JPH09273817A - Low temperature generator - Google Patents

Low temperature generator

Info

Publication number
JPH09273817A
JPH09273817A JP11812896A JP11812896A JPH09273817A JP H09273817 A JPH09273817 A JP H09273817A JP 11812896 A JP11812896 A JP 11812896A JP 11812896 A JP11812896 A JP 11812896A JP H09273817 A JPH09273817 A JP H09273817A
Authority
JP
Japan
Prior art keywords
hydrogen
gas
heat exchange
liquid hydrogen
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11812896A
Other languages
Japanese (ja)
Inventor
Shuzo Nomura
修蔵 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11812896A priority Critical patent/JPH09273817A/en
Publication of JPH09273817A publication Critical patent/JPH09273817A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PROBLEM TO BE SOLVED: To economically produce cold-heat by a method wherein liquid hydrogen cooled by a heat exchanger is stored in a liquid hydrogen storage tank, sent to an evaporator through an expansion valve, where the hydrogen is used for direct cooling or for cooling an indirect refrigerant, and then sent to a compressor to pressurize it. SOLUTION: Hydrogen absorbs heat and evaporates to gas in an evaporator 18 and the hydrogen gas is sucked and compressed by a compressor 3 up to a pressure at which the hydrogen gas can be liquefied when cooled down to a cooling temperature of a heat exchanger 2. The Compressed hydrogen gas is stored in a pressure accumulator 5 of a pressure vessel. The compressed hydrogen gas having a specified pressure is released through an automatic valve 7. A low temperature generator is provided with the heat exchanger 2 to cool and liquefy the compressed hydrogen gas, a cryogenic liquefied gas storage tank where refrigerant to cool the heat exchanger 2 is stored, and a liquid hydrogen storage tank 14 to store liquid hydrogen. The liquefied high- pressure liquid hydrogen is depressurized by an expansion valve 16 and absorbs heat from the surroundings via the evaporator 18 when the liquid hydrogen evaporates.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧縮式冷凍装置等の低
温発生装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of a low temperature generator such as a compression type refrigerating device.

【0002】[0002]

【従来の技術】従来、圧縮式冷凍装置は冷媒にフレオン
ガスを使用し、フレオンガスを圧縮し凝縮器内で液化
し、膨張弁より蒸発器に送りフレオン液の蒸発作用によ
り低温を得ている。
2. Description of the Related Art Conventionally, a compression refrigerating apparatus uses freon gas as a refrigerant, compresses the freon gas and liquefies it in a condenser, and sends it to an evaporator from an expansion valve to obtain a low temperature by evaporating the freon liquid.

【0003】従来の冷媒としてはフレオンガス、アンモ
ニアガス、炭酸ガス、亜硫酸ガスが知られている。その
中でフレオンガスがその性能の優れていることからほと
んどを占めてきた。
Freon gas, ammonia gas, carbon dioxide gas, and sulfurous acid gas are known as conventional refrigerants. Among them, Freon gas has dominated most because of its excellent performance.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、フレオ
ンガスはオゾン層の破壊の原因となる環境公害のため、
世界的に禁止されつつある。代替フロンの研究もされて
いるが、いまだ性能を満足するものは開発されていな
い。アンモニアガス及び亜硫酸ガスは毒性があり人体に
危険であり、炭酸ガスは液化温度が低く常温で液化しに
くいため利用が難しい。
However, because Freon gas is an environmental pollution that causes the destruction of the ozone layer,
It is being banned globally. Alternative CFCs have also been researched, but none have been developed that satisfy their performance. Ammonia gas and sulfurous acid gas are toxic and dangerous to the human body, and carbon dioxide gas is difficult to use because it has a low liquefaction temperature and is difficult to liquefy at room temperature.

【0005】本発明は、上記のような従来の問題を解決
するものであり、水素ガスを低温冷却式の熱交換装置
(平成7年公開実用新案第2764号、平成7年公開特
許第294162号記載のもの)を通すことにより大量
の水素を安全かつ経済的に液化し、その液体水素の蒸発
潜熱を利用することにより、従来のフレオンガス等の冷
媒に代えるものである。熱交換装置を冷却するための冷
媒は窒素、LNG等を利用でき、蒸発した窒素ガス、天
然ガス等はそのまま潜熱を奪われた状態で使用側に送気
されるので、経済的に水素ガスを利用することもでき
る。従って低コストで製造された液体水素を利用して、
経済的に冷熱を取り出せる冷凍装置等の低温発生装置を
提供することを目的とするものである。
The present invention solves the above-mentioned conventional problems, and is a low-temperature cooling type heat exchange device for hydrogen gas (Public utility model No. 2764 published in 1995, and Japanese Patent No. 294162 published in 1995). A large amount of hydrogen is liquefied safely and economically by passing it through (as described), and the latent heat of vaporization of the liquid hydrogen is used to replace the conventional refrigerant such as Freon gas. Nitrogen, LNG, etc. can be used as the refrigerant for cooling the heat exchange device, and the evaporated nitrogen gas, natural gas, etc. are sent to the user side with the latent heat removed as they are. It can also be used. Therefore, using liquid hydrogen produced at low cost,
It is an object of the present invention to provide a low temperature generator such as a refrigerating device that can economically extract cold heat.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
本発明は、伝熱媒体が供給、排出される熱交換容器と、
この熱交換容器内の伝熱媒体中に設けられ、複数並列状
態で配置され周方向に連通した周方向流路、各周方向流
路における流入口と流出口の位置が周方向にずれるよう
に周方向流路に設けられた流入口および流出口、周方向
流路間の流入口と流出口とを連通した連通流路とからな
る熱交換装置用の熱交換流路と、上記熱交換流路に連通
された流体の供給路および排出路とを備えた熱交換装置
と、圧縮機と、膨張弁と、蒸発器とからなる低温発生装
置としたものである。
To achieve the above object, the present invention provides a heat exchange container for supplying and discharging a heat transfer medium,
A plurality of circumferential flow passages provided in the heat transfer medium in the heat exchange container and arranged in parallel and communicating in the circumferential direction, and the positions of the inlet and the outlet in each circumferential flow passage are displaced in the circumferential direction. A heat exchange flow path for a heat exchange device, which comprises an inflow port and an outflow port provided in the circumferential flow path, and a communication flow path communicating the inflow port and the outflow port between the circumferential flow paths, and the heat exchange flow. This is a low-temperature generator including a heat exchange device having a fluid supply passage and a discharge passage that are in communication with the passage, a compressor, an expansion valve, and an evaporator.

【0007】液体水素貯槽を設けたり、蓄圧器を接続す
ると好適である。
It is preferable to provide a liquid hydrogen storage tank or connect a pressure accumulator.

【0008】上記熱交換容器に接続され、液体水素冷却
に使用された伝熱媒体を排出する伝熱媒体排出用配管
と、該配管に接続された上記蓄圧器や上記液体水素貯槽
の冷却装置とを有するようにしてもよい。
A heat transfer medium discharge pipe connected to the heat exchange container for discharging a heat transfer medium used for cooling liquid hydrogen, and a cooling device for the pressure accumulator and the liquid hydrogen storage tank connected to the pipe. May be included.

【0009】[0009]

【作用】熱交換装置で冷却された液体水素は、請求項2
記載の発明では液体水素貯槽に貯蔵され、この液体水素
は膨張弁を介して蒸発器に送られ、ここで直接冷却に用
いられあるいは間接冷媒を冷却する。蒸発器を経た水素
ガスは圧縮機に送られここで加圧され、さらに請求項3
記載の発明においては蓄圧機に蓄積された後、熱交換装
置に送られ伝熱媒体によって冷却されてる。
The liquid hydrogen cooled by the heat exchange device is the second aspect.
In the described invention, it is stored in a liquid hydrogen storage tank, which liquid hydrogen is sent via an expansion valve to an evaporator where it is used for direct cooling or for cooling an indirect refrigerant. The hydrogen gas that has passed through the evaporator is sent to a compressor where it is pressurized, and further,
In the described invention, after being accumulated in the pressure accumulator, it is sent to the heat exchange device and cooled by the heat transfer medium.

【0010】[0010]

【実施例】以下、本発明の一実施例について図面を参照
しながら説明する。図1は本発明の一実施例における熱
交換装置を示す要部の斜視図、図2は熱交換装置を液体
窒素の冷媒中に浸した場合の使用例を示す概略系統図で
ある。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of an essential part showing a heat exchange device in one embodiment of the present invention, and FIG. 2 is a schematic system diagram showing an example of use when the heat exchange device is immersed in a liquid nitrogen refrigerant.

【0011】本実施例は、蒸発器18にて熱を吸収して
蒸発した水素ガスを吸収し、熱交換装置2の冷却温度で
水素ガスを液化できる圧力まで圧縮する圧縮機3、圧縮
された水素ガスを蓄圧する圧力容器である蓄圧器5、所
定圧力になった水素ガスを放出する自動弁7と、圧縮さ
れた水素ガスを冷却液化する熱交換装置2、この熱交換
装置を冷却する冷媒を貯蔵する超低温液化ガス貯槽(本
実施例では液体水素貯槽1)、液化された液体水素を貯
蔵する液体水素貯槽14、液化した高圧の液体水素を絞
り作用によって蒸発を起こし得る圧力まで減圧する膨張
弁16、液体水素が蒸発する際に周囲の熱を吸収する蒸
発器18を備えたものである。
In this embodiment, the compressor 3 absorbs heat by the evaporator 18 to absorb the evaporated hydrogen gas and compresses the hydrogen gas to a pressure at which the hydrogen gas can be liquefied at the cooling temperature of the heat exchanger 2. Accumulator 5 which is a pressure vessel for storing hydrogen gas, automatic valve 7 for releasing hydrogen gas at a predetermined pressure, heat exchange device 2 for cooling and liquefying compressed hydrogen gas, and refrigerant for cooling this heat exchange device. For storing ultra-low temperature liquefied gas (liquid hydrogen storage tank 1 in this embodiment), liquid hydrogen storage tank 14 for storing liquefied liquid hydrogen, and expansion for depressurizing liquefied high-pressure liquid hydrogen to a pressure at which evaporation can be caused by a throttling action. It is provided with a valve 16 and an evaporator 18 that absorbs ambient heat when liquid hydrogen evaporates.

【0012】水素ガスを冷却する冷媒としては水素ガス
のジュール・トムソン反転温度の−80℃以下の冷媒で
あることが必要であり、液体窒素(−196℃),液体
酸素(−183℃),液体アルゴン(−186℃),L
NG(−162℃)等の超低温液化ガスが考えられる。
本実施例では液体窒素を用いた例を示す。
The refrigerant for cooling the hydrogen gas must be a refrigerant having a Joule-Thomson inversion temperature of hydrogen gas of -80 ° C or lower, and liquid nitrogen (-196 ° C), liquid oxygen (-183 ° C), Liquid argon (-186 ° C), L
Ultra low temperature liquefied gas such as NG (-162 ° C) is considered.
In this embodiment, an example using liquid nitrogen is shown.

【0013】図2に示すように、液体窒素貯槽1は液化
窒素を−196℃で貯蔵することができ、この液体窒素
貯槽1の内部に平成7年公開実用新案第2764号、平
成7年公開特許第294162号記載の熱交換装置2が
設置されている。この熱交換装置2は液体水素貯槽14
と配管(排出路)13で、また自動弁7と配管(供給
路)8で連通されている。圧縮機3で圧縮された水素ガ
スは配管4を経て蓄圧器5に蓄圧される。蓄圧器5は配
管6により自動弁7に連通されている。液体窒素はバル
ブ9により配管10を通して液体窒素貯槽1内に供給さ
れる。
As shown in FIG. 2, the liquid nitrogen storage tank 1 can store liquefied nitrogen at -196.degree. C., and the liquid nitrogen storage tank 1 has an internal utility model No. 2764 published in 1995 and a public application in 1995. The heat exchange device 2 described in Japanese Patent No. 294162 is installed. This heat exchange device 2 has a liquid hydrogen storage tank 14
And a pipe (discharging passage) 13, and an automatic valve 7 and a pipe (supplying passage) 8. The hydrogen gas compressed by the compressor 3 is accumulated in the pressure accumulator 5 via the pipe 4. The pressure accumulator 5 is connected to an automatic valve 7 by a pipe 6. Liquid nitrogen is supplied into the liquid nitrogen storage tank 1 through the pipe 10 by the valve 9.

【0014】熱交換装置2で冷却液化された液体水素は
配管1(排出路)13により液体水素貯槽14に送られ
る。液体水素は液体水素貯槽14で貯蔵される。液体水
素貯槽14は配管15により膨張弁16に連通されてい
る。膨張弁16は配管17により蒸発器18に連通され
ている。蒸発器としては、気体を冷却する場合には、裸
管コイル式、ひれ付コイル式、竪管型蒸発器、ヘリング
ホーン蒸発器等があり、液体冷却用としてはセル・チュ
ーブ式、セル・コイル式等がある。膨張弁16を通して
液体水素が蒸発器18で蒸発する。蒸発器18は配管1
9により圧縮機3に連通されており、蒸発した水素ガス
は圧縮機3に送られる。
Liquid hydrogen cooled and liquefied by the heat exchange device 2 is sent to a liquid hydrogen storage tank 14 through a pipe 1 (exhaust path) 13. Liquid hydrogen is stored in the liquid hydrogen storage tank 14. The liquid hydrogen storage tank 14 is connected to the expansion valve 16 by a pipe 15. The expansion valve 16 is connected to the evaporator 18 by a pipe 17. As the evaporator, there are a bare tube coil type, a fin coil type, a vertical tube type evaporator, a Herringhorn evaporator, etc. for cooling gas, and a cell tube type, a cell coil type for liquid cooling. There are formulas. Liquid hydrogen evaporates in the evaporator 18 through the expansion valve 16. Evaporator 18 is piping 1
It is communicated with the compressor 3 by 9, and the evaporated hydrogen gas is sent to the compressor 3.

【0015】液体窒素貯槽1、液体水素貯槽14、熱交
換装置2、圧縮機3、間接冷媒材圧縮機23、蓄圧器
5、蓄圧器密封容器12、バルブ9、膨張弁16、自動
弁7、蒸発器18、冷却器21、配管4、6、8(供給
路)、配管10、11、13(排出路)、配管15、1
7、19、20、22、24は低温に耐えられる材料、
例えば、ステンレス、アルミニウム、銅などにより形成
されている。
Liquid nitrogen storage tank 1, liquid hydrogen storage tank 14, heat exchange device 2, compressor 3, indirect refrigerant material compressor 23, pressure accumulator 5, pressure accumulator sealed container 12, valve 9, expansion valve 16, automatic valve 7, Evaporator 18, cooler 21, pipes 4, 6, 8 (supply passage), pipes 10, 11, 13 (discharge passage), pipes 15, 1
7, 19, 20, 22, 24 are materials that can withstand low temperatures,
For example, it is formed of stainless steel, aluminum, copper or the like.

【0016】以上の構成において、以下、その動作につ
いて説明する。図2に示すように、液体窒素貯槽1は液
体窒素を−196℃で貯蔵することができ、この液体窒
素貯槽1の内部に平成7年公開特許第2764号に記載
された熱交換装置2が設置されている。この熱交換装置
2は、液体水素が貯蔵される液体水素貯槽14と配管
(排出路)13で、また、加圧された水素ガスが放出さ
れる自動弁7と配管(供給路)8で連通されている。
The operation of the above configuration will be described below. As shown in FIG. 2, the liquid nitrogen storage tank 1 can store liquid nitrogen at −196 ° C., and the heat exchange device 2 described in 1995 Patent Publication No. 2764 is provided inside the liquid nitrogen storage tank 1. is set up. This heat exchange device 2 communicates with a liquid hydrogen storage tank 14 for storing liquid hydrogen and a pipe (discharging passage) 13, and with an automatic valve 7 for discharging pressurized hydrogen gas and a pipe (supplying passage) 8. Has been done.

【0017】圧縮機3で圧縮された水素ガスは、蓄圧器
5で蓄圧される。蓄圧器5は蓄圧器密閉容器12で覆わ
れており、配管11を通じて送られてくる蒸発したばか
りの低温窒素ガスで冷却される。蓄圧器内において低温
窒素ガスで冷却された水素ガスは、圧縮機による加圧が
引き続き行われ、液体窒素の冷却温度(−196℃)で
冷却された熱交換装置2に供給されたときに液化する圧
力に達すると、自動弁7が開き、これにより配管6、配
管(供給路)8を通じて熱交換装置2に供給される。熱
交換装置2は液体窒素温度の−196℃で冷却されてい
るので、水素ガスは熱交換装置2により液化される。潜
熱を奪われた液体窒素は蒸発して低温の窒素ガスとな
り、配管11を通して蓄圧器5を冷却した後に、使用側
に送られるが、加温されているので使用側での窒素ガス
の使用条件が容易になる。液体窒素貯槽1には配管10
が連通され配管にはバルブ9が設けられている。液体窒
素貯槽1への冷媒(液体窒素)の供給はバルブ9を通し
て行われる。熱交換装置2で液化された液体水素は、配
管(排出路)13により液体水素貯槽14に送られる。
液体水素貯槽14で貯蔵された液体水素は、配管15に
より膨張弁16に送られる。液体水素は膨張弁16によ
って気化を起こす圧力まで減圧され、配管17を通して
蒸発器18まで送られる。減圧され、超低温になった液
体水素は蒸発器18で蒸発作用を起こして、周囲の熱を
吸収する。蒸発器18で加温された水素ガスは配管19
を通して圧縮機3に戻される。圧縮機3に戻された水素
ガスは低温ガスであるので、比容積が小さく圧縮機の負
荷を軽減する。
The hydrogen gas compressed by the compressor 3 is accumulated in the pressure accumulator 5. The pressure accumulator 5 is covered with a pressure accumulator airtight container 12, and is cooled by the just evaporated low temperature nitrogen gas sent through the pipe 11. The hydrogen gas cooled by the low temperature nitrogen gas in the pressure accumulator is liquefied when it is continuously pressurized by the compressor and supplied to the heat exchange device 2 cooled at the cooling temperature of liquid nitrogen (-196 ° C.). When the pressure reaches, the automatic valve 7 is opened, so that the heat exchange device 2 is supplied through the pipe 6 and the pipe (supply passage) 8. Since the heat exchange device 2 is cooled at the liquid nitrogen temperature of −196 ° C., the hydrogen gas is liquefied by the heat exchange device 2. The liquid nitrogen deprived of latent heat is evaporated into low-temperature nitrogen gas, which is sent to the use side after cooling the pressure accumulator 5 through the pipe 11, but since it is heated, the use condition of the nitrogen gas on the use side is used. Will be easier. The liquid nitrogen storage tank 1 has a pipe 10
And a valve 9 is provided in the pipe. The refrigerant (liquid nitrogen) is supplied to the liquid nitrogen storage tank 1 through the valve 9. The liquid hydrogen liquefied in the heat exchange device 2 is sent to the liquid hydrogen storage tank 14 through the pipe (discharging path) 13.
The liquid hydrogen stored in the liquid hydrogen storage tank 14 is sent to the expansion valve 16 through the pipe 15. The liquid hydrogen is depressurized by the expansion valve 16 to a pressure that causes vaporization, and is sent to the evaporator 18 through the pipe 17. The liquid hydrogen, which has been reduced in pressure and has reached an ultra-low temperature, causes an evaporation action in the evaporator 18 to absorb ambient heat. The hydrogen gas heated by the evaporator 18 is connected to the pipe 19
Through to the compressor 3. Since the hydrogen gas returned to the compressor 3 is a low temperature gas, it has a small specific volume and reduces the load on the compressor.

【0018】蒸発した水素ガスの温度は−250℃以下
の超低温であるので、蒸発器18において間接冷媒を通
して冷熱の吸収、伝達を行う。間接冷媒材としてはヘリ
ウムガス、水素ガス、アルゴンガス、窒素ガス、空気、
メタンガス等の沸点の低いガスが考えられる。蒸発器1
8内で冷却された間接冷媒材は、配管20によって冷凍
室25内の冷却器21まで送られる。冷却器21により
冷凍室25内部を冷却した後、加温された間接冷媒材は
間接冷媒材圧縮機23により配管24を通って蒸発器1
8まで戻され、再び冷却される。冷却された間接冷媒材
は配管20により冷却器21まで再び送られ、冷凍サイ
クルを繰り返す。
Since the temperature of the evaporated hydrogen gas is an ultra-low temperature of -250 ° C. or less, cold heat is absorbed and transferred through the indirect refrigerant in the evaporator 18. Indirect refrigerant materials include helium gas, hydrogen gas, argon gas, nitrogen gas, air,
A gas having a low boiling point such as methane gas may be considered. Evaporator 1
The indirect refrigerant material cooled in 8 is sent to the cooler 21 in the freezer compartment 25 by the pipe 20. After cooling the inside of the freezer compartment 25 by the cooler 21, the heated indirect refrigerant material passes through the pipe 24 by the indirect refrigerant material compressor 23 and the evaporator 1
It is returned to 8 and cooled again. The cooled indirect refrigerant material is sent again to the cooler 21 through the pipe 20, and the refrigeration cycle is repeated.

【0019】蒸発器18を出て圧縮機3に戻る水素ガス
はまだ超低温度の水素ガスであるので、気体の比容積が
小さく圧縮機の動力を減ずることができる。圧縮機3を
出た低温の水素ガスは液体窒素の−196℃まで冷却さ
れた熱交換装置2で、乱流膨張過程で冷却されるが、水
素ガスの熱伝導度は415.5(Cal/cm・S・
C)もあり冷熱の伝達が大きく液化率が大きい。また冷
媒としての水素ガスの液温は−250℃以下であり、取
り出す冷熱の範囲が大きく利用度が大きい。熱交換装置
を冷媒で満たし、水素の液化のために使用され蒸発する
分を補給すれば、装置の構成上支障なく液体水素が製造
できる。また蒸発する冷媒としての液化ガスは、潜熱を
奪われた状態で使用箇所に送られ消費できるので、経済
的な液体水素の製造ができる。
Since the hydrogen gas leaving the evaporator 18 and returning to the compressor 3 is still a very low temperature hydrogen gas, the specific volume of the gas is small and the power of the compressor can be reduced. The low-temperature hydrogen gas discharged from the compressor 3 is cooled in the turbulent expansion process by the heat exchange device 2 cooled to -196 ° C. of liquid nitrogen, but the thermal conductivity of the hydrogen gas is 415.5 (Cal / cm / S /
Also due to C), the transfer of cold heat is large and the liquefaction rate is large. Further, the liquid temperature of hydrogen gas as a refrigerant is −250 ° C. or lower, and the range of cold heat to be taken out is large and the utilization is large. By filling the heat exchange device with a refrigerant and replenishing the amount used for the liquefaction of hydrogen and evaporating, liquid hydrogen can be produced without a problem in the structure of the device. Further, the liquefied gas as the evaporating refrigerant can be sent to the place of use in the state where the latent heat is removed and consumed, so that the economical production of liquid hydrogen can be performed.

【0020】使用する動力は水素ガス圧縮機と、間接冷
媒材圧縮機の動力だけで済み、水素ガス冷却用の液体窒
素ガスは、窒素ガスとして再利用できるので経済的な冷
凍機であることができる。
The only power used is the hydrogen gas compressor and the power of the indirect refrigerant material compressor, and liquid nitrogen gas for cooling hydrogen gas can be reused as nitrogen gas, so it is an economical refrigerator. it can.

【0021】本発明の実施例は以上説明したものに限ら
れない。例えば、本発明を上記説明のような間接冷却方
式のみでなく蒸発器で直接冷却を行なう直接冷却方式に
適用してもよい。また、液体窒素貯槽から配管を液体水
素貯槽まで設けて、液体水素貯槽を密閉容器で覆ってこ
れを液体窒素貯槽からの低温窒素ガスで冷却するように
してもよい。
The embodiments of the present invention are not limited to those described above. For example, the present invention may be applied not only to the indirect cooling method as described above but also to a direct cooling method in which direct cooling is performed by an evaporator. It is also possible to provide a pipe from the liquid nitrogen storage tank to the liquid hydrogen storage tank, cover the liquid hydrogen storage tank with a closed container, and cool the liquid hydrogen storage tank with the low temperature nitrogen gas from the liquid nitrogen storage tank.

【0022】[0022]

【発明の効果】本発明は以上のように構成されているの
で、効率の良い冷凍機等の低温発生装置が経済的に提供
できるという優れた効果を奏する。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, it has an excellent effect that an efficient low temperature generator such as a refrigerator can be economically provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における熱交換装置を示す要
部の斜視図である。
FIG. 1 is a perspective view of essential parts showing a heat exchange device according to an embodiment of the present invention.

【図2】液体水素を冷媒として利用する冷凍機の概略系
統図である。
FIG. 2 is a schematic system diagram of a refrigerator that uses liquid hydrogen as a refrigerant.

【符号の説明】[Explanation of symbols]

1 液体窒素貯槽 2 熱交換装置 3 圧縮機 4 配管 5 蓄圧器 6 配管 7 自動弁 8 供給路 9 バルブ 10 配管 11 配管 12 蓄圧器密閉容器 13 排出路 14 液体水素貯槽 15 配管 16 膨張弁 17 配管 18 蒸発器 19 配管 20 配管 21 冷却器 22 配管 23 間接冷媒材圧縮機 24 配管 25 冷凍室 1 Liquid Nitrogen Storage Tank 2 Heat Exchanger 3 Compressor 4 Piping 5 Accumulator 6 Piping 7 Automatic Valve 8 Supply Path 9 Valve 10 Piping 11 Piping 12 Accumulator Closed Container 13 Discharge Path 14 Liquid Hydrogen Storage Tank 15 Piping 16 Expansion Valve 17 Piping 18 Evaporator 19 Piping 20 Piping 21 Cooler 22 Piping 23 Indirect refrigerant material compressor 24 Piping 25 Freezer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 伝熱媒体が供給、排出される熱交換容器
と、この熱交換容器内の伝熱媒体中に設けられ、複数並
列状態で配置され周方向に連通した周方向流路、各周方
向流路における流入口と流出口の位置が周方向にずれる
ように周方向流路に設けられた流入口および流出口、周
方向流路間の流入口と流出口とを連通した連通流路とか
らなる熱交換装置用の熱交換流路と、上記熱交換流路に
連通された流体の供給路および排出路とを備えた熱交換
装置と、圧縮機と、膨張弁と、蒸発器とからなる低温発
生装置。
1. A heat exchange container for supplying and discharging a heat transfer medium, and a plurality of circumferential flow passages provided in the heat transfer medium in the heat exchange container and arranged in parallel so as to communicate in the circumferential direction. Inlet and outlet provided in the circumferential flow passage such that the positions of the inlet and the outlet in the circumferential flow passage are displaced in the circumferential direction, and a communication flow in which the inlet and the outlet between the circumferential flow passages communicate with each other. A heat exchange flow path for a heat exchange device, and a heat exchange device having a fluid supply path and a discharge path communicating with the heat exchange flow path, a compressor, an expansion valve, and an evaporator. Low temperature generator consisting of.
【請求項2】 液体水素貯槽を設けた請求項1記載の低
温発生装置。
2. The low temperature generator according to claim 1, further comprising a liquid hydrogen storage tank.
【請求項3】 蓄圧器を接続した請求項1又は2記載の
低温発生装置。
3. The low temperature generator according to claim 1, wherein a pressure accumulator is connected.
【請求項4】 上記熱交換容器に接続され、液体水素冷
却に使用された伝熱媒体を排出する伝熱媒体排出用配管
と、該配管に接続された上記蓄圧器の冷却装置とを有す
る請求項1、2又は3記載の低温発生装置。
4. A heat transfer medium discharge pipe connected to the heat exchange container for discharging a heat transfer medium used for cooling liquid hydrogen, and a cooling device for the pressure accumulator connected to the pipe. Item 1. A low temperature generator according to item 1, 2 or 3.
【請求項5】 上記熱交換容器に接続され、液体水素冷
却に使用された伝熱媒体を排出する伝熱媒体排出用配管
と、該配管に接続された上記液体水素貯槽の冷却装置と
を有する請求項1、2、3又は4記載の低温発生装置。
5. A heat transfer medium discharge pipe connected to the heat exchange container for discharging a heat transfer medium used for cooling liquid hydrogen, and a cooling device for the liquid hydrogen storage tank connected to the pipe. The low temperature generator according to claim 1, 2, 3 or 4.
JP11812896A 1996-04-05 1996-04-05 Low temperature generator Pending JPH09273817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11812896A JPH09273817A (en) 1996-04-05 1996-04-05 Low temperature generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11812896A JPH09273817A (en) 1996-04-05 1996-04-05 Low temperature generator

Publications (1)

Publication Number Publication Date
JPH09273817A true JPH09273817A (en) 1997-10-21

Family

ID=14728742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11812896A Pending JPH09273817A (en) 1996-04-05 1996-04-05 Low temperature generator

Country Status (1)

Country Link
JP (1) JPH09273817A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103644450A (en) * 2013-11-20 2014-03-19 北京宇航系统工程研究所 High pressure heat exchange helium gas storage tank at liquid hydrogen temperature
CN111620304A (en) * 2020-06-12 2020-09-04 云南省能源研究院有限公司 Hydrogen preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103644450A (en) * 2013-11-20 2014-03-19 北京宇航系统工程研究所 High pressure heat exchange helium gas storage tank at liquid hydrogen temperature
CN111620304A (en) * 2020-06-12 2020-09-04 云南省能源研究院有限公司 Hydrogen preparation method

Similar Documents

Publication Publication Date Title
CN100467976C (en) Cryogenic vessel system with pulse tube refrigeration
US7121116B2 (en) Method and device for producing oxygen
CN101273239B (en) Thermal converter for condensation and refrigeration system using the same
CN1321298C (en) Refrigerating machine
US20220128272A1 (en) Heating and refrigeration system
CN213454351U (en) Reverse-flow closed-cycle cryogenic cooling system
CN105352213A (en) Steam and air cascade refrigerating system
CN209279430U (en) A kind of refrigeration equipment producing liquefied natural gas
JP2005030622A (en) Ice cream freezer
JPH09273817A (en) Low temperature generator
CN1510329A (en) Gasifier of low-temperature liquid
CN214665330U (en) With CO2Refrigerating system as refrigerant and secondary refrigerant system thereof
US6668581B1 (en) Cryogenic system for providing industrial gas to a use point
CN208567185U (en) A kind of indirect cooling system experimental bench of band defrosting function
CN211823241U (en) Cold source carbon dioxide cascade refrigeration system is concentrated to refrigerator-freezer
JP2000146372A (en) Refrigerant recovering apparatus
CN106352654B (en) A kind of vaporization cold amount of liquid nitrogen recyclable device
CN102721223A (en) Novel refrigerating machine
CN209085139U (en) A kind of efficient liquefied natural gas vaporization phase change cold-storage device
JP2000302430A (en) Method and device for producing hydrate
CN108709331A (en) A kind of indirect cooling system experimental bench of band defrosting function
JP2980624B2 (en) Cooling method using heat storage type liquid receiver and liquid pump, and cooling and heating methods
JPH02306078A (en) Portable refrigerating storage using dry ice and portable refrigerating storage having carbonated drink producer
T V DESICCANT ASSISTED DEHUMIDIFICATION AND COOLING SYSTEM
CN102853589A (en) Novel refrigerating machine and circulation thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041026