JPH09274168A - Multiple reflection element - Google Patents

Multiple reflection element

Info

Publication number
JPH09274168A
JPH09274168A JP8111315A JP11131596A JPH09274168A JP H09274168 A JPH09274168 A JP H09274168A JP 8111315 A JP8111315 A JP 8111315A JP 11131596 A JP11131596 A JP 11131596A JP H09274168 A JPH09274168 A JP H09274168A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal cell
mirrors
multiple reflection
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8111315A
Other languages
Japanese (ja)
Other versions
JP2964467B2 (en
Inventor
Toshihiko Yoshino
俊彦 芳野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HERUTSU KOGYO KK
Original Assignee
HERUTSU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HERUTSU KOGYO KK filed Critical HERUTSU KOGYO KK
Priority to JP8111315A priority Critical patent/JP2964467B2/en
Priority to PCT/JP1997/003700 priority patent/WO1999019762A1/en
Priority claimed from PCT/JP1997/003700 external-priority patent/WO1999019762A1/en
Publication of JPH09274168A publication Critical patent/JPH09274168A/en
Application granted granted Critical
Publication of JP2964467B2 publication Critical patent/JP2964467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a conversion efficiency and to attain the high speed of the conversion by providing mirrors while opposing them to both side faces of a liquid crystal cell and passing the light beam of a laser beam or the like through the liquid crystal cell and reflecting it in between respective mirrors in multiple while impressing a voltage on the liquid crystal cell. SOLUTION: Transparent electrodes 1a, 1a are provided in both side faces confronted with each others of a liquid crystal cell 1 by being polymerized directly and mirrors 2, 2 are provided while being opposed to respective electrodes and the light beam of the laser beam or the like is passed through the cell 1 and is reflected in between the two opposed mirrors 2, 2 in multiple while impressing a variable voltage V on the respective transparent electrodes 1a, 1a of the cell 1. In this case, the phase and the polarization of the light beam are largely changed by varrying the voltage V. Then, in using of a multiple reflection liquid crystal cell, the phase and the retardation (relative phase difference between orthogonal polarized components) of the light beam are increased according to reflection times without changing the main axis or polarization of the light beam by arranging the cell so that the main axial plane of the liquid crystal coincide with the incident plane of the light beam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は光学的干渉計や電
圧センサー、液晶スイッチ、表示素子等に使用する多重
反射素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multiple reflection element used for an optical interferometer, a voltage sensor, a liquid crystal switch, a display element and the like.

【0002】[0002]

【従来の技術】従来、位相変換機として、電気的に駆動
するものとしてはニオブ酸リチウムやKDPなどの電気
光学結晶あるいは液晶を利用する方式が知られ、機械的
な駆動によるものとしては反射ミラーを移動させる方式
が知られている。
2. Description of the Related Art Conventionally, as a phase shifter, a method utilizing an electro-optic crystal such as lithium niobate or KDP or a liquid crystal has been known as an electrically driven one, and a reflection mirror as a mechanically driven one. There is known a method of moving the.

【0003】[0003]

【発明が解決しようとする課題】しかしながら電気光学
結晶や液晶を利用するものは、変化可能な位相変化が小
さく、一方反射ミラーを利用するものは、機械的な移動
を伴うので応答速度が非常に遅いという欠点があった。
そのため、大きな位相変化を高速に達成させる位相変換
機が存在せず、光の応用技術において大きな障害となっ
ていた。
However, the one using the electro-optical crystal or the liquid crystal has a small changeable phase change, while the one using the reflecting mirror has a very high response speed because it involves mechanical movement. It had the drawback of being slow.
Therefore, there is no phase converter that can achieve a large phase change at high speed, which has been a major obstacle in optical application technology.

【0004】そこでこの発明は位相の変化、偏光の変化
やそれによる強度変化において変換量が増大し、変換効
率が良く、かつ高速化できる多重反射素子を提供するも
のである。
Therefore, the present invention provides a multiple reflection element in which the conversion amount is increased due to a change in phase, a change in polarization, and a change in intensity due to the change, the conversion efficiency is good, and the speed can be increased.

【0005】[0005]

【課題を解決するための手段】まず請求項1項の発明
は、液晶セルの両側面にミラーを夫々相対向して設け、
上記液晶セルに適宜の電圧を印加してレーザー光等の光
を液晶セルを通してこれらのミラーの間で多重反射させ
る構成から成る、多重反射素子とした。
First, the invention according to claim 1 is to provide mirrors on both side surfaces of a liquid crystal cell so as to face each other,
A multi-reflection element having a structure in which light such as laser light is multiply reflected between these mirrors through the liquid crystal cell by applying an appropriate voltage to the liquid crystal cell is provided.

【0006】また請求項2項の発明は、液晶セルの両側
面にミラーを夫々直接重合して設け、これらのミラーの
一部に反射防止膜を設け、これらのミラーの外側に透明
電極を重合して設け、これらの透明電極に適宜の電圧を
印加してレーザー光等の光を上記反射防止膜を通して液
晶セルを通過させて上記ミラーの間で多重反射させる構
成から成る、多重反射素子とした。
According to the second aspect of the invention, mirrors are directly provided on both side surfaces of the liquid crystal cell by superimposing them, an antireflection film is provided on a part of these mirrors, and transparent electrodes are superposed on the outside of these mirrors. And a suitable voltage is applied to these transparent electrodes to allow light such as laser light to pass through the liquid crystal cell through the antireflection film and undergo multiple reflection between the mirrors. .

【0007】また請求項3項の発明は、上記請求項1項
又は2項の多重反射素子において、液晶セルに適宜の電
圧を印加してレーザー光等の光を当該液晶セルを通して
両側に設けたミラーの間で多重反射させ、これらを通過
した光線を、別途設けた反射ミラーによって入射光線と
逆行させる構成から成る、多重反射素子とした。
According to a third aspect of the present invention, in the multiple reflection element according to the first or second aspect, an appropriate voltage is applied to the liquid crystal cell so that light such as laser light is provided on both sides through the liquid crystal cell. A multi-reflection element having a structure in which multiple reflections are made between the mirrors, and light rays that have passed through these mirrors are made to go backwards to the incident light rays by a reflection mirror provided separately.

【0008】また請求項4項の発明は、上記請求項1項
又は2項の多重反射素子において、液晶セルに適宜の電
圧を印加してレーザー光等の光を当該液晶セルを通して
両側に設けたミラーの間で多重反射させ、これらを通過
した光線を、別途設けた位相共役ミラーによって入射光
線と逆行させる構成から成る、多重反射素子とした。
According to a fourth aspect of the present invention, in the multiple reflection element according to the first or second aspect, an appropriate voltage is applied to the liquid crystal cell so that light such as laser light is provided on both sides through the liquid crystal cell. A multi-reflection element having a structure in which multiple reflections are made between the mirrors, and light rays that have passed through these mirrors are made to go backwards to the incident light rays by a separately provided phase conjugate mirror.

【0009】[0009]

【実施の形態】以下この発明の実施の形態例を図に基づ
いて説明する。図1は多重反射素子の第1の実施の形態
例を示し、(A)図、(B)図の二種類の透過型の多重
反射素子を示す。液晶セル1の相対向する両側面に透明
電極1a、1aを直接重合して設け、これらに対向して
夫々ミラー2、2を設け、当該液晶セル1の各透明電極
1aに可変電圧Vをかけて、図1に示すごとくレーザー
光等の光を液晶セル1を通し、二つの対向するミラー
2、2の間を多重に反射させるものである。そして上記
電圧Vをかえることにより位相、偏光等が大きく変化す
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of a multiple reflection element, and shows two types of transmissive multiple reflection elements shown in FIGS. Transparent electrodes 1a and 1a are directly provided on opposite sides of the liquid crystal cell 1 by superposition, and mirrors 2 and 2 are provided to face them, and a variable voltage V is applied to each transparent electrode 1a of the liquid crystal cell 1. Thus, as shown in FIG. 1, light such as laser light is passed through the liquid crystal cell 1 and is reflected multiple times between two opposing mirrors 2, 2. Then, by changing the voltage V, the phase, polarization, etc. change significantly.

【0010】多重反射液晶セルの使用においては、液晶
の主軸面が光線の入射面と一致するように配置すること
により、光線の偏光主軸を変えることなく、光線の位相
及びリターデーション(直交偏光成分の相対的位相差)
を反射回数に対応して増加することができる。図2はこ
の多重反射の例として20回反射の液晶と一回透過の液
晶の位相変化又はリターデーション特性を示すグラフで
ある。この様に反射回数に対応して増加していることが
分かる。
In the use of the multi-reflection liquid crystal cell, by arranging the principal axis plane of the liquid crystal so as to coincide with the incident plane of the ray, the phase and retardation (orthogonal polarization component) of the ray can be changed without changing the principal axis of polarization of the ray. Relative phase difference)
Can be increased corresponding to the number of reflections. FIG. 2 is a graph showing phase change or retardation characteristics of a liquid crystal having 20 reflections and a liquid crystal having one transmission as an example of this multiple reflection. It can be seen that the number of reflections increases in this way.

【0011】また図3及び第4図は上記第1の実施の形
態例の多重反射素子を反射型とした第2の実施の形態例
及び第3の実施の形態例を示す。図3においては、図1
と同様な多重反射素子を通過した光線を、別途設けた反
射ミラー6で反射させ、入射光線と逆行させるよう構成
したものである。これにより反射回数が2倍に増加する
ので、位相変化も2倍になる。また図4においては、上
記反射ミラー6の代わりに、位相共役ミラー7を設けた
ものである。この位相共役ミラー7はチタン酸バリウム
などのフォトレフラクティブ非線形光学結晶で、相対す
る両側からポンプレーザ光7a、7bを当てている。
FIGS. 3 and 4 show a second embodiment and a third embodiment in which the multiple reflection element of the first embodiment is a reflection type. In FIG. 3, FIG.
A light beam that has passed through a multiple reflection element similar to the above is reflected by a reflection mirror 6 provided separately, and is made to travel backward from the incident light beam. This doubles the number of reflections, and thus doubles the phase change. Further, in FIG. 4, a phase conjugate mirror 7 is provided instead of the reflection mirror 6. The phase conjugate mirror 7 is a photorefractive nonlinear optical crystal such as barium titanate, and pump laser beams 7a and 7b are applied from opposite sides thereof.

【0012】光線は、途中の空気の揺らぎ、伝搬による
ビームの広がり等によって、ビームが乱れることがあ
り、実用上の性能の低下をもたらす。しかし当該位相共
役ミラー7に入射する光線は、結晶のフォトレフラクテ
ィブ効果によって、入射光線と共役の波面をもって反射
し、入射光線に対して逆行する。これにより、途中の空
気の揺らぎや伝搬によるビームの乱れが打ち消され、元
の入射光と同様の、乱れのないビームが再現され、液晶
による位相変換の大きさについては透過型に比べて2倍
の反射光が達成できる。なお上記位相共役ミラーのポン
プレーザ光はない場合でも上記作用は可能である。
The light beam may be disturbed due to fluctuations of air in the middle of the beam, spread of the beam due to propagation, and the like, resulting in deterioration of practical performance. However, due to the photorefractive effect of the crystal, the light ray incident on the phase conjugate mirror 7 is reflected by the wavefront conjugate with the incident light ray, and goes backward with respect to the incident light ray. As a result, the turbulence of the beam due to the fluctuations and propagation of air in the middle is canceled, the undisturbed beam similar to the original incident light is reproduced, and the size of the phase conversion by the liquid crystal is double that of the transmission type. The reflected light can be achieved. The above operation is possible even when there is no pump laser light from the phase conjugate mirror.

【0013】また図5は上記第1の実施の形態例の多重
反射素子をよりコンパクトにした第4の実施の形態例を
示す。液晶セル1をガラス箱1a内に収納し、このガラ
ス箱1aの上下両側面に反射膜3、3を貼り付け、この
うち下面の反射膜3の一部、二箇所を反射防止膜4、4
とし、さらに上記上下の反射膜3、3の外側に透明電極
5、5を設けたものである。そしてこれらの透明電極
5、5に可変電圧Vをかけて、図5に示すごとくレーザ
ー光等の光を一方の反射防止膜4を通して液晶セル1内
を通過させ、二つの対向する反射膜3、3の間を多重反
射させ、他方の反射防止膜4から導出させるものであ
る。
FIG. 5 shows a fourth embodiment in which the multiple reflection element of the first embodiment is made more compact. The liquid crystal cell 1 is housed in a glass box 1a, and the reflection films 3 and 3 are attached to both upper and lower surfaces of the glass box 1a.
Further, the transparent electrodes 5 and 5 are provided outside the upper and lower reflective films 3 and 3. Then, a variable voltage V is applied to these transparent electrodes 5 and 5 to allow light such as laser light to pass through the inside of the liquid crystal cell 1 through one of the antireflection films 4 as shown in FIG. 3 is reflected multiple times and led out from the other antireflection film 4.

【0014】このコンパクト化した多重反射素子も、図
6に示すごとく反射型の場合もある。即ち、図6の
(A)図は反射ミラー6を設けて当該反射ミラー6個所
で反射させ、入射光線と逆行させるよう構成したもので
ある。また図6の(B)図はこの反射ミラーの代わりに
位相共役ミラー7を設けたもので、これらは上記実施の
形態例と同様にこれにより反射回数が2倍に増加するの
で、位相変化も2倍になる。
This compact multiple reflection element may also be of a reflection type as shown in FIG. That is, in FIG. 6A, the reflection mirror 6 is provided, and the reflection mirror 6 is configured to reflect the light at the six points and reverse the incident light beam. Further, in FIG. 6B, a phase conjugate mirror 7 is provided instead of this reflection mirror, and since the number of reflections increases twice as in the above embodiment, the phase change also occurs. Doubles.

【0015】これらの多重反射素子は、例えば位相変調
機として干渉計の安定化に使用される。図7はこの実施
の形態例を示す。レーザー光等の光源8からの光の一部
は半透明鏡BS1を通過させて被検物体9を通してミラ
ーM2で反射し、半透明鏡BS1で反射してピンホール
10を有する板11に至る。また光源8からの一部の光
は上記半透明鏡BS1で反射し、上記多重反射素子を用
いた位相変調機12を通過してミラーM1で反射し、半
透明鏡BS1を通過してピンホール10を有する板11
に至る。これらの光により板11の上に干渉縞が現われ
る。
These multiple reflection elements are used, for example, as a phase modulator to stabilize an interferometer. FIG. 7 shows an example of this embodiment. A part of the light from the light source 8 such as laser light passes through the semitransparent mirror BS1, is reflected by the mirror M2 through the object 9 to be inspected, and is reflected by the semitransparent mirror BS1 to reach the plate 11 having the pinhole 10. Part of the light from the light source 8 is reflected by the semitransparent mirror BS1, passes through the phase modulator 12 using the multiple reflection element, is reflected by the mirror M1, passes through the semitransparent mirror BS1, and is a pinhole. Board 11 with 10
Leading to. The light causes interference fringes to appear on the plate 11.

【0016】なおこの実施の形態例では光源8及び位相
変調機12の箇所に、同じ偏光方向の偏光子Pを設けて
偏光からくる誤差をなくしているが、これらの偏光子P
はこの装置の必須要件ではなく、偏光した光源を用いか
つその方向に液晶の主軸の回転面が合致しているか又は
光ファイバーの中の動作によって偏光が変化しない場合
は上記偏光子Pを用いなくてもよい。
In this embodiment, the light source 8 and the phase modulator 12 are provided with the polarizer P having the same polarization direction to eliminate the error caused by the polarized light.
Is not an essential requirement of this device. If a polarized light source is used and the direction of rotation of the principal axis of the liquid crystal is aligned with that direction, or if the polarization does not change due to the operation in the optical fiber, then the above polarizer P should not be used. Good.

【0017】そしてこれらの光路において振動等の外乱
があるとピンホール10を通る光の強さが変動する。こ
れをピンホール10の後方に設けた光検出器13で検出
し、光の強弱に応じて差動アンプ14により電圧に変
え、上記位相変調機12にフィードバックする。従って
光のみだれに応じて常に当該位相変調機12により位相
を変化させ信号光及び参照光の安定化を図るものであ
る。また半透明鏡BS1とピンホール10を有する板1
1との間の光路に半透明鏡BS2を設けてこれらの光を
反射させ干渉縞をモニター15により表示するようにし
ている。
When there is a disturbance such as vibration in these optical paths, the intensity of light passing through the pinhole 10 varies. This is detected by a photodetector 13 provided at the rear of the pinhole 10, converted into a voltage by a differential amplifier 14 according to the intensity of light, and fed back to the phase modulator 12. Therefore, the phase is always changed by the phase modulator 12 according to the drool of the light to stabilize the signal light and the reference light. Also, a plate 1 having a semitransparent mirror BS1 and a pinhole 10
A semi-transparent mirror BS2 is provided in the optical path between the optical path 1 and the optical path 1, and these lights are reflected to display interference fringes on the monitor 15.

【0018】また従来当該干渉計により図8に示す様な
被検物体16の表面の凹凸を計測したい場合、半透明鏡
17に光源18からレーザー光を当て通過した光を被検
物体16の表面で反射させてさらに半透明鏡17で反射
させ、一方光源18からの光を半透明鏡17で反射さ
せ、これをミラー19で反射させて半透明鏡17を通過
させ、これらの光の干渉縞を自動的に読み取っている。
この原理は以下の式で表わされる。
Further, conventionally, when it is desired to measure the unevenness of the surface of the object 16 to be inspected as shown in FIG. 8 by the interferometer, the semitransparent mirror 17 is irradiated with the laser light from the light source 18 and the passed light is passed through the surface of the object 16 to be inspected. Then, the light from the light source 18 is reflected by the semitransparent mirror 17, the light is reflected by the mirror 19 and passed through the semitransparent mirror 17, and the interference fringes of these lights are reflected. Is automatically read.
This principle is expressed by the following equation.

【0019】 I1=A+Bcosφ Δφ=0 I2=A−Bsinφ Δφ=π/2 I3=A−Bcosφ Δφ=π I4=A+Bsinφ Δφ=3π/2 tanφ=(I4−I2)÷(I1−I3) 上記Δφを90゜づつずらして位相を代えて、夫々Iを
計測し、これらを上記式に代入して最終的にΔφをだす
もので、上記A,Bは定数である。
I 1 = A + B cos φ Δφ = 0 I 2 = A-B sin φ Δφ = π / 2 I 3 = A-B cos φ Δφ = π I 4 = A + B sin φ Δφ = 3π / 2 tan φ = (I 4 −I 2 ) ÷ ( I 1 -I 3 ) The above Δφ is shifted by 90 °, the phase is changed, each I is measured, these are substituted into the above equation to finally obtain Δφ, and the above A and B are constants. .

【0020】従来、90゜づつずらして位相を代えるの
に上記ミラー19を動かしていた。しかしこの様にミラ
ー19を動かすのは、機構も複雑となり、精度の高い構
成とするには難しいものであった。そこでこの発明では
液晶を用い、この液晶に印加する電圧を変化させること
により極めて容易に90゜毎の位相を変化させている。
Conventionally, the mirror 19 has been moved to shift the phase by 90 °. However, it is difficult to move the mirror 19 in this way because of a complicated mechanism and a highly accurate structure. Therefore, in the present invention, liquid crystal is used, and the phase is changed every 90 ° very easily by changing the voltage applied to the liquid crystal.

【0021】図9はこの干渉計における干渉縞の自動読
み取り装置を示す。レーザー光等を多重反射液晶素子2
0に照射し、さらに被検物体21に通し、干渉計22を
介して干渉縞をCCDカメラ23で読み取り、これをマ
イコン24にかけてテレビ画面やプリンタ等の表示装置
25に被検物体の表面形状や屈折率分布を三次元的に表
示するものである。
FIG. 9 shows an automatic reading device for interference fringes in this interferometer. Multiple reflection liquid crystal element 2 for laser light
0, irradiate the object 21 to be inspected, and the CCD camera 23 reads the interference fringes through the interferometer 22, and the microcomputer 24 applies this to the surface shape of the object to be inspected on a display device 25 such as a television screen or a printer. The refractive index distribution is displayed three-dimensionally.

【0022】またシヤリング干渉計は信号光、参照光が
空間的にほぼ同じ場所を通過するため干渉計そのものが
高安定である。そこで液晶の位相可変機能を使用するこ
とにより従来のシヤリング干渉計では不可能であった干
渉縞の自動読み取りが可能となった。図10はこのシヤ
リング干渉計に多重反射液晶素子20を設けたものであ
る。
Further, in the shearing interferometer, the interferometer itself is highly stable because the signal light and the reference light spatially pass through substantially the same place. Therefore, by using the variable phase function of the liquid crystal, it became possible to automatically read the interference fringes, which was impossible with the conventional shearing interferometer. FIG. 10 shows the shearing interferometer provided with a multiple reflection liquid crystal element 20.

【0023】図10のシヤリング干渉計は、方解石のよ
うな複屈折性結晶板Qdによる横ずれを利用して波面に
シャーを与えるもので、干渉像を作るため結晶に対して
45°の方向に偏光軸をもつ偏光子Pと検光子Aが配置
されており、多重反射液晶素子20を通した光を物体O
にあて、レンズLで物体Oの像を投影し、像面には常光
線による波面Woと異常光線による波面Weの間のシヤ
リング干渉像が形成され、これをCCDカメラ23でと
らえ、これを上記の実施の形態例と同様にマイコンにか
けてテレビ画面やプリンタ等の表示装置により被検物体
の表面形状や屈折率分布を三次元的に表示するものであ
る。なおWpは入射平面波で、コヒーレントな波面であ
り、Wは物体Oを透過したのちの波面である。
The shearing interferometer shown in FIG. 10 utilizes a lateral shift caused by a birefringent crystal plate Qd such as calcite to give a shear to the wavefront. Polarization is performed in a direction of 45 ° with respect to the crystal to form an interference image. A polarizer P having an axis and an analyzer A are arranged so that light passing through the multiple reflection liquid crystal element 20 is transmitted to the object O.
Then, the image of the object O is projected by the lens L, and a shearing interference image between the wavefront Wo by the ordinary ray and the wavefront We by the extraordinary ray is formed on the image plane, which is captured by the CCD camera 23, In the same manner as in the above embodiment, a microcomputer is used to three-dimensionally display the surface shape and the refractive index distribution of the object to be inspected by a display device such as a television screen or a printer. Wp is an incident plane wave and is a coherent wavefront, and W is a wavefront after passing through the object O.

【0024】また従来から使用されているノマルスキー
微分干渉顕微鏡においても従来不可能であった干渉縞の
読み取りができる。図11はノマルスキー微分干渉計を
示し、偏光子P及び多重反射液晶素子20を透過した照
明光は半透明鏡BSで反射し、ノマルスキープリズムP
n、対物レンズObを経て試料Sを照明する。ノマルス
キープリズムPnは光学軸が図示のようなプリズムを貼
りあわせたプリズムである。このプリズムPnは実際に
は光軸のまわりに45°回転した方位にある。従って入
射光線は振幅の等しい常光線と異常光線に分解される。
これら常光線と異常光線は図示の様に貼りあわせ面で異
なる方向に進が、プリズムPnを透過した後対物レンズ
Obの焦点Fで交差するように進む。対物レンズPnを
透過した後は平行になり試料Sに入射、ここで反射して
同じ光路を逆にたどり再びノマルスキープリズムPnに
至る。プリズムを透過した後は同一光路を進み、検光子
Aを経て接眼レンズOcに至る。像面IPには試料の像
が、上記対物レンズObの倍率だけ横ずれしたシヤリン
グ干渉像が見える。これを接眼レンズOcを通してCC
Dカメラ23でとらえるものである。
Further, it is possible to read the interference fringes, which was not possible with the conventional Nomarski differential interference microscope. FIG. 11 shows a Nomarski differential interferometer, in which the illumination light transmitted through the polarizer P and the multiple reflection liquid crystal element 20 is reflected by the semitransparent mirror BS, and the Nomarski prism P
n, the sample S is illuminated through the objective lens Ob. The Nomarski prism Pn is a prism whose optical axis is formed by laminating prisms as illustrated. The prism Pn is actually in a direction rotated by 45 ° around the optical axis. Therefore, the incident ray is decomposed into an ordinary ray and an extraordinary ray having the same amplitude.
The ordinary ray and the extraordinary ray travel in different directions on the bonding surface as shown in the figure, but after traveling through the prism Pn, they intersect at the focal point F of the objective lens Ob. After passing through the objective lens Pn, it becomes parallel and enters the sample S, is reflected here, and follows the same optical path to reach the Nomarski prism Pn again. After passing through the prism, the light travels on the same optical path, passes through the analyzer A, and reaches the eyepiece lens Oc. On the image plane IP, a shearing interference image in which the image of the sample is laterally displaced by the magnification of the objective lens Ob can be seen. CC this through the eyepiece Oc
It is captured by the D camera 23.

【0025】図12は電圧センサー又は光スイッチに多
重反射素子を用いた例を示す。光源からの光を偏光子P
を通して上記第1図の(A)図と同様の多重反射液晶素
子に通し、この液晶で多重反射させ、検光子Aを通して
光検出器Dで光量の変化としてとらえる(実際には電流
出力となる)。これにより電圧センサーや光スイッチと
なるものであるが、図13に示すごとく、従来の一回透
過の液晶に比べ、電圧の変化に対してスロープが急峻と
なり、感度が高いことが分かる。しかもスイッチとして
低電圧で済み節電ともなり、高速化が計れる。
FIG. 12 shows an example in which a multiple reflection element is used for a voltage sensor or an optical switch. Light from the light source is applied to the polarizer P
Through a multi-reflection liquid crystal element similar to that shown in FIG. 1 (A), multiple reflection is performed by this liquid crystal, and it is detected as a change in light quantity by the photodetector D through the analyzer A (actually, current output). . Although this serves as a voltage sensor or an optical switch, as shown in FIG. 13, it can be seen that the slope becomes steeper with respect to the change in voltage and the sensitivity is higher than that of the conventional single-transmission liquid crystal. In addition, it can be operated at low voltage with a low voltage, which saves power and speeds up.

【0026】なお上記実施の形態例では、子の発明の多
重反射素子を干渉計、電圧センサー又は光スイッチに用
いたがこれらに限らず、表示素子等適宜のものに使用で
きる。またこの発明の多重反射液晶素子は反射型、透過
型を問わない。
In the above embodiments, the multiple reflection element of the invention of the child is used for an interferometer, a voltage sensor, or an optical switch, but the invention is not limited to these and can be used for an appropriate element such as a display element. Further, the multiple reflection liquid crystal element of the present invention may be either a reflection type or a transmission type.

【0027】[0027]

【発明の効果】請求項1項の発明の多重反射素子は、光
学的干渉計や電圧センサー、液晶スイッチ、表示素子等
に使用した場合、位相の変化、偏光の変化及びそれによ
る強度の変化において、変換量が増大し、変換効率が極
めて良い。またこれらの変換が高速化される。それ故上
記のものに使用した場合の応答性、や精度が極めて高く
なり、しかもこれらの構成は極めて簡単で、製造コスト
も低く抑えることができる。
According to the multiple reflection element of the first aspect of the invention, when it is used for an optical interferometer, a voltage sensor, a liquid crystal switch, a display element, etc., the phase change, the polarization change and the intensity change due to the change are caused. The amount of conversion increases, and the conversion efficiency is extremely good. In addition, these conversions are speeded up. Therefore, the responsiveness and accuracy when used in the above-mentioned ones becomes extremely high, and further, these constitutions are extremely simple and the manufacturing cost can be kept low.

【0028】また請求項2項の発明の多重反射素子は、
上記請求項1項の発明の効果に加え、極めてコンパクト
化し、装置に組み込んでも他の構成の邪魔にならず、適
用範囲が大きい。
The multiple reflection element according to the invention of claim 2 is
In addition to the effect of the invention according to claim 1, it is extremely compact, and even when incorporated in a device, it does not interfere with other configurations and has a wide range of application.

【0029】また請求項3項の発明は、多重反射素子を
通過した光線を、別途設けた反射ミラーで反射させ、入
射光線と逆行させるよう構成したものであるので、これ
により同じ構成の透過型の素子に比べ反射回数が2倍に
増加するので、位相変化も効率良く2倍になる。
Further, according to the invention of claim 3, the light ray which has passed through the multiple reflection element is configured to be reflected by a reflection mirror provided separately and to go in the opposite direction to the incident light ray. Since the number of reflections is doubled as compared with the element No. 3, the phase change is also effectively doubled.

【0030】また請求項4項の発明は、位相共役ミラー
7に入射する光線は、結晶のフォトレフラクティブ効果
によって、入射光線と共役の波面をもって反射し、入射
光線に対して逆行する。これにより、途中の空気の揺ら
ぎや伝搬によるビームの乱れが打ち消され、元の入射光
と同様の、乱れのないビームが再現され、この状態にお
いて液晶による位相変換の大きさについては透過型に比
べて2倍の反射光が達成できる。従って応用範囲が極め
て広いものである。
According to the fourth aspect of the present invention, the light ray incident on the phase conjugate mirror 7 is reflected by the wavefront conjugate with the incident light ray by the photorefractive effect of the crystal, and goes backward with respect to the incident light ray. This cancels the turbulence of the beam due to air fluctuations and propagation in the middle, and reproduces the same undisturbed beam as the original incident light.In this state, the magnitude of the phase conversion by the liquid crystal is larger than that of the transmissive type. And twice the reflected light can be achieved. Therefore, its application range is extremely wide.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施の形態例の概略構成図で
ある。
FIG. 1 is a schematic configuration diagram of a first embodiment of the present invention.

【図2】この発明の多重反射素子の位相変化又はリター
デーション特性を示すグラフ図である。
FIG. 2 is a graph showing phase change or retardation characteristics of the multiple reflection element of the present invention.

【図3】この発明の第2の実施の形態例の概略構成図で
ある。
FIG. 3 is a schematic configuration diagram of a second embodiment example of the present invention.

【図4】この発明の第3の実施の形態例の概略構成図で
ある。
FIG. 4 is a schematic configuration diagram of a third embodiment of the present invention.

【図5】この発明の第4の実施の形態例の概略構成図で
ある。
FIG. 5 is a schematic configuration diagram of a fourth embodiment example of the present invention.

【図6】この発明の第5及び第6の実施の形態例の概略
構成図である。
FIG. 6 is a schematic configuration diagram of fifth and sixth embodiments of the present invention.

【図7】この発明の多重反射素子を干渉計の安定化に用
いた概略構成図である。
FIG. 7 is a schematic configuration diagram in which the multiple reflection element of the present invention is used for stabilizing an interferometer.

【図8】干渉計における干渉縞の読み取り原理を示す説
明図である。
FIG. 8 is an explanatory diagram showing the principle of reading interference fringes in an interferometer.

【図9】この発明の多重反射素子を干渉計の干渉縞の自
動読み取りに用いた概略構成図である。
FIG. 9 is a schematic configuration diagram in which the multiple reflection element of the present invention is used for automatic reading of interference fringes of an interferometer.

【図10】この発明の多重反射素子をシヤリング干渉計
の干渉縞の自動読み取りに用いた概略構成図である。
FIG. 10 is a schematic configuration diagram in which the multiple reflection element of the present invention is used for automatic reading of interference fringes of a shearing interferometer.

【図11】この発明の多重反射素子をノマルスキー微分
干渉顕微鏡の干渉縞の自動読み取りに用いた概略構成図
である。
FIG. 11 is a schematic configuration diagram in which the multiple reflection element of the present invention is used for automatic reading of interference fringes of a Nomarski differential interference microscope.

【図12】この発明の多重反射素子を電圧センサ又は光
スイッチに用いた概略構成図である。
FIG. 12 is a schematic configuration diagram in which the multiple reflection element of the present invention is used in a voltage sensor or an optical switch.

【図13】この発明の多重反射素子を電圧センサ又は光
スイッチに用いた場合の光出力変化率の特性を示すグラ
フ図である。
FIG. 13 is a graph showing the characteristics of optical output change rate when the multiple reflection element of the present invention is used in a voltage sensor or an optical switch.

【符号の説明】[Explanation of symbols]

1 液晶セル 2 ミラー 3 反射膜 4 反射防止膜 5 透明電極 6 反射ミラー 7 位相共役ミラー 8 光源 9 被検物体 10 ピンホール M ミラー BS 半透明鏡 11 板 12 位相変調
機 13 光検出器 14 差動アン
プ 15 モニター 16 被検物体 17 半透明鏡 18 光源 19 ミラー 20 多重反射
液晶素子 21 被検物体 22 干渉計 23 CCDカメラ 24 マイコン 25 表示装置 O 被検物体 Qd 複屈折性結晶板 L レンズ P 偏光子 A 検光子 Pn ノマルスキープリズム Ob 対物レン
ズ Oc 接眼レンズ S 試料 IP 像面
1 Liquid crystal cell 2 Mirror 3 Reflective film 4 Antireflection film 5 Transparent electrode 6 Reflective mirror 7 Phase conjugate mirror 8 Light source 9 Object to be inspected 10 Pinhole M Mirror BS Semi-transparent mirror 11 Plate 12 Phase modulator 13 Photodetector 14 Differential Amplifier 15 Monitor 16 Object to be inspected 17 Semi-transparent mirror 18 Light source 19 Mirror 20 Multiple reflection liquid crystal element 21 Object to be inspected 22 Interferometer 23 CCD camera 24 Microcomputer 25 Display device O Object to be inspected Qd Birefringent crystal plate L Lens P Polarizer A Analyzer Pn Nomarski prism Ob Objective lens Oc Eyepiece S Sample IP Image plane

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 液晶セルの両側面にミラーを夫々相対向
して設け、上記液晶セルに適宜の電圧を印加してレーザ
ー光等の光を液晶セルを通してこれらのミラーの間で多
重反射させる構成としたことを特徴とする、多重反射素
子。
1. A structure in which mirrors are provided on opposite sides of a liquid crystal cell so as to face each other, and an appropriate voltage is applied to the liquid crystal cell so that light such as laser light is multiply reflected between these mirrors through the liquid crystal cell. The multiple reflection element characterized by the above.
【請求項2】 液晶セルの両側面にミラーを夫々直接重
合して設け、これらのミラーの一部に反射防止膜を設
け、これらのミラーの外側に透明電極を重合して設け、
これらの透明電極に適宜の電圧を印加してレーザー光等
の光を上記反射防止膜を通して液晶セルを通過させて上
記ミラーの間で多重反射させる構成としたことを特徴と
する、多重反射素子。
2. A mirror is directly provided on both side surfaces of the liquid crystal cell, an antireflection film is provided on a part of these mirrors, and a transparent electrode is provided on the outside of these mirrors by superposition.
A multiple reflection element, characterized in that a suitable voltage is applied to these transparent electrodes to allow light such as laser light to pass through the liquid crystal cell through the antireflection film to cause multiple reflection between the mirrors.
【請求項3】 液晶セルに適宜の電圧を印加してレーザ
ー光等の光を当該液晶セルに通して、両側に設けたミラ
ーの間で多重反射させ、これらを通過した光線を、別途
設けた反射ミラーによって入射光線と逆行させる構成と
したことを特徴とする、請求項1項又は2項記載の多重
反射素子。
3. An appropriate voltage is applied to the liquid crystal cell to allow light such as laser light to pass through the liquid crystal cell, to undergo multiple reflection between mirrors provided on both sides, and a light beam passing through these is provided separately. The multiple reflection element according to claim 1 or 2, wherein the multiple reflection element has a structure in which a reflection mirror is configured to reverse the incident light beam.
【請求項4】 液晶セルに適宜の電圧を印加してレーザ
ー光等の光を当該液晶セルに通して、両側に設けたミラ
ーの間で多重反射させ、これらを通過した光線を、別途
設けた位相共役ミラーによって入射光線と逆行させる構
成としたことを特徴とする、請求項1項又は2項記載の
多重反射素子。
4. An appropriate voltage is applied to the liquid crystal cell to allow light such as laser light to pass through the liquid crystal cell, to undergo multiple reflection between mirrors provided on both sides, and a light beam that has passed through these is provided separately. The multiple reflection element according to claim 1 or 2, wherein the multi-reflection element has a structure in which the phase conjugation mirror is configured to cause the incident light beam to travel backward.
JP8111315A 1996-04-08 1996-04-08 Multiple reflection element Expired - Fee Related JP2964467B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8111315A JP2964467B2 (en) 1996-04-08 1996-04-08 Multiple reflection element
PCT/JP1997/003700 WO1999019762A1 (en) 1996-04-08 1997-10-14 Multiple reflection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8111315A JP2964467B2 (en) 1996-04-08 1996-04-08 Multiple reflection element
PCT/JP1997/003700 WO1999019762A1 (en) 1996-04-08 1997-10-14 Multiple reflection device

Publications (2)

Publication Number Publication Date
JPH09274168A true JPH09274168A (en) 1997-10-21
JP2964467B2 JP2964467B2 (en) 1999-10-18

Family

ID=14558112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8111315A Expired - Fee Related JP2964467B2 (en) 1996-04-08 1996-04-08 Multiple reflection element

Country Status (1)

Country Link
JP (1) JP2964467B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999019686A1 (en) * 1996-04-08 1999-04-22 Herutsu Kogyo Kabushiki Kaisha Interferometer
JP2012093149A (en) * 2010-10-26 2012-05-17 Nikon Corp Spectrometer
JP2014106169A (en) * 2012-11-29 2014-06-09 Osaki Electric Co Ltd Potentiometer and potentiometric method for potentiometry

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63214723A (en) * 1987-03-04 1988-09-07 Hitachi Ltd Projection type liquid crystal display device
JPH03282432A (en) * 1990-03-30 1991-12-12 Ushio Inc Double wave generating device
JPH04130421A (en) * 1990-09-21 1992-05-01 Seiko Instr Inc Optical writing type liquid crystal light valve
JPH05249507A (en) * 1992-03-09 1993-09-28 Nippon Telegr & Teleph Corp <Ntt> Optical switch and optical path switching method
JPH05341334A (en) * 1992-04-10 1993-12-24 Mitsubishi Electric Corp Wavelength conversion device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63214723A (en) * 1987-03-04 1988-09-07 Hitachi Ltd Projection type liquid crystal display device
JPH03282432A (en) * 1990-03-30 1991-12-12 Ushio Inc Double wave generating device
JPH04130421A (en) * 1990-09-21 1992-05-01 Seiko Instr Inc Optical writing type liquid crystal light valve
JPH05249507A (en) * 1992-03-09 1993-09-28 Nippon Telegr & Teleph Corp <Ntt> Optical switch and optical path switching method
JPH05341334A (en) * 1992-04-10 1993-12-24 Mitsubishi Electric Corp Wavelength conversion device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999019686A1 (en) * 1996-04-08 1999-04-22 Herutsu Kogyo Kabushiki Kaisha Interferometer
JP2012093149A (en) * 2010-10-26 2012-05-17 Nikon Corp Spectrometer
JP2014106169A (en) * 2012-11-29 2014-06-09 Osaki Electric Co Ltd Potentiometer and potentiometric method for potentiometry

Also Published As

Publication number Publication date
JP2964467B2 (en) 1999-10-18

Similar Documents

Publication Publication Date Title
TWI749073B (en) Device for combining light beams interacting with adjacent pixels of light modulator
US7304746B2 (en) Common-path point-diffraction phase-shifting interferometer
US4536861A (en) Optical fibre hydrophone
JP2000065531A (en) Interference image input device using birefringent plate
JPH0815435A (en) Displacement-information measuring device
JPS5885103A (en) Surface profile interferometer
US4723077A (en) Dual liquid crystal light valve based visible-to-infrared dynamic image converter system
Residori et al. Liquid crystal light valves as optically addressed liquid crystal spatial light modulators: optical wave mixing and sensing applications
US7006234B1 (en) Common-path point-diffraction phase-shifting interferometer incorporating a birefringent polymer membrane
US5689314A (en) Common path point diffraction interferometer using liquid crystal phase shifting
JP2964467B2 (en) Multiple reflection element
JPH09280811A (en) Interferometer
JPH04354076A (en) Optical pattern recognition element
JPS6024401B2 (en) How to measure the physical constants of a measured object
WO1999019762A1 (en) Multiple reflection device
JP4324507B2 (en) Vibration measuring device
JP3401793B2 (en) Optical device
JPH04294322A (en) Optical device
JP2553662B2 (en) Hologram range finder
JP2536931B2 (en) Spatial light modulator
JP2946056B2 (en) Light switch
JPH03105310A (en) Optical delay device
JPH0221207A (en) Interference method and interferometer for measuring non-spherical surface by optical space phase modulation element using liquid crystal
JP3226046B2 (en) Phase shifter
JP3170893B2 (en) Adjustment method of spatial light modulator evaluation apparatus

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees