JPH09274123A - Optical element fixing device - Google Patents

Optical element fixing device

Info

Publication number
JPH09274123A
JPH09274123A JP8512196A JP8512196A JPH09274123A JP H09274123 A JPH09274123 A JP H09274123A JP 8512196 A JP8512196 A JP 8512196A JP 8512196 A JP8512196 A JP 8512196A JP H09274123 A JPH09274123 A JP H09274123A
Authority
JP
Japan
Prior art keywords
optical element
pedestal
fixed
adhesive
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8512196A
Other languages
Japanese (ja)
Other versions
JP3426081B2 (en
Inventor
Michio Asano
道夫 浅野
Kazuhiko Kuroki
一彦 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alpine Electronics Inc
Original Assignee
Alpine Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpine Electronics Inc filed Critical Alpine Electronics Inc
Priority to JP08512196A priority Critical patent/JP3426081B2/en
Publication of JPH09274123A publication Critical patent/JPH09274123A/en
Application granted granted Critical
Publication of JP3426081B2 publication Critical patent/JP3426081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fixing device precisely capable of positioning and tightly holding an optical element at a fixing part side and hardly causing the deviation in the positioning of the optical element even when differences in a contraction amount and an expansion amount due to a temp. change are caused by a difference in the coefficients of linear expansion between the optical element and the fixing part side. SOLUTION: Two parts of positioning reference surface A are provided on a pedestal 27, and the side surface 22a of the optical element 22 is stuck and fixed only to one side reference surface A. Further, a member pressing the optical element 22 from an upper side is not provided, and further, a gap is formed between the bottom surface 22c of the optical element 22 and the support surface B of the pedestal 27. Thus, even when the pedestal 27 is contracted or expanded for the optical element 22 due to the difference in the coefficients of linear expansion between the optical element 22 and the pedestal 27, the deforming force does not act on the optical element 22 as tilting force, and the position of the side surface 22a of the optical element 22 is always precisely kept.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光ピックアップ内
などに設置されるビームスプリッタなどの光学素子の固
定装置に係り、特に温度変化などによる前記光学素子の
位置ずれや倒れが発生するのを防止できるようにした光
学素子の固定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for fixing an optical element such as a beam splitter installed in an optical pickup or the like, and particularly prevents the optical element from being displaced or tilted due to a temperature change or the like. The invention relates to a fixing device for an optical element.

【0002】[0002]

【従来の技術】図3は、光ピックアップの内部構造の概
要を示す構成図である。同図において、符号1はレーザ
ビーム(レーザ光)が照射可能なレーザダイオード、2
は光学素子、3は反射鏡、4は対物レンズ、5は光検出
器を示している。レーザダイオード1から照射されるレ
ーザ光は、光学素子2の側面(入射面)2aに対し所定
の入射角で入射される。光学素子2としては、例えば入
射された光を反射光と透過光の2つに分割することがで
きるハーフミラーや偏光ビームスプリッタなどが用いら
れる。レーザ光は、その一部が光学素子の側面2aで反
射され、反射鏡3の方向に向きが変えられる。反射鏡3
の上方には、対物レンズ4が設けられている。この対物
レンズ4にレーザ光を導くため、反射鏡3は所定の角度
に傾けられて光ピックアップ内に設置されている。対物
レンズ4の上方には、CDやDVDなどのディスク(図
示せず)が装填されている。対物レンズ4は、図示しな
いフォーカスサーボ機能などにより、反射鏡3で反射さ
れたレーザ光をディスクの信号記録面に対し集束して照
射できるようになっている。
2. Description of the Related Art FIG. 3 is a block diagram showing the outline of the internal structure of an optical pickup. In the figure, reference numeral 1 is a laser diode capable of emitting a laser beam (laser light), 2
Is an optical element, 3 is a reflecting mirror, 4 is an objective lens, and 5 is a photodetector. The laser light emitted from the laser diode 1 is incident on the side surface (incident surface) 2a of the optical element 2 at a predetermined incident angle. As the optical element 2, for example, a half mirror or a polarization beam splitter capable of splitting incident light into two, that is, reflected light and transmitted light, is used. A part of the laser light is reflected by the side surface 2 a of the optical element, and the direction thereof is changed to the direction of the reflecting mirror 3. Reflector 3
The objective lens 4 is provided above. In order to guide the laser light to the objective lens 4, the reflecting mirror 3 is installed in the optical pickup while being tilted at a predetermined angle. A disc (not shown) such as a CD or a DVD is loaded above the objective lens 4. The objective lens 4 can focus and irradiate the laser light reflected by the reflecting mirror 3 onto the signal recording surface of the disk by a focus servo function (not shown).

【0003】ディスクの信号記録面から反射された戻り
光は、上記と逆の経路をたどり光学素子2に導かれる。
光学素子2では、戻り光の一部が光学素子2を透過し、
その後方に設けられた光検出器5に導かれる。光検出器
5は、例えばピンフォトダイオードなどであり、戻り光
は、この光検出器5で検出され、各種の信号処理が行わ
れる。
The return light reflected from the signal recording surface of the disc follows the opposite path to the above and is guided to the optical element 2.
In the optical element 2, a part of the returning light is transmitted through the optical element 2,
The light is guided to the photodetector 5 provided behind it. The photodetector 5 is, for example, a pin photodiode, and the returned light is detected by the photodetector 5 and various signal processing is performed.

【0004】図4は、従来の光ピックアップの内部構造
の一部を示す拡大部分斜視図、図5は図4をV方向から
みた側面図である。図4に示すように、前記ハーフミラ
ーまたは偏光ビームスプリッタなどの光学素子2は、例
えばアルミニウム合金などでダイキャスト形成された台
座7内に位置決めされて固定される。台座7には、壁面
8、係止部9及び壁面10などが一体に形成されてお
り、光学素子2はこれらの間の固定溝6内に装着され
る。壁面8及び係止部9には、壁面10の方向(X
(+)方向)に突出した凸部8aおよび9aが形成され
ており、この凸部8aと9aの表面が、光学素子2の位
置決めの基準面Aとなっている。台座7の固定溝6の底
部にも凸部状の支持部11a,11bが突出して形成さ
れており、その上面が支持面Bとなって表面光学素子2
の底面が支持される。前記凸部8aと9aの表面の基準
面Aと、支持部11a,11bの支持面Bは例えばフラ
イス盤などにより切削加工され、各基準面Aと支持面B
とが平面となるように仕上げられている。
FIG. 4 is an enlarged partial perspective view showing a part of the internal structure of a conventional optical pickup, and FIG. 5 is a side view of FIG. 4 viewed from the V direction. As shown in FIG. 4, the optical element 2 such as the half mirror or the polarization beam splitter is positioned and fixed in a pedestal 7 die-cast with an aluminum alloy, for example. A wall surface 8, a locking portion 9, a wall surface 10 and the like are integrally formed on the pedestal 7, and the optical element 2 is mounted in the fixed groove 6 between them. The direction of the wall surface 10 (X
Protrusions 8a and 9a protruding in the (+) direction are formed, and the surfaces of the protrusions 8a and 9a serve as a reference plane A for positioning the optical element 2. Protrusion-shaped supporting portions 11a and 11b are also formed so as to project from the bottom of the fixed groove 6 of the pedestal 7, and the upper surface thereof becomes the supporting surface B and the surface optical element 2
The bottom surface of is supported. The reference plane A on the surfaces of the protrusions 8a and 9a and the support plane B of the support sections 11a and 11b are cut by, for example, a milling machine, and the reference plane A and the support plane B are formed.
It is finished so that and are flat.

【0005】図4において、レーザダイオード1は
(ア)、反射鏡3は(イ)、光検出器5は(ウ)の各方
向に設置されている。また、図4では示されていない
が、反射鏡3のZ軸(+)方向に対物レンズ4が位置す
る。(ア)の方向から照射されるレーザ光は、光学素子
2の側面2aによって(イ)の方向にある反射鏡3に導
かれる。またディスクの信号記録面で反射された戻り光
は、反射鏡3により(イ)の方向から光学素子2に向か
って導かれ、その一部は光学素子2を透過して(ウ)の
方向に位置する光検出器に導かれる。
In FIG. 4, the laser diode 1 is installed in each direction of (A), the reflecting mirror 3 is installed in (A), and the photodetector 5 is installed in each direction of (C). Although not shown in FIG. 4, the objective lens 4 is located in the Z-axis (+) direction of the reflecting mirror 3. The laser light emitted from the direction (a) is guided to the reflecting mirror 3 in the direction (a) by the side surface 2 a of the optical element 2. The return light reflected by the signal recording surface of the disc is guided by the reflecting mirror 3 from the direction (a) toward the optical element 2, and a part of the return light is transmitted through the optical element 2 in the direction (c). It is guided to the photodetector located.

【0006】光学素子2が固定溝6内に固定される際、
図4に示すようなばね部材12が用いられる。ばね部材
12は、ばね性を有する金属板で形成されたものであ
り、本体12a、板ばね12b,12c、天板12dお
よび押圧部12eの各部から構成される。図5に示すよ
うに、光学素子2は、固定溝6内で支持部11a,11
bの上に設置され、ばね部材12の板ばね12b,12
cが光学素子2の側面2bと壁面10の間に収縮されて
介装される。光学素子2は、板ばね12b,12cのX
軸(−)方向へ弾性押圧力f1により押圧され、光の入
射面となっている側面2aが前記基準面Aに強固に押圧
される。また、ばね部材12の天板12dの弾性力によ
り、押圧部12eが光学素子2の天井面を弾性的に強固
に押圧し、光学素子2の底面が支持部11a,11bの
表面の支持面に押し付けられる。このように光学素子2
は、各方向へ弾圧されることにより固定溝6内で固定さ
れる。
When the optical element 2 is fixed in the fixing groove 6,
A spring member 12 as shown in FIG. 4 is used. The spring member 12 is formed of a metal plate having a spring property, and includes a main body 12a, leaf springs 12b and 12c, a top plate 12d, and a pressing portion 12e. As shown in FIG. 5, the optical element 2 has the support portions 11 a, 11 in the fixing groove 6.
The leaf springs 12b, 12 of the spring member 12 installed on the
c is contracted and interposed between the side surface 2b of the optical element 2 and the wall surface 10. The optical element 2 is the X of the leaf springs 12b and 12c.
It is pressed in the axial (-) direction by the elastic pressing force f1, and the side surface 2a, which is the light incident surface, is firmly pressed against the reference surface A. Further, due to the elastic force of the top plate 12d of the spring member 12, the pressing portion 12e elastically and firmly presses the ceiling surface of the optical element 2, and the bottom surface of the optical element 2 becomes the supporting surface of the supporting portions 11a and 11b. It is pressed. In this way, the optical element 2
Are fixed in the fixing groove 6 by being elastically pressed in each direction.

【0007】[0007]

【発明が解決しようとする課題】この光ピックアップで
は、光学素子2の側面2aが、レーザダイオード1から
の光の入射面で且つ対物レンズ4へ光束を与える反射面
となっている。したがって、光学素子2の側面2aの傾
きは、ディスクからの信号の読取り動作などに影響を与
える。例えばレーザダイオード1が位置する(ア)の方
向や、対物レンズ4に向かう(イ)の方向に対して、側
面2aの向きが高精度に決められていないと、対物レン
ズ4の光軸に対してレーザ光の光束の中心がずれて収差
が増大し、ディスクの信号記録面に形成されるレーザ光
のスポット形状に歪みなどが生じる。また、光学素子2
の位置ずれ,傾きが発生した場合、受光素子5に入射す
る光軸にずれが生じるため、対物レンズのフォーカスサ
ーボ動作にオフセットが発生するなどの問題が生じる。
したがって、前記凸部8aと9aの表面の基準面Aが高
精度に切削加工され、光学素子2の側面2aがこの基準
面Aに押し付けられて側面2aの向きが設定されるもの
となっている。
In this optical pickup, the side surface 2a of the optical element 2 is an incident surface for the light from the laser diode 1 and a reflecting surface for giving a light beam to the objective lens 4. Therefore, the inclination of the side surface 2a of the optical element 2 affects the operation of reading a signal from the disc. For example, if the direction of the side surface 2a is not accurately determined with respect to the (a) direction in which the laser diode 1 is located and the (a) direction toward the objective lens 4, the optical axis of the objective lens 4 is As a result, the center of the light beam of the laser light is shifted, and the aberration is increased, so that the spot shape of the laser light formed on the signal recording surface of the disc is distorted. In addition, the optical element 2
When the position shift and the tilt occur, the optical axis incident on the light receiving element 5 shifts, which causes a problem such as an offset in the focus servo operation of the objective lens.
Therefore, the reference plane A on the surfaces of the convex portions 8a and 9a is cut with high precision, and the side surface 2a of the optical element 2 is pressed against the reference plane A to set the orientation of the side surface 2a. .

【0008】しかしながら、図4と図5に示す従来の光
ピックアップでの光学素子2の固定装置では、環境温度
の変化が激しいと、基準面Aで位置決めされているはず
の光学素子2の側面2aに倒れなどが発生する問題が生
じる。
However, in the conventional apparatus for fixing the optical element 2 in the optical pickup shown in FIGS. 4 and 5, when the environmental temperature changes drastically, the side surface 2a of the optical element 2 which is supposed to be positioned on the reference plane A is detected. There is a problem such as falling.

【0009】その原因のひとつは、凸部8aと9aの表
面の基準面Aの切削加工の工程上の問題が挙げられる。
前記基準面Aは、凸部8aと9aのZ軸方向の長さの全
域にて平面に加工されるべきであるが、切削加工では、
回転する加工工具が固定溝6の上方からZ(−)方向へ
挿入され、工具の回転する外周面により凸部8aと9a
の表面が切削される。このときの加工では、凸部8aと
9aの表面の上下端部分に図5に示す曲面(r部)が形
成されることを避けるこができない。この曲面(r部)
が形成されることにより、光学素子2の側面2aを位置
決めする基準面AのZ軸方向の長さが短くなり、基準面
Aの位置決め面積Sが設計値よりも小さくなる。したが
って、図5に示すように、板ばね12b,12cで基準
面Aに押し付けられている光学素子2は姿勢が不安定に
なる。
One of the causes is a problem in the process of cutting the reference plane A on the surfaces of the convex portions 8a and 9a.
The reference plane A should be processed into a flat surface over the entire length of the projections 8a and 9a in the Z-axis direction.
A rotating machining tool is inserted from above the fixed groove 6 in the Z (-) direction, and the protruding outer peripheral surface of the tool causes protrusions 8a and 9a to be formed.
The surface of is cut. In the processing at this time, it is inevitable that the curved surfaces (r portions) shown in FIG. 5 are formed on the upper and lower end portions of the surfaces of the convex portions 8a and 9a. This curved surface (r part)
By forming the, the length of the reference plane A for positioning the side surface 2a of the optical element 2 in the Z-axis direction becomes shorter, and the positioning area S of the reference plane A becomes smaller than the design value. Therefore, as shown in FIG. 5, the posture of the optical element 2 pressed against the reference plane A by the leaf springs 12b and 12c becomes unstable.

【0010】さらに、他の原因としては、光学素子2を
形成しているガラスと、台座7の形成材料であるアルミ
ニウム合金などとの間に線膨張係数の差があることが挙
げられる。ガラスの線膨張係数は、10×10-6m/°
C程度で、アルミニウムの線膨張係数は、22×10-6
m/°C程度であり、アルミニウムはガラスの2倍であ
る。
Further, another cause is that there is a difference in coefficient of linear expansion between the glass forming the optical element 2 and the aluminum alloy or the like forming the pedestal 7. The linear expansion coefficient of glass is 10 × 10 -6 m / °
The linear expansion coefficient of aluminum is about 22 × 10 -6 at C level.
m / ° C and aluminum is twice as much as glass.

【0011】したがって、光ピックアップがきわめて気
温の低い地域、または高温の地域で使用されると、光学
素子2の収縮量または膨張量に対して、台座7の収縮量
または膨張量の方が大きくなる。図4と図5に示すもの
では、光学素子2の天井面が天板12dの弾性力により
Z(−)方向へ強く押されており、光学素子2の底面
と、支持部11a,11bの上面の支持面Bとが強い力
で互いに圧接されている。また、光学素子2の側面2a
は反射面であるために鏡面仕上げされているのに対し、
その底面は単なるカット面、いわゆる砂面であり、側面
2aよりも摩擦係数が極めて大きくなっている。したが
って、光学素子2と台座7との前記収縮量または膨張量
の差により、固定溝6の底部が図5にて矢印(エ)で示
すように、光学素子2に対して相対的に動くと、支持面
Bに押し付けられている光学素子2の底面がこれに引き
ずられて(エ)方向へ動き、その結果、底面と支持部1
1a,11bの支持面Bとの接触部を支点として光学素
子2がα方向またはβ方向へわずかに回動し、その回動
状態で安定してしまう。特に基準面Aの上下の曲面(r
部)の領域が広いものでは、基準面Aと光学素子2の側
面2aとの当接が不安定であり、前記α方向とβ方向へ
の回転が生じやすい。
Therefore, when the optical pickup is used in an extremely low temperature region or a high temperature region, the contraction amount or expansion amount of the pedestal 7 becomes larger than the contraction amount or expansion amount of the optical element 2. . In FIGS. 4 and 5, the ceiling surface of the optical element 2 is strongly pressed in the Z (−) direction by the elastic force of the top plate 12d, and the bottom surface of the optical element 2 and the upper surfaces of the support portions 11a and 11b. And the supporting surface B thereof are pressed against each other with a strong force. In addition, the side surface 2a of the optical element 2
Is a reflective surface, so it is mirror-finished,
The bottom surface is a mere cut surface, that is, a so-called sand surface, and the coefficient of friction is extremely larger than that of the side surface 2a. Therefore, when the bottom of the fixing groove 6 moves relative to the optical element 2 as indicated by an arrow (d) in FIG. 5, due to the difference in the contraction amount or the expansion amount between the optical element 2 and the pedestal 7. , The bottom surface of the optical element 2 pressed against the support surface B is dragged by this and moves in the (d) direction, and as a result, the bottom surface and the support portion 1
The optical element 2 slightly rotates in the α direction or the β direction with the contact portion of the 1a and 11b with the support surface B as a fulcrum, and becomes stable in the rotated state. In particular, curved surfaces (r
If the area of the (part) is wide, the contact between the reference surface A and the side surface 2a of the optical element 2 is unstable, and rotation in the α direction and the β direction is likely to occur.

【0012】光学素子2が前記α方向またはβ方向へ回
転し、そのまま安定してしまうと、図4に示す(ア)方
向および(イ)方向に対する光学素子2の側面2aの対
向角度にずれが発生し、前記のように信号記録面での光
スポットの歪みや、トラッキングサーボのオフセットな
どが発生することになる。
If the optical element 2 rotates in the α direction or β direction and becomes stable as it is, the facing angle of the side surface 2a of the optical element 2 with respect to the (A) direction and the (A) direction shown in FIG. As a result, the distortion of the light spot on the signal recording surface, the offset of the tracking servo, etc. occur.

【0013】本発明は上記従来の課題を解決するもので
あり、固定部側において光学素子が高精度に位置決めさ
れるとともに強固に保持され、しかも光学素子と固定部
側との線膨張係数の相違により温度変化での収縮量や膨
張量に差が生じても、光学素子の位置決めに狂いが生じ
にくいようにした光学素子の固定装置を提供することを
目的としている。
The present invention is to solve the above-mentioned conventional problems. The optical element is positioned with high precision and firmly held on the fixed portion side, and the difference in linear expansion coefficient between the optical element and the fixed portion side. Therefore, an object of the present invention is to provide a fixing device for an optical element in which the positioning of the optical element is less likely to be misaligned even if the amount of contraction or the amount of expansion changes due to temperature change.

【0014】[0014]

【課題を解決するための手段】本発明は、光の入射また
は出射面が側面となっている光学素子を固定部に対して
固定する装置において、固定部側に前記側面を複数箇所
にて受ける基準面と、前記側面を各基準面に押し付ける
弾圧部材とが設けられ、前記複数箇所の基準面の一部の
みと光学素子の前記側面とが接着固定されていることを
特徴とするものである。
SUMMARY OF THE INVENTION The present invention is an apparatus for fixing an optical element having a side surface on which light enters or exits to a fixed portion, and the side surface is received at a plurality of points on the fixed portion side. A reference surface and an elastic member that presses the side surface against each reference surface are provided, and only a part of the reference surfaces at the plurality of locations and the side surface of the optical element are adhesively fixed. .

【0015】また上記において、光学素子を、上下方向
から押え付ける部材が設けられておらず、前記一部の基
準面との接着力のみで光学素子が上下方向へ動くことの
ないように固定されていることが好ましい。
Further, in the above description, a member for pressing the optical element from the vertical direction is not provided, and the optical element is fixed so as not to move in the vertical direction only by the adhesive force with the part of the reference surface. Preferably.

【0016】さらに、固定部側に設けられて光学素子の
底面が対向する支持部と、光学素子の前記底面との間
に、隙間が形成されていることが好ましい。
Further, it is preferable that a gap be formed between the support portion provided on the fixed portion side and facing the bottom surface of the optical element, and the bottom surface of the optical element.

【0017】本発明では、例えば光ピックアップに設け
られるハーフミラーや偏光ビームスプリッタなどのよう
に、入射面や出射面さらには反射面となる側面を有する
光学素子が用いられ、この光学素子は前記側面が、固定
部側に設けられた複数箇所の基準面に対し板ばねやコイ
ルばねなどの弾圧部材により弾圧され、前記側面が一定
の向きで位置決めされる。
In the present invention, an optical element having a side surface serving as an entrance surface, an exit surface, and a reflection surface, such as a half mirror or a polarization beam splitter provided in an optical pickup, is used. Is elastically pressed against a plurality of reference surfaces provided on the fixed portion side by elastic members such as leaf springs and coil springs, and the side surfaces are positioned in a fixed direction.

【0018】そして、前記複数箇所の基準面のうちの一
部、すなわち複数の基準面のいずれかと側面とが接着剤
により固定されている。光学素子の側面と基準面とが接
着固定されているため、例えば図2に示すように加工作
業において基準面Aの上下部分に曲面(r部)が形成さ
れて、実質的な基準面の面積Sが狭くても、この基準面
と光学素子の側面とを確実に固定できる。したがって、
温度変化により、光学素子と、これを支持する固定部側
との収縮量や膨張量に差があっても、光学素子が傾くな
どの問題が生じにくい。
Then, a part of the plurality of reference surfaces, that is, any one of the plurality of reference surfaces and the side surface are fixed by an adhesive. Since the side surface of the optical element and the reference surface are adhered and fixed, curved surfaces (r portions) are formed in the upper and lower portions of the reference surface A in the working operation, as shown in FIG. Even if S is narrow, the reference surface and the side surface of the optical element can be reliably fixed. Therefore,
Even if there is a difference in the amount of contraction or expansion between the optical element and the side of the fixing portion that supports the optical element due to temperature change, problems such as tilting of the optical element are unlikely to occur.

【0019】また、複数箇所の基準面のうちの一部のみ
に光学素子の側面が接着固定され、他の基準面に対して
は光学素子の側面が弾圧部材で押し付けられているのみ
であるため、光学素子と固定部側との間に収縮量や膨張
量の差があっても、接着剤の剥がれや接着力の低下が生
じにくい。例えば複数箇所の基準面の全てが光学素子の
側面に接着固定されているものでは、前記収縮量や膨張
量の差により各基準面の接着剤層にせん断応力が作用
し、接着剤層の剥がれによる接着力の低下が生じやす
い。しかし、本発明では、一部の基準面のみが光学素子
に接着されているため、前記のように接着剤層に応力が
作用することがなく、接着剤の剥がれなどが生じにくく
なる。
Further, the side surface of the optical element is adhered and fixed only to a part of the plurality of reference surfaces, and the side surface of the optical element is merely pressed against the other reference surface by the elastic member. Even if there is a difference in the amount of contraction or the amount of expansion between the optical element and the fixed portion side, the peeling of the adhesive or the decrease in the adhesive force is unlikely to occur. For example, in the case where all of the reference planes at a plurality of locations are adhesively fixed to the side surface of the optical element, shear stress acts on the adhesive layer of each reference plane due to the difference in the shrinkage amount or expansion amount, and the adhesive layer peels off. The adhesive strength is likely to decrease due to. However, in the present invention, since only a part of the reference surface is adhered to the optical element, stress does not act on the adhesive layer as described above, and peeling of the adhesive is less likely to occur.

【0020】さらに、光学素子は前記接着力のみで上下
方向に動かないように固定され、その他に上下方向に動
かないように弾圧する部材を設けない構造にでき、よっ
て固定部側と光学素子とで収縮量や膨張量の差が生じて
も、図5に示す従来例のように、固定部側の支持部の収
縮や膨張時の変形により、光学素子の底部が引きずられ
てこの光学素子が傾くなどの現象が生じにくい。さら
に、光学素子の底面と支持部との間に隙間を形成してお
くことにより、支持部の収縮や膨張による移動によって
光学素子の底面に力が与えられることがなく、光学素子
に前記傾きなどがさらに発生しにくい。
Further, the optical element can be fixed so as not to move in the vertical direction only by the adhesive force, and no member for elastically pressing so as not to move in the vertical direction can be provided, so that the fixing portion side and the optical element are Even if there is a difference in the amount of contraction or expansion, the bottom of the optical element is dragged due to the deformation of the support portion on the fixed portion side during contraction or expansion, as in the conventional example shown in FIG. Phenomena such as tilting do not occur easily. Further, by forming a gap between the bottom surface of the optical element and the supporting portion, the movement of the supporting portion due to contraction or expansion does not give a force to the bottom surface of the optical element, and the inclination of the optical element is Is less likely to occur.

【0021】[0021]

【発明の実施の形態】以下、本発明について図面を参照
して説明する。図1は、光ピックアップでの光学素子の
固定装置の構造を示す斜視図、図2は図1のII−II
線の断面図である。図1に示す光ピックアップPでは、
例えばアルミニウム合金などでダイキャスト成形された
台座27を固定部側として各種の部品が搭載されてい
る。ハーフミラーまたは偏光ビームスプリッタである光
学素子22は、台座に形成された壁面28及び係止部2
9と、壁面20との間の固定溝26内に収納されてい
る。壁面28及び係止部29には、X軸(+)方向に突
出した凸部28a,29aが一体に形成され、各凸部2
8aと29aの先端面が、前記光学素子22の側面22
aの位置決め基準となる基準面Aとなっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing the structure of a fixing device for an optical element in an optical pickup, and FIG. 2 is a line II-II in FIG.
It is sectional drawing of a line. In the optical pickup P shown in FIG. 1,
For example, various parts are mounted with the pedestal 27 die-cast with an aluminum alloy or the like as the fixed portion side. The optical element 22, which is a half mirror or a polarization beam splitter, includes a wall surface 28 formed on the pedestal and the locking portion 2.
9 and the wall surface 20 are housed in a fixed groove 26. The wall surface 28 and the locking portion 29 are integrally formed with protrusions 28a and 29a protruding in the X-axis (+) direction.
The tip surfaces of 8a and 29a are the side surfaces 22 of the optical element 22.
It is a reference plane A that serves as a positioning reference for a.

【0022】固定溝26の底面には、Z軸(+)方向に
突出した支持部31a,31bが一体に形成され、その
上面が支持面Bとなっている。光学素子22の側面22
aは、図4に示した光学素子2の側面2aと同じであ
り、レーザダイオード1からのレーザ光が(ア)方向か
ら壁面28に設けられた孔(図示せず)を通過して入射
する入射面であり、且つレーザ光を(イ)方向へ反射す
る反射面である。さらに対物レンズ4からの戻り光を
(ウ)方向へ透過させる透過面である。
Supporting portions 31a and 31b projecting in the Z-axis (+) direction are integrally formed on the bottom surface of the fixed groove 26, and the upper surface thereof is a supporting surface B. Side surface 22 of optical element 22
a is the same as the side surface 2a of the optical element 2 shown in FIG. 4, and the laser light from the laser diode 1 is incident from the (A) direction through a hole (not shown) provided in the wall surface 28. It is an incident surface and a reflecting surface that reflects the laser light in the (a) direction. Further, it is a transmission surface that transmits the return light from the objective lens 4 in the (c) direction.

【0023】光学素子22は前記側面22aの一部が凸
部28a,29aの表面の基準面Aに当てられた状態で
装着される。光学素子22の反対側の側面22bと壁面
20との間にはばね部材32が取り付けられる。ばね部
材32は金属ばね材料により形成されたものであり、本
体32aと、板ばね32b,32cの各部から構成され
ている。板ばね32b,32cは金属ばね材料が折曲げ
形成されたものであり、光学素子22の前記側面22b
と壁面20との隙間内に圧入状態で介装され、板ばね3
2bと32cは各基準面Aとほぼ対向する位置にそれぞ
れ配置される。そして板ばね32bと32cの弾性押圧
力F1(図2参照)により、光学素子22の側面22a
が各基準面Aに押し付けられて位置決めされる。
The optical element 22 is mounted in a state where a part of the side surface 22a is in contact with the reference plane A of the surfaces of the convex portions 28a and 29a. A spring member 32 is attached between the side surface 22b on the opposite side of the optical element 22 and the wall surface 20. The spring member 32 is formed of a metal spring material, and includes a main body 32a and leaf springs 32b and 32c. The leaf springs 32b and 32c are formed by bending a metal spring material, and are formed on the side surface 22b of the optical element 22.
Is inserted into the gap between the wall surface 20 and the wall 20 in a press-fitted state, and the leaf spring 3
2b and 32c are arranged at positions substantially facing the reference planes A, respectively. The elastic pressing force F1 of the leaf springs 32b and 32c (see FIG. 2) causes the side surface 22a of the optical element 22 to move.
Are pressed against each reference plane A and positioned.

【0024】なお、図2に示すように、光学素子22の
底面22cと、支持部31a,31bの上面の支持面B
との間には、きわめてわずかな隙間dが形成されてい
る。この隙間を形成するためには、光学素子22を取り
付けるための治具(例えば、台座27の底面に設けられ
た孔から固定溝26内に所定長さだけ突出するもの)を
用いてもよいし、または光学素子22の底面22cと支
持面Bとの間に薄いシートを介在させ、光学素子22を
設置した時点でシートを抜き取るようにしてもよい。支
持部31a,31bは実質的に光学素子22と接触しな
いため、固定溝26の底面から突出させて設ける必要は
ないが、本実施例では基準面Aを切削加工する際に工具
を当てる基準面としてこの支持部31a,31bの支持
面Bが利用されるものである。また前記ばね部材32に
は、図4と図5に示したような光学素子を上方から弾圧
する弾圧部材が設けられていない。
As shown in FIG. 2, the bottom surface 22c of the optical element 22 and the supporting surface B on the upper surfaces of the supporting portions 31a and 31b.
An extremely slight gap d is formed between the and. In order to form this gap, a jig for mounting the optical element 22 (for example, a jig protruding from the hole provided on the bottom surface of the pedestal 27 into the fixing groove 26 by a predetermined length) may be used. Alternatively, a thin sheet may be interposed between the bottom surface 22c of the optical element 22 and the support surface B, and the sheet may be pulled out when the optical element 22 is installed. Since the support portions 31a and 31b do not substantially contact the optical element 22, it is not necessary to provide the support portions 31a and 31b so as to project from the bottom surface of the fixed groove 26. However, in the present embodiment, the reference surface to which a tool is applied when cutting the reference surface A is used. The supporting surface B of the supporting portions 31a and 31b is used as. Further, the spring member 32 is not provided with an elastic member for elastically pressing the optical element from above as shown in FIGS. 4 and 5.

【0025】図2に示すように、壁面28の凸部28a
の表面の基準面Aと、光学素子22の側面22aとが接
着剤33により固定されている。ただし、光学素子22
の側面22aと当接する他方の凸部29aの基準面Aに
は接着剤は塗布されておらず、光学素子22の側面22
aと凸部29aの基準面Aとは板ばね32bの弾性押圧
力F1により押圧されているのみである。なお前記接着
剤33としては、紫外線硬化性の接着剤または嫌気性の
接着剤が使用される。組立作業としては、凸部28aの
表面の基準面Aに接着剤33を塗布し、固定溝26内に
光学素子22を装着した後、ばね部材32の板ばね32
b,32cが光学素子22の側面22bと壁面20の間
に介装される。そして、板ばね32b,32cにより光
学素子22が凸部28aと29aの基準面Aに押し付け
られた状態で、前記接着剤の硬化により、光学素子22
が接着固定される。また、接着剤の硬化前に光学素子2
2の位置、あるいは傾きの微調整を行うようにしてもよ
い。
As shown in FIG. 2, the convex portion 28a of the wall surface 28 is formed.
The reference surface A of the surface of the optical element 22 and the side surface 22a of the optical element 22 are fixed by the adhesive 33. However, the optical element 22
No adhesive is applied to the reference surface A of the other convex portion 29a that abuts the side surface 22a of the optical element 22.
The a and the reference surface A of the convex portion 29a are only pressed by the elastic pressing force F1 of the leaf spring 32b. As the adhesive 33, an ultraviolet curable adhesive or an anaerobic adhesive is used. As the assembling work, the adhesive 33 is applied to the reference surface A on the surface of the convex portion 28 a, the optical element 22 is mounted in the fixing groove 26, and then the leaf spring 32 of the spring member 32 is mounted.
b and 32c are interposed between the side surface 22b of the optical element 22 and the wall surface 20. Then, the optical element 22 is pressed by the leaf springs 32b and 32c against the reference surface A of the convex portions 28a and 29a, and the optical element 22 is cured by curing the adhesive.
Is fixedly adhered. In addition, before the adhesive is cured, the optical element 2
The position 2 or the inclination may be finely adjusted.

【0026】前述のように、凸部28aと29aの基準
面Aを切削加工する際に、基準面Aの上下に曲面(r
部)が形成されるのを避けることができず、基準面Aの
実質的な面積Sが狭くなるが、本実施例のものでは凸部
28aと光学素子22の側面22aとが接着剤33で固
定されているため、凸部28aの基準面Aと光学素子2
2の側面22aとの相対位置が簡単に動くことはなく、
板ばね32b,32cの弾性押圧力と前記接着力とで光
学素子22が強固に固定される。なお、前記曲面(r
部)に接着剤33を溜めることができるため、この接着
剤の溜りにより、凸部28aの基準面Aと光学素子22
の側面22aとの接着強度が高くなる。
As described above, when cutting the reference plane A of the convex portions 28a and 29a, curved surfaces (r
Inevitably, the substantial area S of the reference plane A is narrowed, but in the present embodiment, the convex portion 28a and the side surface 22a of the optical element 22 are formed by the adhesive 33. Since it is fixed, the reference surface A of the convex portion 28a and the optical element 2
The relative position of the second side surface 22a does not move easily,
The optical element 22 is firmly fixed by the elastic pressing force of the leaf springs 32b and 32c and the adhesive force. The curved surface (r
Since the adhesive 33 can be stored in the area), the storage of the adhesive causes the reference surface A of the convex portion 28a and the optical element 22
The adhesive strength to the side surface 22a of the

【0027】この固定装置では、光学素子22の側面2
2aが凸部28aの基準面Aに接着剤33により強固に
接着固定されている。したがって、図2に示す位置決め
状態で、光学素子22が傾くようなことがない。したが
って、光学素子22を上方から押える押圧部材を設ける
必要がなくなり、また光学素子22の底面22cと支持
部31a,31bの支持面Bとの間に隙間が形成されて
いるため、光学素子22の材料であるガラスと固定部側
である台座27の材料であるアルミニウム合金との線膨
張係数の相違により、低温環境または高温環境下におい
て、光学素子22に対して固定溝26の底部が相対的に
矢印(エ)方向へ移動しても、この移動力が光学素子2
2に作用しない。よって、温度環境変化によって、光学
素子22が図5に示した従来例のようにα方向やβ方向
に傾くことがない。そのため、光の入射面および反射面
となる側面22aの向きを高精度に設定でき、この側面
22aの向きが変化し、ディスクの信号記録面でのスポ
ットの歪みが生じるなどの問題がない。
In this fixing device, the side surface 2 of the optical element 22 is used.
2a is firmly adhered and fixed to the reference surface A of the convex portion 28a by the adhesive 33. Therefore, the optical element 22 does not tilt in the positioning state shown in FIG. Therefore, it is not necessary to provide a pressing member that presses the optical element 22 from above, and a gap is formed between the bottom surface 22c of the optical element 22 and the supporting surfaces B of the supporting portions 31a and 31b. In the low temperature environment or the high temperature environment, the bottom portion of the fixing groove 26 is relatively positioned with respect to the optical element 22 due to the difference in the linear expansion coefficient between the glass that is the material and the aluminum alloy that is the material of the pedestal 27 that is the fixing portion side. Even if the optical element 2 moves in the direction of the arrow (d),
2 does not work. Therefore, the optical element 22 does not tilt in the α direction or the β direction due to the change in the temperature environment unlike the conventional example shown in FIG. Therefore, the direction of the side surface 22a serving as the light incident surface and the light reflection surface can be set with high accuracy, and the direction of the side surface 22a changes, so that there is no problem such as distortion of the spot on the signal recording surface of the disc.

【0028】また、複数箇所の基準面Aのうちの凸部2
8aの基準面Aのみが光学素子22に接着固定されてい
るため、光学素子22と台座27の線膨張係数の差によ
り、凸部28aと29aの間隔が光学素子22に対して
変化しても、凸部28aと光学素子22との間の接着剤
層にせん断力が作用しにくく、よって接着剤33の接着
強度を常に高く維持できる。
In addition, the convex portions 2 of the reference plane A at a plurality of locations
Since only the reference surface A of 8a is adhesively fixed to the optical element 22, even if the distance between the convex portions 28a and 29a changes with respect to the optical element 22 due to the difference in the linear expansion coefficient between the optical element 22 and the pedestal 27. The shearing force is unlikely to act on the adhesive layer between the convex portion 28a and the optical element 22, so that the adhesive strength of the adhesive 33 can always be kept high.

【0029】なお、上記構成例では、基準面Aが2箇所
であるが、この基準面Aが3箇所またはそれ以上であっ
てもよい。この場合に接着される基準面は1箇所または
互いに近接する2箇所など、光学素子の形状などに合わ
せて任意に組み合せることができる。また光学素子はハ
ーフミラーや偏光ビームスプリッタに限られず、回折格
子、フレネルレンズなどであってもよい。
Although the reference plane A is provided at two locations in the above configuration example, the reference plane A may be provided at three locations or more. In this case, the reference surfaces to be bonded can be arbitrarily combined with one another or two adjacent ones depending on the shape of the optical element. The optical element is not limited to the half mirror or the polarization beam splitter, and may be a diffraction grating, a Fresnel lens, or the like.

【0030】[0030]

【発明の効果】以上詳述した本発明によれば、例えば光
ピックアップが搭載されている車内の温度に変化が起こ
った場合においても、光学素子に位置ずれを生じさせる
ことなく所定の基準面に対し高い精度で固定することが
できる。よって、光ピックアップ内に形成される光路の
精度を高く維持することができる。
According to the present invention described in detail above, even when the temperature inside the vehicle in which the optical pickup is mounted changes, for example, a predetermined reference plane can be obtained without causing displacement of the optical element. It can be fixed with high accuracy. Therefore, the accuracy of the optical path formed in the optical pickup can be maintained high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における一構成例を示す光ピックアップ
での光学素子の固定装置を示す部分拡大斜視図、
FIG. 1 is a partially enlarged perspective view showing a fixing device of an optical element in an optical pickup showing one configuration example of the present invention,

【図2】図1におけるII−II線の断面図、2 is a sectional view taken along line II-II in FIG.

【図3】光ピックアップの内部構造の概要を示す構成
図、
FIG. 3 is a configuration diagram showing an outline of an internal structure of an optical pickup,

【図4】従来の光ピックアップでの光学素子の固定装置
を示す拡大部分斜視図、
FIG. 4 is an enlarged partial perspective view showing a fixing device for an optical element in a conventional optical pickup,

【図5】図4をV方向からみた側面図、5 is a side view of FIG. 4 viewed from the V direction,

【符号の説明】[Explanation of symbols]

20,28 壁面 22 光学素子 22a 入射面および反射面となる側面 22b 反対側の側面 26 固定溝 27 台座 29 係止部 28a,29a 凸部 31a,31b 支持部 32 ばね部材 32a 本体 32b,32c 板ばね 33 接着剤 P 光ピックアップ A 基準面 B 支持面 20, 28 Wall surface 22 Optical element 22a Side surface 22b serving as incident surface and reflection surface 22b Opposite side surface 26 Fixing groove 27 Pedestal 29 Locking portion 28a, 29a Convex portion 31a, 31b Support portion 32 Spring member 32a Main body 32b, 32c Leaf spring 33 Adhesive P Optical pickup A Reference surface B Support surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光の入射または出射面が側面となってい
る光学素子を固定部に対して固定する装置において、固
定部側に前記側面を複数箇所にて受ける基準面と、前記
側面を各基準面に押し付ける弾圧部材とが設けられ、前
記複数箇所の基準面の一部のみと光学素子の前記側面と
が接着固定されていることを特徴とする光学素子の固定
装置。
1. An apparatus for fixing an optical element having a side surface on which light enters or exits to a fixed portion, wherein each of the reference surface and the side surface receives the side surface at a plurality of positions on the fixed portion side. An optical element fixing device comprising: an elastic member that is pressed against a reference surface, and only a part of the reference surfaces at the plurality of locations and the side surface of the optical element are adhesively fixed.
【請求項2】 光学素子を、上下方向から押え付ける部
材が設けられておらず、前記一部の基準面との接着力の
みで光学素子が上下方向へ動くことのないように固定さ
れている請求項1記載の光学素子の固定装置。
2. A member for pressing the optical element from the vertical direction is not provided, and the optical element is fixed so as not to move in the vertical direction only by the adhesive force with the part of the reference surface. An optical element fixing device according to claim 1.
【請求項3】 固定部側に設けられて光学素子の底面が
対向する支持部と、光学素子の前記底面との間に、隙間
が形成されている請求項1または2記載の光学素子の固
定装置。
3. The fixing of the optical element according to claim 1, wherein a gap is formed between a support portion provided on the fixing portion side and a bottom surface of the optical element faces, and the bottom surface of the optical element. apparatus.
JP08512196A 1996-04-08 1996-04-08 Optical element fixing device Expired - Fee Related JP3426081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08512196A JP3426081B2 (en) 1996-04-08 1996-04-08 Optical element fixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08512196A JP3426081B2 (en) 1996-04-08 1996-04-08 Optical element fixing device

Publications (2)

Publication Number Publication Date
JPH09274123A true JPH09274123A (en) 1997-10-21
JP3426081B2 JP3426081B2 (en) 2003-07-14

Family

ID=13849808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08512196A Expired - Fee Related JP3426081B2 (en) 1996-04-08 1996-04-08 Optical element fixing device

Country Status (1)

Country Link
JP (1) JP3426081B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002035538A1 (en) * 2000-10-27 2002-05-02 Thomson Licensing S.A. Fastening element
FR2822251A1 (en) * 2001-03-16 2002-09-20 Zeiss Carl Jena Gmbh ARRANGEMENT FOR THE POSITION FIXING OF AN OPTICAL COMPONENT
JP2006251517A (en) * 2005-03-11 2006-09-21 Ricoh Printing Systems Ltd Optical scanner
JP2008084364A (en) * 2006-09-26 2008-04-10 Funai Electric Co Ltd Optical pickup and assembling method thereof
JP2008102369A (en) * 2006-10-19 2008-05-01 Sanyo Electric Co Ltd Optical panel mounting mechanism and projection image display using the same
DE102011052793A1 (en) * 2011-08-18 2013-02-21 Sick Ag optics carrier
JP2014075167A (en) * 2012-10-05 2014-04-24 Hitachi Media Electoronics Co Ltd Optical pickup
DE102015104212A1 (en) * 2015-03-20 2016-09-22 Valeo Schalter Und Sensoren Gmbh Lens device for an optoelectronic sensor of a motor vehicle with fastening device, optoelectronic sensor, motor vehicle and method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002035538A1 (en) * 2000-10-27 2002-05-02 Thomson Licensing S.A. Fastening element
FR2822251A1 (en) * 2001-03-16 2002-09-20 Zeiss Carl Jena Gmbh ARRANGEMENT FOR THE POSITION FIXING OF AN OPTICAL COMPONENT
GB2374383A (en) * 2001-03-16 2002-10-16 Zeiss Carl Jena Gmbh Arrangement for fixing in position an optical component
GB2374383B (en) * 2001-03-16 2004-11-17 Zeiss Carl Jena Gmbh Arrangement for fixing in position an optical component
JP4533195B2 (en) * 2005-03-11 2010-09-01 株式会社リコー Optical scanning device
JP2006251517A (en) * 2005-03-11 2006-09-21 Ricoh Printing Systems Ltd Optical scanner
JP2008084364A (en) * 2006-09-26 2008-04-10 Funai Electric Co Ltd Optical pickup and assembling method thereof
JP2008102369A (en) * 2006-10-19 2008-05-01 Sanyo Electric Co Ltd Optical panel mounting mechanism and projection image display using the same
DE102011052793A1 (en) * 2011-08-18 2013-02-21 Sick Ag optics carrier
DE102011052793B4 (en) * 2011-08-18 2013-11-07 Sick Ag optics carrier
JP2014075167A (en) * 2012-10-05 2014-04-24 Hitachi Media Electoronics Co Ltd Optical pickup
DE102015104212A1 (en) * 2015-03-20 2016-09-22 Valeo Schalter Und Sensoren Gmbh Lens device for an optoelectronic sensor of a motor vehicle with fastening device, optoelectronic sensor, motor vehicle and method
US10768306B2 (en) 2015-03-20 2020-09-08 Valeo Schalter Und Sensoren Gmbh Lens device for an optoelectronic sensor of a motor vehicle comprising a securing unit, optoelectronic sensor, motor vehicle and method

Also Published As

Publication number Publication date
JP3426081B2 (en) 2003-07-14

Similar Documents

Publication Publication Date Title
US7457055B2 (en) Lens driving apparatus and optical pickup unit having the same
US5488594A (en) Objective actuator for positioning an optical pick-up device
JP3426081B2 (en) Optical element fixing device
US4641023A (en) Optical head
KR101216875B1 (en) Lens fixing apparatus and light pick-up apparatus
US6356526B1 (en) Optical device
JP2002056563A (en) Optical pickup device
EP1328933B1 (en) Fastening element
JP4770715B2 (en) Optical pickup device
JP2006099875A (en) Positioning fixed structure for beam shaping prism
JP3991227B2 (en) Optical head device
JPH08111027A (en) Optical pickup device
JP2004206760A (en) Optical head
JPH0620297A (en) Optical pickup
JPH064894A (en) Optical pickup device
US20030035359A1 (en) Optical pickup device
US20060164957A1 (en) Optical unit, an optical pick-up apparatus and a method of adjusting an optical axis
JPH11203719A (en) Optical element holder, optical pickup and optical disk device
JPS62279530A (en) Optical head
KR100455399B1 (en) A positioning apparatus for lens of optical pickup
KR20020065347A (en) Optical member and optical pickup using the optical member
JPH08221797A (en) Optical parts mounting structure for optical pickup
JP2002288863A (en) Optical pickup and disk-driving device
JPS63269323A (en) Optical pickup
JP2001033675A (en) Fixing device for optical element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees