JPH09274659A - Image aligning method - Google Patents

Image aligning method

Info

Publication number
JPH09274659A
JPH09274659A JP8085104A JP8510496A JPH09274659A JP H09274659 A JPH09274659 A JP H09274659A JP 8085104 A JP8085104 A JP 8085104A JP 8510496 A JP8510496 A JP 8510496A JP H09274659 A JPH09274659 A JP H09274659A
Authority
JP
Japan
Prior art keywords
image
cross
correlation coefficient
search area
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8085104A
Other languages
Japanese (ja)
Inventor
Shingo Suminoe
伸吾 住江
Yuichiro Goto
有一郎 後藤
Tsutomu Morimoto
勉 森本
Eiji Takahashi
英二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8085104A priority Critical patent/JPH09274659A/en
Publication of JPH09274659A publication Critical patent/JPH09274659A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the exact alignment of an image by adding mutual correlation coefficients in the longitudinal and lateral directions of a search area and defining a position, where these added values respectively become maximum values, as a matching position. SOLUTION: Concerning the search area in an input image divided into the blocks of M×N picture elements, inside that search area, mutual correlation coefficients C (a, b) at respective positions are operated according to a specified expression. Then, the operated results of the mutual correlation coefficients are stored in arrangement R (a, b) (S1). Next, the arrangement R (a, b) is added in (x) direction, SX(1) to SX(M-X+1) are added in (y) direction, and SY(1) to SY(N-Y+1) are respectively provided (S2). Then, among the SX(1) to SX(M-X+1) and among the SY (1) to SY(N-Y+1), the positions to respectively take the maximum values, namely, a column number x0 and a row number y0 are extracted (S3). Finally, the column number x0 and the row number y0 are decided as the matching position (S4).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,画像処理を用いた
自動化技術,例えば,文字認識技術,製品の目視検査の
自動化技術等における画像の位置合わせ方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image alignment method in an automated technique using image processing, for example, a character recognition technique, an automated product visual inspection technique, and the like.

【0002】[0002]

【従来の技術】画像処理を用いた自動化技術では,所定
の基準画像(テンプレ−ト)と入力画像とが平行移動で
重なる関係である場合には,上記基準画像を入力画像中
に設けた探索領域内で動かして,最も良くあった場所を
探す動作,即ちテンプレ−トマッチングが多用されてい
る。マッチングの際には,上記基準画像が上記入力画像
のどの位置でマッチするのかを正確に求めることが重要
である。このため,画像処理を用いた自動化技術におい
て,上記基準画像を入力画像の探索領域内で移動させな
がら上記基準画像と上記入力画像間の相互相関係数を演
算する相互相関係数法がよく用いられてきた。図3は,
従来の相互相関係数法を用いたテンプレ−トマッチング
を説明する図である。 図3(a)に示すように,X×
Y画素の基準画像を,M×N画素よりなる入力画像中の
探索領域を移動させながら,相互相関係数C(a,b)
が演算される。基準画像の左上の座標(a,b)が座標
(1,1)から座標(M−X+1,N−Y+1)の範囲
で移動して,上記相互相関係数が演算されると,例え
ば,図3(b)に示すような相互相関係数マトリクッス
が得られる。図3(b)において,C(x0,y0)が
0.9で最大であるため,a=x0,b=y0の位置に
基準画像と同じ画像が存在する(マッチした)と判断さ
れる。尚,このような従来の技術については,例えば,
尾上守夫氏編集の『画像処理ハンドブック』p303〜
p304に開示されている。
2. Description of the Related Art In an automated technique using image processing, when a predetermined reference image (template) and an input image have a relationship in which they overlap with each other by a parallel movement, the reference image is searched for in the input image. The operation of moving within the area to find the most suitable place, that is, template matching is often used. At the time of matching, it is important to accurately determine at which position in the input image the reference image matches. Therefore, in the automation technology using image processing, the cross-correlation coefficient method is often used in which the cross-correlation coefficient between the reference image and the input image is calculated while moving the reference image within the search area of the input image. Has been. FIG.
It is a figure explaining the template matching using the conventional cross correlation coefficient method. As shown in FIG. 3A, X ×
The cross-correlation coefficient C (a, b) is moved while moving the reference area of Y pixels in the search area in the input image of M × N pixels.
Is calculated. When the coordinates (a, b) at the upper left of the reference image move in the range from the coordinates (1, 1) to the coordinates (M−X + 1, N−Y + 1) and the cross-correlation coefficient is calculated, for example, A cross-correlation coefficient matrix as shown in 3 (b) is obtained. In FIG. 3B, since C (x0, y0) is 0.9, which is the maximum, it is determined that the same image as the reference image exists (matches) at the position of a = x0, b = y0. Regarding such a conventional technique, for example,
"Image Processing Handbook" edited by Morio Onoue, p303-
It is disclosed in p304.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,上記し
たような従来の相互相関係数法は,ノイズに対して敏感
であり,上記相互相関係数の最大値が不鮮明となるた
め,誤った結果を得る恐れが多い。尚,ここでいうノイ
ズは,画像取り込みカメラや画像処理装置で発生するノ
イズの他,上記基準画像と上記入力画像の間に常に存在
する差異,例えば,上記基準画像と上記入力画像を撮像
する時の照明条件が変化したために生じる差異等も含め
た広義の意味でのノイズである。上記ノイズのために,
正確なマッチングが得られない例を図4を用いて説明す
る。ここで図4は,上記ノイズが原因となる従来の相互
相関係数法における誤判定を説明するための図表であ
る。 例えば,図4に示した相互相関係数のマトリクッ
スにおいて,相互相関係数は,位置(x0−1,y0)
において最大の値をとるが,これは,基準画像及び入力
画像情報に存在した上記ノイズがたまたま(x0−1,
y0)の位置で重なったためであり,正しいマッチング
位置は(x0,y0)である。このような状況におい
て,従来の相互相関係数法では,マッチング位置の決定
が上記最大の値のみにより下され,周辺の相関が考慮さ
れないために,(x0−1,y0)がマッチング位置で
あると判断されてしまう。本発明は,上記したような従
来の技術における課題を解決するために,相互相関係数
法を改良し,演算時間をほとんど増加させることなしに
正確な画像の位置合わせを行う方法を提供することを目
的とするものである。
However, the conventional cross-correlation coefficient method as described above is sensitive to noise, and the maximum value of the cross-correlation coefficient becomes unclear. There is a lot of fear The noise referred to here is not only noise generated by an image capturing camera or an image processing device, but also a difference that always exists between the reference image and the input image, for example, when capturing the reference image and the input image. It is noise in a broad sense, including differences caused by changes in the lighting conditions of. Due to the above noise,
An example in which accurate matching cannot be obtained will be described with reference to FIG. Here, FIG. 4 is a chart for explaining erroneous determination in the conventional cross-correlation coefficient method caused by the noise. For example, in the matrix of the cross-correlation coefficient shown in FIG. 4, the cross-correlation coefficient is the position (x0-1, y0).
Takes the maximum value in the reference image and the input image information by the noise (x0-1,
This is because they overlap at the position of (y0), and the correct matching position is (x0, y0). In such a situation, in the conventional cross-correlation coefficient method, the matching position is determined only by the maximum value described above, and the surrounding correlation is not taken into consideration. Therefore, (x0-1, y0) is the matching position. Will be judged. SUMMARY OF THE INVENTION The present invention provides a method for improving the cross-correlation coefficient method to solve the problems in the conventional techniques as described above, and to provide a method for performing accurate image registration with almost no increase in calculation time. The purpose is.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明は,所定の基準画像を入力画像中の探索領域で
2次元的に移動させ,上記探索領域の各位置で,上記基
準画像と上記入力画像との相互相関係数を演算し,該相
互相関係数が最大の値となる位置を上記基準画像と上記
入力画像のマッチング位置とする画像位置合わせ方法に
おいて,上記相互相関係数を上記探索領域の縦方向及び
横方向について加算し,該縦方向の加算値及び該横方向
の加算値が,それぞれ最大の値となる位置を上記マッチ
ング位置とすることを特徴とする画像位置合わせ方法と
して構成されている。さらには,上記加算値が,上記相
互相関係数の自乗値の加算値である画像位置合わせ方法
である。
In order to achieve the above object, the present invention is one in which a predetermined reference image is two-dimensionally moved in a search area in an input image, and the reference image is set at each position of the search area. And the input image, a cross-correlation coefficient between the reference image and the input image is calculated by calculating a cross-correlation coefficient between the reference image and the input image. Is added in the vertical direction and the horizontal direction of the search area, and the position where the added value in the vertical direction and the added value in the horizontal direction are respectively maximum values is set as the matching position. Configured as a method. Furthermore, it is an image registration method in which the added value is the added value of the squared values of the cross-correlation coefficient.

【0005】[0005]

【発明の実施の形態】以下,添付図面を参照して本発明
を具体化した実施の形態につき説明し,本発明の理解に
供する。尚,以下の実施の形態は,本発明を具体化した
一例であって,本発明の技術的範囲を限定する性格のも
のではない。ここに図1は,本発明の実施の形態に係る
画像位置合わせ方法0の処理手順を示すブロック図,図
2は,画像位置合わせ方法0に係る相互相関係数マトリ
クッスを示す図表である。また,図1におけるS1,S
2,S3,S4は,処理手順(ステップ)を示し,x及
びyは,それぞれ画像の横方向及び縦方向を表す。図1
に示すように,本発明の実施の形態に係る画像位置合わ
せ方法0は,所定の基準画像を入力画像中の探索領域内
で2次元的に移動させて,上記基準画像と上記入力画像
間の相互相関係数を演算し,上記相互相関係数マトリク
ッスにおける最大の値を判断基準とする点で従来の技術
と同様である。しかし,本発明の実施の形態では,上記
相互相関係数をx方向とy方向について加算し(s
2),x方向とy方向の加算値がそれぞれ最大の値を与
える位置を抽出し(s3),マッチング位置とする(s
4)点で従来の技術と異なる。以下,本実施の形態に係
る画像の位置合わせ方法0の詳細について説明する。ま
ず,M×N画素のブロックに分割された入力画像中の探
索領域において,X×Y画素のブロックに分割された基
準画像を2次元的に移動させる。この場合,基準画像の
左上の座標(a,b)は,(1,1)から(M−X+
1,N−Y+1)の範囲で移動する。その探索領域内
で,次式に従って,各位置での相互相関係数C(a,
b)を演算する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. It should be noted that the following embodiments are examples embodying the present invention, and do not limit the technical scope of the present invention. FIG. 1 is a block diagram showing the processing procedure of the image registration method 0 according to the embodiment of the present invention, and FIG. 2 is a table showing the cross-correlation coefficient matrix of the image registration method 0. In addition, S1 and S in FIG.
2, S3 and S4 indicate processing procedures (steps), and x and y respectively represent the horizontal direction and the vertical direction of the image. FIG.
As shown in FIG. 4, the image registration method 0 according to the embodiment of the present invention moves a predetermined reference image two-dimensionally within a search area in the input image to thereby make a space between the reference image and the input image. This is the same as the conventional technique in that the cross-correlation coefficient is calculated and the maximum value in the above-mentioned cross-correlation coefficient matrix is used as the criterion. However, in the embodiment of the present invention, the cross-correlation coefficient is added in the x direction and the y direction (s
2) The position where the added value in the x direction and the added value in the y direction give the maximum value is extracted (s3), and is set as the matching position (s).
4) The point is different from the conventional technology. Hereinafter, details of the image alignment method 0 according to the present embodiment will be described. First, the reference image divided into blocks of X × Y pixels is two-dimensionally moved in the search area in the input image divided into blocks of M × N pixels. In this case, the coordinates (a, b) at the upper left of the reference image are from (1, 1) to (M−X +
1, N-Y + 1). Within the search region, the cross-correlation coefficient C (a,
Calculate b).

【0006】[0006]

【数1】 [Equation 1]

【0007】上記した式においてIは,探索領域が
(a,b)で座標が(x,y)である入力画像の強度値 Tは,座標が(x,y)である基準画像の強度値 I及びTに−を冠したものは,I及びTの平均値 シグマの添字は,I及びTの分散値 この式により得られた相互相関係数の演算結果を配列R
(a,b)に格納する(s1)。次に配列R(a,b)
をx方向に加算し,SX(1)〜SX(M−X+1)
を,y方向に加算し,SY(1)〜SY(N−Y+1)
をそれぞれ得る(s2)。そして,SX(1)〜SX
(M−X+1)中及びSY(1)〜SY(N−Y+1)
中,それぞれにおいて,最大の値をとる位置,即ち列番
号x0,行番号y0を抽出する(s3)。最後に,列番
号x0,行番号y0をマッチング位置として決定する
(s4)。図2は,処理手順s1及びs2の演算結果及
び処理手順s3によるx方向の加算値及びy方向の加算
値,それぞれにおける最大の値をとる行及び列(太枠で
示す演算結果のある行及び列)の抽出結果を示す。尚,
処理手順s1による演算結果は,比較のために,従来の
技術の説明で用いた図4と同様の結果を用い,上記相互
相関係数C(a,b)が最大となる位置が(x0−1,
y0)となる原因がノイズによるものである点も同様で
ある。
In the above equation, I is the intensity value of the input image whose search area is (a, b) and whose coordinates are (x, y). T is the intensity value of the reference image whose coordinate is (x, y). I and T with a minus sign are the average values of I and T, the subscript of sigma is the variance value of I and T, and the calculation result of the cross-correlation coefficient obtained by this equation is the array R
It is stored in (a, b) (s1). Then the array R (a, b)
Are added in the x direction, and SX (1) to SX (M−X + 1)
Are added in the y direction, and SY (1) to SY (N−Y + 1)
Respectively (s2). And SX (1) to SX
Medium (M-X + 1) and SY (1) to SY (N-Y + 1)
In each of them, the position having the maximum value, that is, the column number x0 and the row number y0 is extracted (s3). Finally, the column number x0 and the row number y0 are determined as matching positions (s4). FIG. 2 shows the calculation results of the processing procedures s1 and s2 and the addition value in the x direction and the addition value in the y direction according to the processing procedure s3, and the row and column that take the maximum value in each (the row with the calculation result indicated by a thick frame and Column) shows the extraction results. still,
For comparison, the calculation result of the processing procedure s1 uses the same result as that of FIG. 4 used in the description of the conventional technique, and the position where the cross-correlation coefficient C (a, b) is maximum is (x0− 1,
The same applies to the fact that the cause of becoming y0) is due to noise.

【0008】図2において,本実施の形態に係る画像位
置合わせ方法0がマッチング位置であると決定するの
は,上記したように位置(x0−1,y0)ではなく,
位置(x0,y0)である。これは,画像位置合わせ方
法0が,x及びy方向それぞれについて相互相関係数を
加算し,両加算値が同時に最大となる位置をマッチング
位置としているため,周辺の類似度が判定に加味され
て,位置(x0−1,y0)[C(x0−1,y0)=
0.921]は却下され,位置(x0,y0)[C(x
0,y0)=0.919]が,総合的に最もマッチした
位置と判断されたためである。このように本発明を用い
ると,ノイズに影響されにくい,正確な画像の位置合わ
せを行うことが可能となる。また,画像位置合わせ方法
0において増えた処理時間は,実質的に処理手順s2に
おける演算時間だけである。処理手順s2における演算
は,極めて単純であるため,処理手順s1における演算
時間と比べると無視できる程度であり,演算時間をほと
んど増加させない。
In FIG. 2, it is not the position (x0-1, y0) that the image registration method 0 according to the present embodiment determines to be the matching position.
The position is (x0, y0). This is because the image registration method 0 adds the cross-correlation coefficient in each of the x and y directions and uses the position where both added values are maximum simultaneously as the matching position. , Position (x0-1, y0) [C (x0-1, y0) =
0.921] is rejected and the position (x0, y0) [C (x
0, y0) = 0.919] was judged to be the most comprehensively matched position. As described above, according to the present invention, it is possible to perform accurate image alignment that is less likely to be affected by noise. Further, the processing time increased in the image registration method 0 is substantially only the calculation time in the processing procedure s2. Since the calculation in the processing procedure s2 is extremely simple, it is negligible compared with the calculation time in the processing procedure s1, and the calculation time hardly increases.

【0009】[0009]

【実施例】上記した画像位置合わせ方法0においては,
処理手順s1,s2,s3をそれぞれ分離して行った
が,上記処理手順s1,s2,s3を混合させると演算
時間が短縮できる。このような画像位置合わせ方法も本
発明における画像位置合わせ方法の一例である。また,
上記画像位置合わせ方法0における処理手順s2では相
互相関係数をそのまま加算したが,その代わりに上記相
互相関係数の自乗値を加算してもよい。このような画像
位置合わせ方法も本発明における画像位置合わせ方法の
一例である。また,上記画像位置合わせ方法0において
は,上記探索領域における全ての座標について上記相互
相関係数の演算を行ったが,上記探索領域が広い場合に
は,最初から全ての座標について演算を行わず,上記探
索領域の所定の座標に限定するか,若しくは,適当な間
隔で飛びとびの領域について上記画像位置合わせ方法0
による評価を行い,順次座標間隔をつめていくようにし
て演算時間を短縮し,画像の位置合わせを行ってもよ
い。このような画像位置合わせ方法も本発明における画
像位置合わせ方法の一例である。
EXAMPLE In the image registration method 0 described above,
Although the processing procedures s1, s2, and s3 are separately performed, the calculation time can be shortened by mixing the processing procedures s1, s2, and s3. Such an image registration method is also an example of the image registration method in the present invention. Also,
Although the cross-correlation coefficient is added as it is in the processing procedure s2 in the image registration method 0, the square value of the cross-correlation coefficient may be added instead. Such an image registration method is also an example of the image registration method in the present invention. Further, in the image alignment method 0, the cross-correlation coefficient is calculated for all the coordinates in the search area, but when the search area is wide, the calculation is not performed for all the coordinates from the beginning. The image registration method 0 is limited to the predetermined coordinates of the search area, or for the skipped areas at appropriate intervals.
Evaluation may be performed and the coordinate intervals may be sequentially reduced to shorten the calculation time and align the images. Such an image registration method is also an example of the image registration method in the present invention.

【0010】[0010]

【発明の効果】本発明に係る画像位置合わせ方法は,上
記したように構成されているため,従来の技術と比べて
ほとんど演算時間を増加させることなしに,画像情報に
ノイズが存在する場合でも,正確に画像の位置合わせを
行うことができる。さらに上記加算値を上記相互相関係
数の自乗値の加算値とすれば,相関の違いが強調され,
より正確な画像の位置合わせが可能となる。
Since the image registration method according to the present invention is configured as described above, even if the image information has noise, the operation time is hardly increased as compared with the conventional technique. , The images can be aligned accurately. Furthermore, if the added value is set to the added value of the squared value of the cross-correlation coefficient, the difference in correlation is emphasized,
It becomes possible to perform more accurate image alignment.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態に係る画像位置合わせ方
法0の処理手順を示すブロック図。
FIG. 1 is a block diagram showing a processing procedure of an image registration method 0 according to an embodiment of the present invention.

【図2】 画像位置合わせ方法0に係る相互相関係数マ
トリクッスを示す表。
FIG. 2 is a table showing a cross-correlation coefficient matrix according to the image registration method 0.

【図3】 従来の技術におけるテンプレ−トマッチング
を説明する説明図。
FIG. 3 is an explanatory diagram for explaining template matching in a conventional technique.

【図4】 従来の技術における相互相関係数マトリクッ
スを示す表。
FIG. 4 is a table showing a cross-correlation coefficient matrix in the related art.

【符合の説明】 x…探索領域における横方向 y…探索領域における縦方向 a…基準画像の左上のx座標 b…基準画像の左上のy座標 X…基準画像のx方向の画素分割数 Y…基準画像のy方向の画素分割数 M…入力画像のx方向の画素分割数 N…入力画像のy方向の画素分割数 s1…相互相関係数の演算 s2…x方向及びy方向について相互相関係数を加算 s3…加算値から最大値を抽出 s4…マッチング位置決定[Description of Symbols] x ... Horizontal direction in search area y ... Vertical direction in search area a ... x coordinate at upper left of reference image b ... y coordinate at upper left of reference image X ... Number of pixel divisions in x direction of reference image Y ... Pixel division number in the y direction of the reference image M ... Pixel division number in the x direction of the input image N ... Pixel division number in the y direction of the input image s1 ... Cross-correlation coefficient calculation s2 ... Mutual correlation in the x direction and the y direction Add the number s3 ... Extract the maximum value from the added value s4 ... Determine the matching position

フロントページの続き (72)発明者 高橋 英二 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内Continued Front Page (72) Eiji Takahashi Eiji Takahashi 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel Works, Ltd. Kobe Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 所定の基準画像を入力画像中の探索領域
で2次元的に移動させ,上記探索領域の各位置で,上記
基準画像と上記入力画像との相互相関係数を演算し,該
相互相関係数が最大の値となる位置を上記基準画像と上
記入力画像のマッチング位置とする画像位置合わせ方法
において,上記相互相関係数を上記探索領域の縦方向及
び横方向について加算し,該縦方向の加算値及び該横方
向の加算値が,それぞれ最大の値となる位置を上記マッ
チング位置とすることを特徴とする画像位置合わせ方
法。
1. A predetermined reference image is two-dimensionally moved in a search area in an input image, and a cross-correlation coefficient between the reference image and the input image is calculated at each position of the search area, In the image registration method in which the position where the cross-correlation coefficient is the maximum value is the matching position between the reference image and the input image, the cross-correlation coefficient is added in the vertical and horizontal directions of the search area, An image alignment method, wherein a position where the added value in the vertical direction and the added value in the horizontal direction have respective maximum values is set as the matching position.
【請求項2】 上記加算値が,上記相互相関係数の自乗
値の加算値である請求項1記載の画像位置合わせ方法。
2. The image registration method according to claim 1, wherein the added value is an added value of square values of the cross-correlation coefficient.
JP8085104A 1996-04-08 1996-04-08 Image aligning method Pending JPH09274659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8085104A JPH09274659A (en) 1996-04-08 1996-04-08 Image aligning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8085104A JPH09274659A (en) 1996-04-08 1996-04-08 Image aligning method

Publications (1)

Publication Number Publication Date
JPH09274659A true JPH09274659A (en) 1997-10-21

Family

ID=13849315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8085104A Pending JPH09274659A (en) 1996-04-08 1996-04-08 Image aligning method

Country Status (1)

Country Link
JP (1) JPH09274659A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100459590B1 (en) * 2000-12-22 2004-12-04 가부시키가이샤 신가와 Position detecting apparatus and method thereof
CN112348863A (en) * 2020-11-09 2021-02-09 Oppo广东移动通信有限公司 Image alignment method, image alignment device and terminal equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100459590B1 (en) * 2000-12-22 2004-12-04 가부시키가이샤 신가와 Position detecting apparatus and method thereof
CN112348863A (en) * 2020-11-09 2021-02-09 Oppo广东移动通信有限公司 Image alignment method, image alignment device and terminal equipment

Similar Documents

Publication Publication Date Title
US6671399B1 (en) Fast epipolar line adjustment of stereo pairs
US10636165B2 (en) Information processing apparatus, method and non-transitory computer-readable storage medium
CA2507174C (en) Method of registering and aligning multiple images
EP1901228B1 (en) Apparatus, method and program for image matching
US7474802B2 (en) Method and apparatus for automatically estimating the layout of a sequentially ordered series of frames to be used to form a panorama
JP4373840B2 (en) Moving object tracking method, moving object tracking program and recording medium thereof, and moving object tracking apparatus
EP1395059B1 (en) Intruding-object detection apparatus
JP4103898B2 (en) Map information updating method and map updating apparatus
KR100647750B1 (en) Image processing apparatus
US20030091238A1 (en) Detection of a pattern in a digital image
JPH09274659A (en) Image aligning method
US6222938B1 (en) Compensating pixel records of related images for detecting images disparity, apparatus and method
JP2981382B2 (en) Pattern matching method
JP3421456B2 (en) Image processing device
JP2007257489A (en) Image processor and image processing method
Tipdecho Automatic image registration between image and object spaces
JP3437087B2 (en) Feature point tracking method and apparatus, and recording medium storing feature point tracking program
CN116630164B (en) Real-time splicing method for massive microscopic images
JPH07192134A (en) Image processing method
JP7365862B2 (en) Object tracking device and method
JP3311551B2 (en) Image data input processing method and apparatus
JPH0546734A (en) Method for recognizing pattern
JP2002062802A (en) Method for correcting topographic data
JPH0991425A (en) Image processor
JPH06243258A (en) Depth detector