JPH09274040A - Method and apparatus for automatic immunity analysis - Google Patents

Method and apparatus for automatic immunity analysis

Info

Publication number
JPH09274040A
JPH09274040A JP8120496A JP8120496A JPH09274040A JP H09274040 A JPH09274040 A JP H09274040A JP 8120496 A JP8120496 A JP 8120496A JP 8120496 A JP8120496 A JP 8120496A JP H09274040 A JPH09274040 A JP H09274040A
Authority
JP
Japan
Prior art keywords
reaction
absorbance
sample
reagent
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8120496A
Other languages
Japanese (ja)
Inventor
Kiyotaka Saito
清孝 斉藤
Masami Hayashi
正美 林
Masaru Shichiji
優 七字
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Instruments Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Instruments Engineering Co Ltd
Priority to JP8120496A priority Critical patent/JPH09274040A/en
Publication of JPH09274040A publication Critical patent/JPH09274040A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the reliability of a measured result by a method wherein, according to the compared result of areas in ranges which are designated arbitrarily on the basis of a reaction process absorbence, the existence of a reaction suppression phenomenon due to the excess of an antigen is judged. SOLUTION: A sampling disk 2 is turned, a sample container 1 into which a sample is put is moved to a sampling position, and a sample in a constant is put is sucked by a sampling mechanism 3 so as to be discharged into a reaction container 7. The reaction container 7 is moved to a reagent dispensing position in a next cycle so as to be stopped, and a reagent is added by a reagent disk 4a and a reagent pipetting mechanism 5a. Then, whenever a reaction disk 8 is turned, the reaction container 7 crosses an optical axis, and an absorbance is measured by a photometer 10, a wavelength selector 11 and the like. A CPU 15 compares areas in two ranges which are disignated arbitrarily on the basis of a reaction process absorbance (i.e., computes an area ratio), and the existence of a reaction suppression phenomenon due to the excess of an antigen is judged accordingly. The measured absorbance is contorted into a concentration so as to be output.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は自動免疫分析方法お
よびその装置に関する。
TECHNICAL FIELD The present invention relates to an automatic immunoassay method and apparatus.

【0002】[0002]

【従来の技術】抗原抗体間の結合反応を原理とする免疫
血清学検査では、試料中の成分(例えば抗原)と試薬
(例えば抗体)を反応させると、抗原と抗体の量比が最
適であれば、最も強い凝集が起こる。しかし、試料中の
成分の濃度が非常に高いと抗原過剰になって反応が抑制
され、測定値は見かけ上低値で出力されてしまう。例え
ば、濃度が正常値域のときは図2のaに示すように反応
時間と共に吸光度が上昇するが、濃度が異常に高い試料
を測定したときは、図2のbに示すように反応が抑制さ
れて試薬添加直後のみ吸光度が上昇したあとは、反応時
間に対する吸光度変化がほとんど起きなくなってしま
う。濃度は、反応終点の吸光度に一定の検量係数を乗じ
て求めるため、異常に高い濃度であるにもかかわず、測
定値は正常値域の試料よりも低値で出力されてしまう。
この問題に対して、試料と試薬が反応する過程の吸光度
を経時的に観察して抗原過剰による反応抑制現象を判定
する方法が試みられている。すなわち、前述したように
反応抑制現象発生時の反応速度は試料に試薬を添加した
直後で早く、のち遅くなる傾向がある。また、この逆で
抗原過剰になるほど速度が緩慢に進行する傾向もみられ
る。いずれに対しても、反応速度が変化する傾向を、反
応過程吸光度の初速度と全体速度あるいは一定時間後の
速度の二つの範囲の速度比によって判定を行う方法であ
る。この方法は、分析者にとって特別な操作は必要なく
従来の測定方法をそのまま用いることができる利点があ
る。しかし、抗原過剰のときの反応の初速度を捉えるこ
とが必要で、試薬添加直後できるだけ早く、また、吸光
度の測定時間を短くする必要があるのに対し、試薬添加
直後や撹拌直後の反応の不安定さや測定時間を短くする
ことによる光源変動などの測光系のばらつきが誤差要因
となり、反応抑制現象の有無を的確に捉えることができ
ない。また、試料中の成分と試薬を一定時間反応させた
あと、試料中の成分と同じ成分を試薬として添加させ、
添加前後の吸光度差から抗原過剰を判定する抗原再添加
法や一つの試料を感度の異なる2種類の試薬で測定する
方法があるが、いずれも試薬コストが上がることのほ
か、測定値の出力が遅れるなどの欠点がある。
2. Description of the Related Art In an immunoserologic test based on a binding reaction between an antigen and an antibody, when a component (for example, antigen) in a sample and a reagent (for example, antibody) are reacted with each other, an optimal amount ratio of the antigen and the antibody is required. The strongest aggregation occurs. However, if the concentration of the component in the sample is extremely high, the antigen becomes excessive, the reaction is suppressed, and the measured value is output at an apparently low value. For example, when the concentration is in the normal range, the absorbance increases with the reaction time as shown in FIG. 2A, but when a sample with an abnormally high concentration is measured, the reaction is suppressed as shown in FIG. 2B. After the absorbance increases only immediately after the addition of the reagent, the change in the absorbance with the reaction time hardly occurs. Since the concentration is obtained by multiplying the absorbance at the end of the reaction by a constant calibration coefficient, the measured value is output at a lower value than the sample in the normal value range, despite the abnormally high concentration.
To solve this problem, there has been attempted a method of observing the absorbance in the process of reacting a sample with a reagent over time to determine the reaction suppression phenomenon due to excess antigen. That is, as described above, the reaction rate when the reaction suppression phenomenon occurs tends to be fast immediately after adding the reagent to the sample and then slow. On the contrary, there is also a tendency that the speed becomes slower as the antigen becomes excessive. In either case, the tendency of the reaction rate to change is determined by the rate ratio of two ranges of the initial rate of the absorbance in the reaction process and the overall rate or the rate after a fixed time. This method has an advantage that the conventional measurement method can be used as it is without any special operation for the analyst. However, it is necessary to capture the initial velocity of the reaction when there is an excess of antigen, and it is necessary to shorten the measurement time of the absorbance as soon as possible after adding the reagent, and to shorten the reaction time immediately after adding the reagent or immediately after stirring. It is not possible to accurately grasp the presence or absence of the reaction suppression phenomenon due to variations in the photometric system such as fluctuations in light source due to stability and shortening of measurement time. Also, after reacting the components in the sample with the reagents for a certain period of time, the same components as the components in the sample are added as reagents,
There are antigen re-addition method that determines excess antigen based on difference in absorbance before and after addition, and method of measuring one sample with two types of reagents with different sensitivities. There are drawbacks such as delays.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記従来例
の問題点を解決すべく従来の測定法をそのまま用いなが
ら、反応抑制現象を的確に捉えるもので、反応過程吸光
度から任意に指定した二つの範囲の面積比を計算して判
定を行い、反応抑制現象の有無を出力することにより、
見かけ上の低値を誤って報告することがないよう、測定
結果の信頼性を向上させることを目的とする。また、も
う一つの目的は、反応抑制現象が生じて希釈再検を行う
際の試料の希釈倍率がすみやかに決定できる方法および
装置を提供することにある。
The present invention accurately captures the reaction suppression phenomenon while using the conventional measurement method as it is in order to solve the problems of the above-mentioned conventional examples, and is arbitrarily designated from the absorbance of the reaction process. By calculating the area ratio of the two ranges and making a determination, and by outputting the presence or absence of the reaction suppression phenomenon,
The purpose is to improve the reliability of the measurement result so that an apparently low value is not mistakenly reported. Another object of the present invention is to provide a method and apparatus capable of promptly determining the dilution ratio of a sample when a reaction inhibition phenomenon occurs and a dilution retest is performed.

【0004】[0004]

【課題を解決するための手段】上記目的は、試料と試薬
が混合したときの反応液の状態を光学的に測定し、その
反応過程吸光度を多点測定する自動分析において、以下
の技術を用いることにより達成できる。すなわち、 (1)面積を求める範囲を決定する2点の測光ポイントと
反応抑制現象を判断するための許容値が入力できるよう
にする。
The above-mentioned object uses the following technique in an automatic analysis in which the state of a reaction solution when a sample and a reagent are mixed is optically measured and the absorbance in the reaction process is measured at multiple points. Can be achieved by That is, (1) Two photometric points that determine the range for determining the area and the allowable value for determining the reaction suppression phenomenon can be input.

【0005】(2)測定した数点の吸光度を記憶する領域
を持ち、図2に示すように、入力された2点(l,m)
間を線で結び、反応吸光度側の面積S1と三角形の面積
S2の比、すなわち数1の判定値Xを計算する演算機能
を持たせる。
(2) It has an area for storing the measured absorbance at several points, and as shown in FIG. 2, it inputs two points (l, m).
A line is used to connect between them, and a calculation function for calculating the ratio of the area S1 on the side of the reaction absorbance and the area S2 of the triangle, that is, the judgment value X of Equation 1 is provided.

【0006】[0006]

【数1】 X=S1/S2×100(%) …(数1) (3)判定値と許容値を比較する機能を持たせ、許容値を
越えたときに測定値とともに、判定値およびアラームマ
ークを印字する機能を持たせる。
[Equation 1] X = S1 / S2 × 100 (%) (Equation 1) (3) A function for comparing the judgment value with the allowable value is provided, and when the allowable value is exceeded, the measured value, the judgment value and the alarm are given. It has a function to print the mark.

【0007】反応過程吸光度を多点測定する自動分析
で、反応過程の数点の測定吸光度の中から、あらかじめ
入力した測光ポイントl点とm点を線で結び、次の面積
比の計算を行う演算機能を具備するもので、この計算例
を図3により説明する。まず、Y軸方向(反応時間)の
各測光点の吸光度をA1,A2…Amとし、AmとAm-1
2点間のX軸方向の距離は等間隔であるため、これをD
とすると、全体のおおよその面積Sを数2により算出す
る。
In the automatic analysis for measuring the absorbance of the reaction process at multiple points, from the measured absorbances of several points of the reaction process, the previously input photometric points l and m are connected by a line to calculate the next area ratio. It has an arithmetic function, and an example of this calculation will be described with reference to FIG. First, the absorbance at each photometric point in the Y-axis direction (reaction time) is A 1 , A 2 ... Am, and the distances in the X-axis direction between the two points Am and Am-1 are equidistant. This is D
Then, the approximate area S of the whole is calculated by Equation 2.

【0008】[0008]

【数2】 S=Σ(Ai×D) …(数2) ここで、数3により、反応吸光度からはみ出した三角形
部分の面積を面積Sから差し引きS′とする。
## EQU00002 ## S = .SIGMA. (Ai.times.D) (Equation 2) Here, the area of the triangular portion protruding from the reaction absorbance is subtracted from the area S by Equation 3 to obtain S '.

【0009】[0009]

【数3】 S′=S−Σ{(Am−Am-1)×D/2} …(数3) 次に、反応吸光度の任意の2点(l,m)間を線で結
び、l,m,n3点で構成された三角形の面積S2を数
4により算出する。
Equation 3] S '= S-Σ {( A m -A m-1) × D / 2} ... ( Equation 3) Next, any two points of the reaction absorbance (l, m) during connected by a line The area S2 of the triangle formed by the three points, 1, l, m and n is calculated by the equation 4.

【0010】[0010]

【数4】 S2=Tw×Am/2 …(数4) したがって、反応吸光度側の面積S1は、[Equation 4] S2 = T w × A m / 2 (Equation 4) Therefore, the area S1 on the side of the reaction absorbance is

【0011】[0011]

【数5】 S1=S′−S2 …(数5) で求まることから、反応吸光度側の面積S1と三角形の
面積S2の比Xは、数6で求めることができる。
## EQU00005 ## Since S1 = S'-S2 (Equation 5) is obtained, the ratio X of the area S1 on the reaction absorption side and the area S2 of the triangle can be obtained by Equation 6.

【0012】[0012]

【数6】 X=S1/S2×100(%) …(数6) この面積比は、図4に示すような正常反応の反応過程で
は、面積S1より面積S2の方が広くなって面積比は小
さくなり、図5に示すように反応抑制現象が生じている
反応では、面積S1が面積S2の広さに近づいてくるた
め、面積比は大きくなる。したがって、求めた面積比の
値をあらかじめ入力した許容値と比較判定し、許容値を
超えたときに測定値と共に面積比の値とアラームマーク
を印字させることにより、分析者は測定値が正常反応に
おける値であるか、抗原過剰による反応抑制現象が起き
ているための見かけ上の低値であるかが分かり、測定結
果の信頼性向上が図れる。
[Equation 6] X = S1 / S2 × 100 (%) (Equation 6) This area ratio becomes larger than the area S1 in the reaction process of the normal reaction as shown in FIG. In the reaction in which the reaction suppression phenomenon occurs as shown in FIG. 5, the area S1 approaches the width of the area S2, and the area ratio increases. Therefore, by comparing the determined area ratio value with the previously entered allowable value and printing the area ratio value and the alarm mark together with the measured value when the allowable value is exceeded, the analyst can confirm that the measured value is normal. It is possible to know whether the measured value is a value in or the value is an apparently low value due to the reaction suppression phenomenon caused by excess antigen, and thus the reliability of the measurement result can be improved.

【0013】[0013]

【発明の実施の形態】本発明を用いた自動免疫分析装置
の一実施例を説明する。図6に示すように、本装置は、
試料容器1を架設するサンプルディスク2,試料を一定
量採取するサンプリング機構3、試薬を架設する試薬デ
ィスク4a,4b、試薬の分注を行う試薬ピペッティン
グ機構5a,5bおよび試料と試薬を混合する撹拌機構
6a,6b,光学セルを兼ねた複数の反応容器7を保持
した反応ディスク8,反応容器中の反応液に光源ランプ
9からでた光を通し、反応液の吸光度を測定するための
光度計10,波長選択器11,対数変換増幅器12,A
/D変換器13,使用した反応容器を洗う反応容器洗浄
機構14、さらに、機構系全体の制御および濃度演算な
どのデータ処理を行うための中央処理装置(マイクロコ
ンピュータ)15などから構成されている。他プリンタ
16,CRT17,操作パネル18,試料分注機構駆動
回路19,試薬分注機構駆動回路20などがあり、いず
れもインターフェイス21を経て中央処理装置15に接
続されている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of an automatic immunoassay device using the present invention will be described. As shown in FIG. 6, the device is
A sample disk 2 on which a sample container 1 is installed, a sampling mechanism 3 for collecting a fixed amount of a sample, reagent disks 4a and 4b on which a reagent is installed, reagent pipetting mechanisms 5a and 5b for dispensing a reagent, and a sample and a reagent are mixed. Stirring mechanism 6a, 6b, reaction disk 8 holding a plurality of reaction vessels 7 also functioning as optical cells, and light intensity for measuring the absorbance of the reaction fluid by passing light emitted from a light source lamp 9 through the reaction fluid in the reaction vessel. Total 10, wavelength selector 11, logarithmic conversion amplifier 12, A
A / D converter 13, a reaction container cleaning mechanism 14 for cleaning the used reaction container, and a central processing unit (microcomputer) 15 for controlling the entire mechanical system and performing data processing such as concentration calculation. . There are another printer 16, a CRT 17, an operation panel 18, a sample dispensing mechanism drive circuit 19, a reagent dispensing mechanism drive circuit 20, etc., all of which are connected to the central processing unit 15 via an interface 21.

【0014】これらの構成における動作原理を次に説明
する。操作パネル18にあるスタートスイッチを押す
と、反応容器洗浄機構14により反応容器の洗浄が開始
され、反応ディスク8の動作により反時計方向に半回転
+1容器分回転して一時停止する動作を繰返しながら、
反応容器は試料吐出位置まで進む。ここで、サンプルデ
ィスク2が回転して、測定する試料の入った試料容器1
はサンプリング位置に移動し、サンプリング機構3の動
作により、試料が一定量吸引され反応容器に吐出され
る。試料が吐出された反応容器は、次のサイクルで試薬
分注位置に移動して停止し、試薬ディスク4aと試薬ピ
ペッティング機構5aの動作により、試料の入った反応
容器に一定量の第1試液が添加される。第1試液が添加
されてから反応ディスクが1回転+2容器分回転する
と、撹拌機構6aが作動して試料と試薬の撹拌が行われ
る。以下、反応ディスクは次々と回転し、回転するごと
に反応容器は光軸を横切り、そのつど吸光度が測定され
る。また、反応容器が試料分注位置から15回転+15
容器分回転した位置、すなわち第2試液分注位置まで進
むと試薬ディスク4bと試薬ピペッティング機構5bの
動作により、試料と第1試薬が入った反応容器に第2試
薬が添加される。その後、撹拌機構6bにより撹拌が行
われる。例えば、反応時間を10分、1サイクルを6秒
とすると、試料の吐出から測光終了まで計50回の測光
が行われ、測光を終えた反応容器は反応容器洗浄機構1
4により洗浄されて次の試料の測定に備える。50回の
測光で測定された吸光度は、あらかじめ入力した分析パ
ラメータにより中央処理装置15で濃度に換算されプリ
ンタ16から測定値が出力される。
The operation principle of these configurations will be described below. When the start switch on the operation panel 18 is pressed, the reaction container cleaning mechanism 14 starts cleaning the reaction container, and the operation of the reaction disk 8 rotates counterclockwise by half a rotation + one container and temporarily stops. ,
The reaction container advances to the sample discharge position. Here, the sample disc 2 rotates and the sample container 1 containing the sample to be measured
Moves to the sampling position, and a certain amount of the sample is sucked and discharged into the reaction container by the operation of the sampling mechanism 3. The reaction container from which the sample has been discharged moves to the reagent dispensing position and stops in the next cycle, and the reagent disk 4a and the reagent pipetting mechanism 5a operate so that a certain amount of the first reagent solution in the reaction container containing the sample. Is added. When the reaction disk rotates one rotation + two containers after the first reagent solution is added, the stirring mechanism 6a operates to stir the sample and the reagent. Thereafter, the reaction disks rotate one after another, and each time the reaction disk crosses the optical axis, the absorbance is measured each time. Also, the reaction container is rotated 15 times from the sample dispensing position +15
The second reagent is added to the reaction container containing the sample and the first reagent by the operation of the reagent disc 4b and the reagent pipetting mechanism 5b when the container is rotated to the position where it is rotated, that is, the second reagent dispensing position. Then, stirring is performed by the stirring mechanism 6b. For example, when the reaction time is 10 minutes and the cycle is 6 seconds, a total of 50 times of photometry are performed from the discharge of the sample to the end of the photometry, and the reaction vessel after the photometry is the reaction vessel cleaning mechanism 1
The sample is washed according to No. 4 and is ready for the next measurement. The absorbance measured by 50 times of photometry is converted into the concentration by the central processing unit 15 by the analysis parameter input in advance, and the measured value is output from the printer 16.

【0015】本発明では、この測定値の出力とともに分
析パラメータで入力した2点の測光ポイント(l,m)
から、図1に示すようにl・m間を線で結び、反応吸光
度側の面積S1と三角形の面積S2の比を中央処理装置
15により計算する。そして、求めた面積比があらかじ
め分析パラメータで設定した許容値を越えたときは、測
定値と共にアラームマークと面積比を出力する。
In the present invention, the two photometric points (l, m) input by the analysis parameter together with the output of this measurement value are used.
Then, as shown in FIG. 1, 1 and m are connected by a line, and the central processing unit 15 calculates the ratio of the area S1 on the reaction absorption side and the area S2 of the triangle. When the obtained area ratio exceeds the allowable value set in advance by the analysis parameter, the alarm mark and the area ratio are output together with the measured value.

【0016】次に、免疫グロブリンIgAの低濃度から
高濃度試料を測定したときの吸光度変化と本発明の判定
値(面積比)の関係を図7に示す。本図は、抗原過剰に
よる反応抑制現象のときに反応速度が緩慢に進行する系
についてみたものである。ここで、測定値は吸光度に一
定の係数を乗じて出力されるため、吸光度の変化はその
まま測定値に反映する。IgAの濃度増加に伴い吸光度
も上昇する正常反応域(1000〜9000mg/dl)で
は、判定値は一定の値を示すが、濃度の増加に伴い吸光
度が減少する抗原過剰域、すなわち、本来高値で出力さ
れなければならない濃度であるにもかかわらず反応抑制
現象が発生しているために低値で出力されてしまう濃度
域では、判定値も比例して減少する傾向が顕著である。
したがって、本例によれば、あらかじめ分析パラメータ
に許容値として60の数値を設定して、判定値がそれ以
下のときにアラームマークを印字させることにより、分
析者は抗原過剰による反応抑制現象が発生していること
が容易に分かり、誤報告を防ぐことができる。さらに、
抗原過剰域で濃度と判定値が比例関係にあるため、アラ
ームマークとともに判定値を印字することにより、試料
の濃度が推定でき、再検時における試料の希釈倍率をす
みやかに決定できる。
Next, FIG. 7 shows the relationship between the change in absorbance and the judgment value (area ratio) of the present invention when a sample with a high concentration of immunoglobulin IgA is measured from a low concentration to a high concentration. This figure shows the system in which the reaction rate slowly progresses during the reaction suppression phenomenon due to excess antigen. Here, since the measured value is output by multiplying the absorbance by a constant coefficient, the change in the absorbance is directly reflected in the measured value. In the normal reaction range (1000 to 9000 mg / dl) where the absorbance increases with increasing concentration of IgA, the judgment value shows a constant value, but the absorbance decreases with increasing concentration. In the concentration range where a low value is output because the reaction suppression phenomenon occurs even though the concentration should be output, the judgment value also tends to decrease proportionally.
Therefore, according to this example, by setting the numerical value of 60 as the allowable value in advance in the analysis parameter and printing the alarm mark when the judgment value is less than that, the analyst causes the reaction suppression phenomenon due to excess antigen. You can easily understand what is going on and prevent false reports. further,
Since the concentration and the judgment value are in a proportional relationship in the excess antigen region, the judgment value can be printed together with the alarm mark to estimate the concentration of the sample and promptly determine the dilution ratio of the sample at the time of retesting.

【0017】[0017]

【発明の効果】本発明によれば、免疫血清学的測定を行
う際に最大の問題とされていた抗原(または抗体)過剰
による反応抑制現象を的確に捉えることができる。しか
も、抗原(または抗体)過剰域の試料の濃度も推定でき
るため、希釈再検も複数の希釈倍率で何回も行うことな
く1回で済むため、測定時間の短縮や試薬コストの低減
につながる。
EFFECTS OF THE INVENTION According to the present invention, the reaction suppression phenomenon due to excess of antigen (or antibody), which has been the biggest problem in immunoserologic measurement, can be accurately grasped. Moreover, since the concentration of the sample in the antigen (or antibody) excess region can be estimated, the dilution retest can be performed only once without performing multiple times at a plurality of dilution ratios, leading to a reduction in measurement time and a reduction in reagent cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における反応抑制現象の判定法である面
積比(S1/S2)を示す特性図。
FIG. 1 is a characteristic diagram showing an area ratio (S1 / S2) which is a method of determining a reaction suppression phenomenon in the present invention.

【図2】濃度の異なる試料の反応過程吸光度の違いを示
す特性図。
FIG. 2 is a characteristic diagram showing a difference in absorbance in a reaction process of samples having different concentrations.

【図3】面積比の計算方法を示す特性図。FIG. 3 is a characteristic diagram showing a method of calculating an area ratio.

【図4】正常反応による反応過程吸光度の面積(S1,
S2)の割合いを示す特性図。
FIG. 4 is an area of absorbance (S1,
The characteristic view which shows the ratio of S2).

【図5】反応抑制現象が発生した反応過程吸光度の面積
(S1,S2)の割合いを示す特性図。
FIG. 5 is a characteristic diagram showing the ratio of the areas (S1, S2) of the absorbance in the reaction process in which the reaction suppression phenomenon occurs.

【図6】本発明における自動免疫分析装置の一実施例を
示す説明図。
FIG. 6 is an explanatory diagram showing an embodiment of the automatic immunoassay device according to the present invention.

【図7】本発明の面積比による判定法の効果を示す特性
図。
FIG. 7 is a characteristic diagram showing the effect of the area ratio-based determination method of the present invention.

【符号の説明】[Explanation of symbols]

1…試料容器、2…サンプルディスク、3…サンプリン
グ機構、4a,4b…試薬ディスク、5a,5b…試薬
ピペッティング機構、6a,6b…撹拌機構、7…反応
容器、8…反応ディスク、9…光源ランプ、10…光度
計、11…波長選択器、12…対数変換増幅器、13…
A/D変換器、14…反応容器洗浄機構、15…中央処
理装置、16…プリンタ、17…CRT、18…操作パ
ネル、19…試料分注機構駆動回路、20…試薬分注機
構駆動回路、21…インターフェイス。
DESCRIPTION OF SYMBOLS 1 ... Sample container, 2 ... Sample disk, 3 ... Sampling mechanism, 4a, 4b ... Reagent disk, 5a, 5b ... Reagent pipetting mechanism, 6a, 6b ... Stirring mechanism, 7 ... Reaction container, 8 ... Reaction disk, 9 ... Light source lamp, 10 ... Photometer, 11 ... Wavelength selector, 12 ... Logarithmic conversion amplifier, 13 ...
A / D converter, 14 ... Reaction container cleaning mechanism, 15 ... Central processing unit, 16 ... Printer, 17 ... CRT, 18 ... Operation panel, 19 ... Sample dispensing mechanism drive circuit, 20 ... Reagent dispensing mechanism drive circuit, 21 ... Interface.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 正美 茨城県ひたちなか市堀口字長久保832番地 2 日立計測エンジニアリング株式会社内 (72)発明者 七字 優 茨城県ひたちなか市堀口字長久保832番地 2 日立計測エンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masami Hayashi 832 Nagakubo, Horiguchi, Hitachinaka City, Ibaraki Prefecture 2 Hitachi Measurement Engineering Co., Ltd. (72) Inventor, Seven characters, 832 Nagakubo, Horiguchi, Hitachinaka, Ibaraki 2 Hitachi Measurement Engineering Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】抗原抗体反応を利用する免疫比濁反応また
はラテックス凝集法により、試料中の目的成分と試薬を
反応させ、反応液を光学的に測定し、その反応過程吸光
度を多点測定する自動免疫分析方法において、反応過程
吸光度から任意に指定した二つの範囲の面積の比較結果
に応じて、抗原過剰による反応抑制現象の有無を判定す
ることを特徴とする自動免疫分析方法。
1. An immunoturbidimetric reaction utilizing an antigen-antibody reaction or a latex agglutination method to react a target component in a sample with a reagent, the reaction solution is optically measured, and the absorbance in the reaction process is measured at multiple points. In the automatic immunoassay method, the presence or absence of a reaction suppression phenomenon due to excess antigen is determined according to the result of comparing the areas of two arbitrarily designated areas from the absorbance of the reaction process.
【請求項2】試料と試薬によって形成された反応液の反
応過程吸光度を測定する測定装置と、時間的に指定した
二つの範囲の面積比が、あらかじめ設定した許容範囲を
越えたときに測定結果とともにアラームマークを出力す
る制御装置を備えたことを特徴とする自動免疫分析装
置。
2. A measurement device for measuring the reaction process absorbance of a reaction solution formed by a sample and a reagent, and a measurement result when the area ratio of two ranges designated in terms of time exceeds a preset allowable range. An automatic immunoassay device characterized in that it is also provided with a control device for outputting an alarm mark.
【請求項3】請求項2において、前記面積比が、あらか
じめ設定した許容範囲を越えたときに測定結果とともに
面積比を出力する自動免疫分析装置。
3. The automatic immunoassay device according to claim 2, wherein when the area ratio exceeds a preset allowable range, the area ratio is output together with the measurement result.
JP8120496A 1996-04-03 1996-04-03 Method and apparatus for automatic immunity analysis Pending JPH09274040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8120496A JPH09274040A (en) 1996-04-03 1996-04-03 Method and apparatus for automatic immunity analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8120496A JPH09274040A (en) 1996-04-03 1996-04-03 Method and apparatus for automatic immunity analysis

Publications (1)

Publication Number Publication Date
JPH09274040A true JPH09274040A (en) 1997-10-21

Family

ID=13739963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8120496A Pending JPH09274040A (en) 1996-04-03 1996-04-03 Method and apparatus for automatic immunity analysis

Country Status (1)

Country Link
JP (1) JPH09274040A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013003059A (en) * 2011-06-20 2013-01-07 Toshiba Corp Automatic analyzer
CN110542660A (en) * 2019-09-29 2019-12-06 迈克医疗电子有限公司 method, device and detection system for detecting prozone effect in sample reaction
CN114578040A (en) * 2022-05-06 2022-06-03 深圳市帝迈生物技术有限公司 Sample detection method, sample analyzer and control device thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013003059A (en) * 2011-06-20 2013-01-07 Toshiba Corp Automatic analyzer
CN110542660A (en) * 2019-09-29 2019-12-06 迈克医疗电子有限公司 method, device and detection system for detecting prozone effect in sample reaction
CN114578040A (en) * 2022-05-06 2022-06-03 深圳市帝迈生物技术有限公司 Sample detection method, sample analyzer and control device thereof

Similar Documents

Publication Publication Date Title
JP6013796B2 (en) Automatic analyzer and sample measurement method
US5508521A (en) Method and apparatus for detecting liquid presence on a reflecting surface using modulated light
JP4349893B2 (en) Automatic analyzer and analysis method of automatic analyzer
AU691441B2 (en) Apparatus and method for determination of non-hemolyzed levels of occult blood in urine
EP1113270B1 (en) Method for measuring a concentration of protein
US6485980B1 (en) Method and apparatus for controlling a stream of liquid test packages in a capsule chemistry analysis system
KR20020021808A (en) Immunoassay and immunoassay apparatus
WO2004025281A1 (en) Double optical path cell for automatic analyzing device and analyzing method using the double optical path cell
JPH0619351B2 (en) Latex agglutination reaction measuring device
JPH04130248A (en) Biochemical automatic analyzer
JPH09274040A (en) Method and apparatus for automatic immunity analysis
JP2517102B2 (en) Method for detecting emitted light amount of immunoassay device
JP4043132B2 (en) Automatic analyzer
JPS63502135A (en) How to improve analysis timing in kinetic turbidimetry
CA2804843C (en) Multiple time windows for extending the range of an assay
JPH10132735A (en) Automatic analyzing device
JP2000275252A (en) Analysis process confirming method for analyzer and automatic analyzer
JPH11264820A (en) Method for judging process zone
JPS58211663A (en) Automatic analyzer
JP6313960B2 (en) Automatic analyzer
JPH11264821A (en) Method for judging process zone
JP2666568B2 (en) Biochemical automatic analyzer
JPH0514855B2 (en)
JP3060805B2 (en) Automatic analyzer
JPH0579984A (en) Automatic analyzer