の半導体不揮発性メモリの単位セル
の回路構成は、図3に示した上記従来例と同様である
が、その構造が異なる。
The circuit configuration of the unit cell of the semiconductor nonvolatile memory of the present invention is the same as that of the conventional example shown in FIG. 3, but the structure is different.

【0026】本発明の実施の形態の平面図を図1、同図
A−A′方向の断面図を図2(A)、B−B′方向の断
面図を図2(B)、C−C′方向の断面図を図2(C)
に示す。
1 is a plan view of an embodiment of the present invention, FIG. 2A is a sectional view taken along the line AA 'in FIG. 1, and FIG. 2B is a sectional view taken along the line BB'. A cross-sectional view in the C ′ direction is shown in FIG.
Shown in

【0027】図1及び図2において、1はワード線(セ
ルトランジスタのゲート)、2は強誘電体容量下部電極
(金属電極)、3は強誘電体、4はプレート線或いは中
間電極(金属電極)、5は強誘電体上部電極(金属電
極)、6はビット線(金属電極)、7は局所配線(金
属)、8はシリコンn+層、9は層間絶縁膜、10はシ
リコンp型層、11はビット線(6と同様の金属)であ
る。
In FIGS. 1 and 2, 1 is a word line (cell transistor gate), 2 is a ferroelectric capacitor lower electrode (metal electrode), 3 is a ferroelectric substance, 4 is a plate line or an intermediate electrode (metal electrode). ) 5, ferroelectric upper electrode (metal electrode), 6 bit line (metal electrode), 7 local wiring (metal), 8 silicon n + layer, 9 interlayer insulating film, 10 silicon p-type layer, Reference numeral 11 is a bit line (metal similar to 6).

【0028】本発明の実施の形態が、図7に示した従来
のセル構造と異なるのは、Cf0、Cf1が積層構造と
なっている点である。この場合には積層構造の中間電
極、すなわち、上の強誘電体と下の強誘電体の中間の金
属電極をプレート線、すなわち、Cf0、Cf1のセル
トランジスタに接続していない側の電極線として用いて
いる。従って、駆動方法等は従来のメモリと全く同様と
することができる。
The embodiment of the present invention is different from the conventional cell structure shown in FIG. 7 in that Cf0 and Cf1 have a laminated structure. In this case, the intermediate electrode of the laminated structure, that is, the intermediate metal electrode between the upper ferroelectric substance and the lower ferroelectric substance is used as the plate line, that is, the electrode line on the side not connected to the cell transistors Cf0 and Cf1. I am using. Therefore, the driving method and the like can be exactly the same as the conventional memory.

【0029】[0029]

【実施例】上記した本発明の実施の形態を更に詳細に説
明すべく、本発明の実施例を以下に説明する。
EXAMPLES Examples of the present invention will be described below in order to explain the above-described embodiments of the present invention in more detail.

【0030】本実施例は、図1及び図2に示したセル構
造において、ワード線1をポリシリコン、強誘電体容量
下部電極2をPt/Tiの積層構造、強誘電体3をPZ
T、中間電極4をPt、強誘電体容量上部電極5をP
t、ビット線6をAl、局所配線7をAl、層間絶縁膜
9をSiO2、ビット線11をAlとしたものであり、
8はシリコンn+層、10はシリコンp型層である。
In this embodiment, in the cell structure shown in FIGS. 1 and 2, the word line 1 is polysilicon, the ferroelectric capacitor lower electrode 2 is a Pt / Ti laminated structure, and the ferroelectric 3 is PZ.
T, the intermediate electrode 4 is Pt, and the ferroelectric capacitor upper electrode 5 is P
t, the bit line 6 is Al, the local wiring 7 is Al, the interlayer insulating film 9 is SiO 2 , and the bit line 11 is Al.
Reference numeral 8 is a silicon n + layer, and 10 is a silicon p-type layer.

【0031】従って、この構成においては、図3中の、
ワード線WLはポリシリコン、プレート線PLはPt、
ビット線BL、BLはAlを用いて構成される。また、
この構成においては、強誘電体容量Cf0、Cf1共に
PZTを用いて構成され、これが積層され、その上部電
極5及び下部電極2がそれぞれセルトランジスタTr
0、Tr1に接続され、中間電極がプレート線4となっ
ている。
Therefore, in this configuration, in FIG.
The word line WL is polysilicon, the plate line PL is Pt,
The bit lines BL and BL are made of Al. Also,
In this structure, both the ferroelectric capacitors Cf0 and Cf1 are formed by using PZT, which are laminated, and the upper electrode 5 and the lower electrode 2 of the ferroelectric capacitors Cf0 and Cf1 are respectively stacked.
0, Tr1 and the intermediate electrode is the plate line 4.

【0032】図2(B)、及び図2(C)に示す様に、
上部電極5、下部電極2とTr0、Tr1への接続は、
図7の例と全く同様に、Alの局所配線7を用いて行わ
れる。
As shown in FIGS. 2 (B) and 2 (C),
The connection between the upper electrode 5, the lower electrode 2 and Tr0, Tr1 is
Just as in the example of FIG. 7, the local wiring 7 of Al is used.

【0033】この構造の半導体メモリを作製するにあた
っては、強誘電体容量を製造する工程が重要となる。
In manufacturing the semiconductor memory having this structure, the step of manufacturing the ferroelectric capacitor is important.

【0034】特に、その積層構造を形成するためにはP
ZT、Pt、Tiの成膜方法としてはスパッタリング
法、CVD法等、良質の強誘電体薄膜を成膜できる方法
が有効な方法であり、これらの材料を順次成膜すること
によりこの構造が形成できる。
Particularly, in order to form the laminated structure, P
As a method for forming ZT, Pt, and Ti, a method capable of forming a high-quality ferroelectric thin film such as a sputtering method or a CVD method is an effective method, and this structure is formed by sequentially forming these materials. it can.

【0035】また、その加工にはこれらの微細加工が可
能であるドライエッチング法、例えば反応性イオンエッ
チング、Ar等を用いたイオンミリング等の方法が用い
られる。
For the processing, a dry etching method capable of performing such fine processing, for example, a method such as reactive ion etching or ion milling using Ar or the like is used.

【0036】本実施例では、強誘電体としてPZT、そ
の上部電極、下部電極及び中間電極としてPtを用いて
いるが、他の強誘電体、例えばSrBi2Ta29等、
或いは他の電極、例えばRu、RuO2等を用いること
も可能であり、良好な強誘電体特性、すなわち、読み出
し可能な残留分極値を持った強誘電体と上下部電極の組
み合わせに対して用いることができる。また、ビット
線、ワード線、局所配線等に関しても一般的にLSIに
用いられる他の材料が使用可能であることは勿論であ
る。
In this embodiment, PZT is used as the ferroelectric substance and Pt is used as the upper electrode, the lower electrode and the intermediate electrode thereof, but other ferroelectric substances such as SrBi 2 Ta 2 O 9 etc.
Alternatively, other electrodes such as Ru and RuO 2 can be used, and are used for a combination of a ferroelectric with good ferroelectric characteristics, that is, a readable residual polarization value and upper and lower electrodes. be able to. Further, it is needless to say that other materials generally used for LSI can be used for the bit line, the word line, the local wiring and the like.

【0037】このセルに“1”を書き込む場合の入力パ
ルスを図5に示す。このパルス入力後には、最終的にC
f0には、PL:零、BL:正、の電圧が印加されるた
め、負の残留分極が、Cf1にはPL:正、BL:零、
の電圧が印加されるため、逆に正の残留分極が残る。
The input pulse for writing "1" in this cell is shown in FIG. After this pulse input, finally C
Since a voltage of PL: zero and a voltage of BL: positive are applied to f0, a negative remanent polarization is generated, and a voltage of PL: positive, BL : zero, to Cf1.
On the contrary, positive remanent polarization remains.

【0038】一方、“0”を書き込む場合には、ビット
線BLとBLをこれと逆にしたパルスを入力すれば良
い。
On the other hand, in the case of writing "0", it is sufficient to input the bit lines BL and a pulse in which BL is reversed.

【0039】また、図6に“1”を書き込む場合の入力
パルスの別の例を示す。この場合には、図5と異なり、
プレート線PLはBLに入力するパルスのHighとL
owの中間電位(Vc/2)に設定する。従って、実質
的にパルスを入力するのはBLだけとなる。このパルス
入力後には、最終的にCf0には、PL:Vc/2、B
L:Vc、の電圧が印加されるため、負の残留分極が、
Cf1には、PL:Vc/2、BL:零、の電圧が印加
されることになり、逆に正の残留分極が残る。この場合
にも前記と同様に、ビット線BLとBLを逆にすれば
“0”の書き込みとなる。
Further, FIG. 6 shows another example of the input pulse when "1" is written. In this case, unlike FIG. 5,
The plate line PL is High and L of the pulse input to BL.
The intermediate potential of ow (Vc / 2) is set. Therefore, the pulse is substantially only input to BL. After this pulse is input, PL: Vc / 2, B is finally applied to Cf0.
Since a voltage of L: Vc is applied, the negative remanent polarization is
Voltages of PL: Vc / 2 and BL : zero are applied to Cf1, and conversely positive remanent polarization remains. Also in this case, if the bit lines BL and BL are reversed, "0" is written in the same manner as described above.

【0040】本実施例においては、Cf0及びCf1の
面積は、図7に示した従来例よりも大きくとることがで
きることは明らかであり、特に、強誘電体容量面積のセ
ル面積に対する比を大きくとることができる。このた
め、高集積化に際しても強誘電体容量の面積が損なわれ
ることが低減でき、残留分極値を大きくとることができ
る。
In this embodiment, it is clear that the areas of Cf0 and Cf1 can be made larger than those of the conventional example shown in FIG. 7, and in particular, the ratio of the ferroelectric capacitance area to the cell area is made large. be able to. Therefore, it is possible to reduce the loss of the area of the ferroelectric capacitor even when the degree of integration is increased, and it is possible to increase the remanent polarization value.

【0041】[0041]

【発明の効果】以上説明したように、本発明によれば、
メモリセルにおいて強誘電体容量の面積を大きくとるこ
とができる。従って、強誘電体容量の残留分極が大き
く、デバイス動作上の裕度が大きく、かつ疲労にも強い
半導体メモリが得られる。
As described above, according to the present invention,
The area of the ferroelectric capacitor can be increased in the memory cell. Therefore, a semiconductor memory can be obtained in which the remanent polarization of the ferroelectric capacitor is large, the device operation margin is large, and fatigue is strong.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の不揮発性メモリの一実施例の平面図を
示す図である。
FIG. 1 is a diagram showing a plan view of an embodiment of a nonvolatile memory of the present invention.

【図2】図1に示した本発明の実施例を示す図であり、
(A)はA−A′方向の断面図、(B)はB−B′方向
の断面図、(C)はC−C′方向の断面図である。
FIG. 2 is a diagram showing an embodiment of the present invention shown in FIG.
(A) is a sectional view in the AA 'direction, (B) is a sectional view in the BB' direction, and (C) is a sectional view in the CC 'direction.

【図3】強誘電体を用いた不揮発性メモリの単位セルの
回路図である。
FIG. 3 is a circuit diagram of a unit cell of a nonvolatile memory using a ferroelectric substance.

【図4】強誘電体のヒステリシス特性を示す図である。FIG. 4 is a diagram showing a hysteresis characteristic of a ferroelectric substance.

【図5】強誘電体メモリの単位セルに“1”を書き込む
場合の入力パルスの一例を示す図である。
FIG. 5 is a diagram showing an example of an input pulse when writing “1” in a unit cell of a ferroelectric memory.

【図6】強誘電体メモリの単位セルに“1”を書き込む
場合の入力パルスの他の一例を示す図である。
FIG. 6 is a diagram showing another example of the input pulse when writing “1” in the unit cell of the ferroelectric memory.

【図7】(A)は従来の不揮発性メモリの平面図、
(B)はD−D′方向の断面図、(C)はE−E′方向
の断面図である。
FIG. 7A is a plan view of a conventional nonvolatile memory,
(B) is a sectional view in the DD 'direction, and (C) is a sectional view in the EE' direction.

【符号の説明】[Explanation of symbols]

1 ワード線(ポリシリコン) 2 強誘電体容量下部電極(Pt/Ti) 3 強誘電体(PZT) 4 プレート線或いは中間電極(Pt) 5 強誘電体上部電極(Pt) 6 ビット線(Al) 7 局所配線(Al) 8 シリコンn+層 9 層間膜(SiO2) 10 シリコンp型層 11 ビット線(Al) 12 プレート線或いは強誘電体容量下部電極(Pt/
Ti)
1 word line (polysilicon) 2 ferroelectric capacitor lower electrode (Pt / Ti) 3 ferroelectric (PZT) 4 plate line or intermediate electrode (Pt) 5 ferroelectric upper electrode (Pt) 6 bit line (Al) 7 Local Wiring (Al) 8 Silicon n + Layer 9 Interlayer Film (SiO 2 ) 10 Silicon p-type Layer 11 Bit Line (Al) 12 Plate Line or Ferroelectric Capacitance Lower Electrode (Pt /
Ti)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】単位メモリセルが2個の強誘電体容量と2
個のトランジスタからなる半導体メモリのメモリセルに
おいて、 2個の強誘電体容量が積層して形成され、前記2個の強
誘電体容量に挟まれた電極を前記メモリセルへの制御電
圧入力線として用いてなることを特徴とする半導体メモ
リ。
1. A unit memory cell has two ferroelectric capacitors and two ferroelectric capacitors.
In a memory cell of a semiconductor memory composed of two transistors, two ferroelectric capacitors are stacked and formed, and an electrode sandwiched between the two ferroelectric capacitors is used as a control voltage input line to the memory cell. A semiconductor memory characterized by being used.
【請求項2】2個の強誘電体容量が積層して形成され、
前記2個の強誘電体容量に挟まれた電極をメモリセルへ
の制御電圧入力線として用いてなる半導体メモリの駆動
方法において、 前記制御電圧入力線に第1のパルスを入力し、上部電極
または下部電極に第2のパルスを加えることにより、メ
モリセルに2値情報を書き込むことを特徴とする半導体
メモリの動作方法。
2. A ferroelectric capacitor formed by stacking two ferroelectric capacitors,
In a method of driving a semiconductor memory, wherein an electrode sandwiched between the two ferroelectric capacitors is used as a control voltage input line to a memory cell, a first pulse is input to the control voltage input line, and an upper electrode or A method of operating a semiconductor memory, wherein binary information is written in a memory cell by applying a second pulse to a lower electrode.
【請求項3】前記制御電圧入力線を上部電極と下部電極
の一方にパルスを入力し、前記制御電圧入力線を前記パ
ルスの高電位と低電位の中間の電位に設定することによ
りメモリセルに2値情報を書き込むことを特徴とする請
求項2記載の半導体メモリの動作方法。
3. A memory cell is formed by inputting a pulse to one of an upper electrode and a lower electrode of the control voltage input line and setting the control voltage input line to an intermediate potential between a high potential and a low potential of the pulse. 3. The method of operating a semiconductor memory according to claim 2, wherein binary information is written.
【請求項4】前記強誘電体がPb(ZrxTi1-x)O3
であることを特徴とする請求項1記載の半導体メモリ。
4. The ferroelectric material is Pb (Zr x Ti 1-x ) O 3
The semiconductor memory according to claim 1, wherein
【請求項5】前記強誘電体がSrBi2Ta29である
ことを特徴とする請求項1記載の半導体メモリ。
5. The semiconductor memory according to claim 1, wherein the ferroelectric substance is SrBi 2 Ta 2 O 9 .
JP8110073A 1996-04-05 1996-04-05 Semiconductor memory and driving method thereof Expired - Fee Related JP2933004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8110073A JP2933004B2 (en) 1996-04-05 1996-04-05 Semiconductor memory and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8110073A JP2933004B2 (en) 1996-04-05 1996-04-05 Semiconductor memory and driving method thereof

Publications (2)

Publication Number Publication Date
JPH09275192A true JPH09275192A (en) 1997-10-21
JP2933004B2 JP2933004B2 (en) 1999-08-09

Family

ID=14526365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8110073A Expired - Fee Related JP2933004B2 (en) 1996-04-05 1996-04-05 Semiconductor memory and driving method thereof

Country Status (1)

Country Link
JP (1) JP2933004B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6680499B2 (en) 2000-11-20 2004-01-20 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
JP2015049919A (en) * 2013-09-03 2015-03-16 富士通セミコンダクター株式会社 Memory cell, memory, and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6680499B2 (en) 2000-11-20 2004-01-20 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
JP2015049919A (en) * 2013-09-03 2015-03-16 富士通セミコンダクター株式会社 Memory cell, memory, and semiconductor device

Also Published As

Publication number Publication date
JP2933004B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
US5768182A (en) Ferroelectric nonvolatile dynamic random access memory device
EP0469934A2 (en) Semiconductor memory device and method of operation thereof
US5668754A (en) Ferroelectric memory cell and reading/writing method thereof
JP2003229541A (en) Semiconductor storage and manufacturing method thereof
JPH0513774A (en) Nonvolatile random access memory
KR100360592B1 (en) Semiconductor devic and method for fabricating it
US6191441B1 (en) Ferroelectric memory device and its drive method
US6639823B2 (en) Ferroelectric memory device and method of driving the same
KR100745938B1 (en) Ferroelectric memory and operating method therefor
JP4158010B2 (en) Ferroelectric memory device sharing cell plate between adjacent memory cells and driving method thereof
US6341082B2 (en) Ferroelectric memory capable of suppressing deterioration of dummy cells and drive method therefor
JPH0676562A (en) Ferroelectric substance memory
JP2933004B2 (en) Semiconductor memory and driving method thereof
JP3979947B2 (en) Ferroelectric memory
JP2001273761A (en) Method for reading out state from ferroelectric transistor in memory cell and memory matrix and storing state in it
JP2011009549A (en) Semiconductor memory device
JP4083276B2 (en) Semiconductor memory device and method for reading and writing stored information
JP2002015563A (en) Reference voltage generating circuit of ferroelectric memory
JP4029295B2 (en) Ferroelectric memory
JPH1012831A (en) Ferroelectric memory device and its operation method
US20240188304A1 (en) Capacitive memory structure and method for reading-out a capacitive memory structure
JP4655668B2 (en) Ferroelectric capacitor latch circuit
KR20010109615A (en) Ferroelectric capacitor in semiconductor device
KR100816689B1 (en) Ferroelectric RAM cell array
KR20020010818A (en) FeRAM having different capacitors in one memory cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees