JPH09273030A - Pitch fiber - Google Patents

Pitch fiber

Info

Publication number
JPH09273030A
JPH09273030A JP8486396A JP8486396A JPH09273030A JP H09273030 A JPH09273030 A JP H09273030A JP 8486396 A JP8486396 A JP 8486396A JP 8486396 A JP8486396 A JP 8486396A JP H09273030 A JPH09273030 A JP H09273030A
Authority
JP
Japan
Prior art keywords
pitch
optically anisotropic
fiber
content
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8486396A
Other languages
Japanese (ja)
Inventor
Osamu Kato
攻 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP8486396A priority Critical patent/JPH09273030A/en
Publication of JPH09273030A publication Critical patent/JPH09273030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a pitch fiber capable of producing a pitch-based fiber excellent in tensile strength, modulus of elasticity, compressive strength and rigidity by conjugately spinning plural pitches having different contents of an optically anisotropic phase. SOLUTION: This pitch fiber is obtained, e.g. by conjugately spinning (A) a pitch obtained by treating heavy oil at 390-450 deg.C and 0.5-3MPa pressure for 1-5 hours and having 80-100% content of an optically isotropic phase as a core part with (B) a pitch obtained by hydrogenating a carbonous pitch in the presence of a hydrogenation catalyst and having 5-40% content of the optically isotropic phase as a sheath part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は新規な構造を有する
ピッチ繊維に関する。
TECHNICAL FIELD The present invention relates to a pitch fiber having a novel structure.

【0002】[0002]

【従来の技術】ピッチを加熱処理して光学的異方性相を
形成させ、これを溶融紡糸、不融化、炭化、さらには黒
鉛化処理を行うことにより高強度、高弾性の炭素繊維を
製造する方法は知られている。しかし、ピッチ系炭素繊
維を用いた複合材料(CFRP)はポリアクリロニトリ
ル(PAN)系炭素繊維を用いたCFRPに比べ、圧縮
物性および剪断物性が劣るという問題点がある。ところ
がPAN系炭素繊維といえども弾性率が高くなると圧縮
物性が低下する傾向があり炭素繊維の剛性を利用した薄
物材料としての特徴を活かし切れていない。
2. Description of the Related Art Pitch is heat-treated to form an optically anisotropic phase, which is melt-spun, infusibilized, carbonized, and graphitized to produce high-strength, high-elasticity carbon fiber. How to do it is known. However, a composite material (CFRP) using pitch-based carbon fibers has a problem that compression properties and shear properties are inferior to CFRP using polyacrylonitrile (PAN) -based carbon fibers. However, even PAN-based carbon fibers tend to deteriorate in compressive physical properties as the elastic modulus increases, and the characteristics of thin materials utilizing the rigidity of carbon fibers cannot be fully utilized.

【0003】[0003]

【発明が解決しようとする課題】炭素繊維の剛性を活か
しつつ、CFRPの圧縮物性を改善させるためには炭素
繊維そのものの圧縮物性を向上させる必要がある。本発
明者らはピッチ系炭素繊維の圧縮物性を向上させるべく
鋭意検討を重ねた結果、引張強度、弾性率に優れるばか
りでなく、高圧縮強度のピッチ系炭素繊維を製造するこ
との可能なピッチ繊維を見出し本発明に到達した。
In order to improve the compressed physical properties of CFRP while utilizing the rigidity of carbon fibers, it is necessary to improve the compressed physical properties of carbon fibers themselves. As a result of intensive studies to improve the compressed physical properties of the pitch-based carbon fibers, the present inventors have found that not only excellent tensile strength and elastic modulus but also pitch capable of producing pitch-based carbon fibers having high compression strength The inventors have found a fiber and arrived at the present invention.

【0004】[0004]

【課題を解決するための手段】即ち、本発明は光学的異
方性相含有量の異なる2以上のピッチを複合紡糸してな
るピッチ繊維に関する。以下に本発明を詳細に説明す
る。
That is, the present invention relates to a pitch fiber obtained by composite spinning two or more pitches having different optically anisotropic phase contents. Hereinafter, the present invention will be described in detail.

【0005】[0005]

【発明の実施の形態】本発明における複合紡糸は、好ま
しくはノズルの中心および外側からそれぞれ光学的異方
性相含有量の異なるピッチを紡出してフィラメントの内
部断面構造が光学的異方性相含有量の異なる2以上のピ
ッチ部分から構成されるように紡糸するものである。該
ピッチ繊維は好ましくは芯(以下これをコア部という)
と、コアの外側部分(以下これをシース部という)から
なる2層構造を有しており、コア部とシース部とでは光
学的異方性相含有量が異なっている。本発明における光
学的異方性相含有のピッチ(以下光学的異方性ピッチと
いう)は既に知られているように炭素質ピッチを適宜の
処理に供することにより得ることができる。本発明に用
いる炭素質ピッチは特に制限はないが、石油系ピッチあ
るいは石炭系ピッチが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the composite spinning according to the present invention, preferably, pitches having different optically anisotropic phase contents are spun out from the center and the outside of the nozzle so that the internal cross-sectional structure of the filament has an optically anisotropic phase. The spinning is performed so as to be composed of two or more pitch portions having different contents. The pitch fiber is preferably a core (hereinafter referred to as a core portion)
And a two-layer structure composed of an outer portion of the core (hereinafter referred to as a sheath portion), and the content of the optically anisotropic phase is different between the core portion and the sheath portion. The pitch containing the optically anisotropic phase in the present invention (hereinafter referred to as the optically anisotropic pitch) can be obtained by subjecting the carbonaceous pitch to an appropriate treatment as already known. The carbonaceous pitch used in the present invention is not particularly limited, but petroleum pitch or coal pitch is preferable.

【0006】該炭素質ピッチとしては、例えば減圧軽油
等の石油類を流動接触分解した際に得られる沸点200
〜600℃、好ましくは300〜550℃の重質油等が
ある。また、該炭素質ピッチとしては、該重質油を、温
度370〜480℃、好ましくは390〜450℃、圧
力0.3〜5MPa、好ましくは0.5〜3MPaの条
件下にて30分〜10時間、好ましくは1〜5時間加熱
処理を施したピッチを用いることができる。また前記の
ような熱処理を施したピッチを引き続き温度250〜4
50℃、好ましくは300〜400℃、圧力0.1〜1
35hPa、好ましくは1〜70hPa、膜厚0.1〜
5mmの条件下にて薄膜蒸留を行って得ることもでき
る。以上のような工程によって軟化点が通常40〜18
0℃の炭素質ピッチを得ることができる。
The carbonaceous pitch has a boiling point of 200 when obtained by fluid catalytic cracking of petroleum such as vacuum gas oil.
There are heavy oils at ˜600 ° C., preferably 300˜550 ° C. In addition, as the carbonaceous pitch, the heavy oil is used under the conditions of a temperature of 370 to 480 ° C., preferably 390 to 450 ° C., a pressure of 0.3 to 5 MPa, and preferably 0.5 to 3 MPa for 30 minutes or more. A pitch subjected to heat treatment for 10 hours, preferably 1 to 5 hours can be used. The pitch subjected to the heat treatment as described above is continuously heated to a temperature of 250 to 4
50 ° C, preferably 300-400 ° C, pressure 0.1-1
35 hPa, preferably 1 to 70 hPa, film thickness 0.1
It can also be obtained by performing thin film distillation under the condition of 5 mm. The softening point is usually 40 to 18 by the above steps.
A carbonaceous pitch of 0 ° C. can be obtained.

【0007】本発明においてコア部を構成するピッチは
炭素繊維にしたときにシース部よりも高弾性率を発揮す
るようなピッチであることが好ましく、光学的異方性相
含有量がシース部よりも多いピッチであることがより好
ましい。特に、前記炭素質ピッチを加熱処理して光学的
異方性相含有量を60〜100%としたピッチをコア部
に用いることが好ましい。コア部の紡糸に用いるピッチ
は、例えば前記炭素質ピッチを常圧下で、窒素、スチー
ム等の不活性ガスを通気しながらあるいは減圧下で、温
度340〜450℃、好ましくは360〜410℃で、
通常1〜50時間、好ましくは3〜30時間かけて加熱
処理を施すことにより得ることができる。コア部用の光
学的異方性ピッチは光学的異方性相含有量が通常60〜
100%、特に80〜100%であることが好ましい。
コア部用の光学的異方性ピッチの軟化点は通常200〜
350℃、特に240〜300℃であることが好まし
い。
In the present invention, the pitch forming the core portion is preferably such a pitch that when carbon fiber is used, it exhibits a higher elastic modulus than the sheath portion, and the content of the optically anisotropic phase is higher than that of the sheath portion. It is more preferable that the pitch is as high as possible. Particularly, it is preferable to use a pitch having a content of the optically anisotropic phase of 60 to 100% by heating the carbonaceous pitch in the core portion. The pitch used for the spinning of the core part is, for example, under normal pressure of the carbonaceous pitch, while passing an inert gas such as nitrogen or steam or under reduced pressure, at a temperature of 340 to 450 ° C., preferably 360 to 410 ° C.,
It can be obtained by heating for 1 to 50 hours, preferably 3 to 30 hours. The optically anisotropic pitch for the core portion usually has an optically anisotropic phase content of 60 to
It is preferably 100%, particularly preferably 80 to 100%.
The softening point of the optically anisotropic pitch for the core part is usually 200 to
It is preferably 350 ° C, particularly 240 to 300 ° C.

【0008】本発明においてシース部を構成するピッチ
は炭素繊維にしたときにコア部よりも高圧縮強度を発揮
するようなピッチであることが好ましく、光学的異方性
相含有量がコア部よりも少ないピッチであることがより
好ましい。シース部の紡糸に用いるピッチとしては光学
的異方性ピッチを用いることができるが、炭化時の収縮
率がコア部とほぼ同等であることがよいことから、光学
的異方性相を5〜60%未満、特に5〜40%含有する
ピッチを用いることが好ましい。また、シース部に用い
るピッチはコア部に用いるピッチと光学的異方性相の含
有量の差が、通常10%以上、好ましくは40%以上、
より好ましくは50%以上であるピッチを用いることが
望ましい。
In the present invention, the pitch forming the sheath portion is preferably such a pitch that when carbon fiber is used, it exhibits higher compressive strength than the core portion, and the content of the optically anisotropic phase is higher than that of the core portion. It is more preferable that the pitch is also small. An optically anisotropic pitch can be used as the pitch used for spinning the sheath portion, but it is preferable that the shrinkage rate during carbonization is almost the same as that of the core portion, so that the optically anisotropic phase is 5 to 5%. It is preferable to use a pitch containing less than 60%, particularly 5 to 40%. Further, the pitch used for the sheath portion has a difference between the pitch used for the core portion and the content of the optically anisotropic phase of usually 10% or more, preferably 40% or more,
More preferably, it is desirable to use a pitch of 50% or more.

【0009】このようなピッチは例えば炭素質ピッチを
水素化触媒の存在下に水素化を行い、該水素化ピッチを
常圧もしくは減圧下に熱処理して光学的異方性ピッチと
することによって得ることができる。あるいはさらにこ
の光学的異方性ピッチを溶媒抽出などに供してその光学
的異方性相を調整することもできる。該水素化処理に用
いる水素化触媒としては、ゼオライト、シリカ、アルミ
ナ、シリカゲル等の無機固体を担体として、クロム、モ
リブデンなどの周期律表第VIB族の金属あるいはコバル
ト、ニッケル、パラジュウム等の周期律表第VIII族の金
属を金属の形でまたは酸化物の形で前記担体に担持させ
たものを使用することができる。水素化条件は使用する
触媒の種類により異なるが、通常、温度が150〜45
0℃、圧力が2〜3MPa、液空間速度(LHSV)が
0.15〜3.0である。水素化によりピッチ分子中の
芳香族炭化水素の芳香族核が部分的に核水素化される。
数平均分子量に基づきピッチ1モル当たり通常2モル以
上、好ましくは2〜18モルの水素を付加させることが
望ましい。
Such a pitch can be obtained, for example, by hydrogenating carbonaceous pitch in the presence of a hydrogenation catalyst and heat-treating the hydrogenated pitch under atmospheric pressure or reduced pressure to obtain an optically anisotropic pitch. be able to. Alternatively, the optically anisotropic phase can be adjusted by subjecting the optically anisotropic pitch to solvent extraction or the like. As the hydrogenation catalyst used in the hydrotreatment, an inorganic solid such as zeolite, silica, alumina, silica gel or the like is used as a carrier, and metals such as chromium and molybdenum of Group VIB of the periodic table or cobalt, nickel and palladium are used. It is possible to use a metal of Group VIII in the table in the form of metal or in the form of oxide supported on the carrier. The hydrogenation conditions vary depending on the type of catalyst used, but usually the temperature is 150-45.
The temperature is 0 ° C., the pressure is 2 to 3 MPa, and the liquid hourly space velocity (LHSV) is 0.15 to 3.0. The hydrogenation partially nuclear hydrogenates the aromatic nucleus of the aromatic hydrocarbon in the pitch molecule.
It is desirable to add 2 mol or more, preferably 2 to 18 mol of hydrogen per mol of pitch based on the number average molecular weight.

【0010】前記のように水素化されたピッチは、次に
常圧もしくは減圧下に熱処理を施して光学的異方性相含
有量が5〜100%、好ましくは5〜60%のピッチと
することができる。該熱処理は、通常340〜500
℃、好ましくは370〜450℃で1分〜30時間熱処
理することによって行われる。熱処理に際して、窒素等
の不活性ガスを通気しながら行うことが好ましい。該不
活性ガスの通気量は0.7〜5.0scfh/lbピッ
チが好ましい。さらに好適なシース部用のピッチを得る
方法としては、前記の如く得られた光学的異方性相含有
量が5〜100%のピッチを溶媒抽出する方法がある。
該溶媒抽出では、 25℃における溶解度パラメータ
が7.4〜9.0、好ましくは7.6〜8.4の有機溶
剤に不溶なピッチでかつ、 25℃における溶解度パ
ラメータが9.2〜11.0、好ましくは10.0〜1
0.8の有機溶剤に可溶なピッチを採取することが好ま
しい。
The hydrogenated pitch as described above is then subjected to heat treatment under normal pressure or reduced pressure to give a pitch having an optically anisotropic phase content of 5 to 100%, preferably 5 to 60%. be able to. The heat treatment is usually 340 to 500
The heat treatment is carried out at a temperature of 370C, preferably 370 to 450C for 1 minute to 30 hours. At the time of heat treatment, it is preferable to perform the heat treatment while aerating an inert gas such as nitrogen. The flow rate of the inert gas is preferably 0.7 to 5.0 scfh / lb pitch. As a more suitable method for obtaining the pitch for the sheath portion, there is a method in which the pitch having an optically anisotropic phase content of 5 to 100% obtained as described above is extracted with a solvent.
In the solvent extraction, the solubility parameter at 25 ° C. is 7.4 to 9.0, preferably 7.6 to 8.4, which is insoluble in an organic solvent, and the solubility parameter at 25 ° C. is 9.2 to 11. 0, preferably 10.0-1
It is preferable to collect pitch that is soluble in an organic solvent of 0.8.

【0011】溶剤抽出の順序は特に限定されないが、前
記光学的異方性ピッチを7.4〜9.0の溶解度パラメ
ータを有する有機溶剤で抽出処理して不溶分を採取し、
引き続き、該不溶分を9.2〜11.0の溶解度パラメ
ータを有する有機溶剤で抽出処理して可溶分を採取する
ことにより行うことが好ましい。有機溶剤による抽出処
理は通常常圧あるいは加圧下にて、例えば15〜230
℃の常温ないし加熱下で行うことができる。またピッチ
と有機溶剤との混合割合は、圧力、温度等の条件により
任意に変え得るものであるが、通常ピッチ1重量部に対
し有機溶剤10〜150重量部が用いられる。
The order of solvent extraction is not particularly limited, but the optically anisotropic pitch is subjected to extraction treatment with an organic solvent having a solubility parameter of 7.4 to 9.0 to collect insolubles,
Subsequently, it is preferable to perform the extraction treatment of the insoluble matter with an organic solvent having a solubility parameter of 9.2 to 11.0 to collect the soluble matter. The extraction treatment with an organic solvent is usually at normal pressure or under pressure, for example, 15 to 230.
It can be carried out at room temperature or under heating. The mixing ratio of the pitch and the organic solvent can be arbitrarily changed depending on the conditions such as pressure and temperature, but 10 to 150 parts by weight of the organic solvent is usually used for 1 part by weight of the pitch.

【0012】上記において、7.4〜9.0の溶解度パ
ラメータを有する有機溶剤とは、有機溶剤それ単独で該
範囲の溶解度パラメータを有するものとはもちろん、2
種以上の溶剤を混合して溶解度パラメータが7.4〜
9.0の範囲となるように調整したものも使用すること
ができる。2種以上の有機溶剤を混合して用いる場合に
は、それぞれ単独での溶解度パラメータが7.4〜9.
0の範囲外であっても、混合することによって7.4〜
9.0の範囲内に調整することによって該溶剤として使
用することができる。9.2〜11.0の溶解度パラメ
ータを有する有機溶剤についても同様に1種あるいは2
種以上の溶剤を混合して使用することができる。単独で
7.4〜9.0の溶解度パラメータを有する有機溶剤の
具体例(カッコ内は溶解度パラメータを示す)として
は、四塩化炭素(8.6)、1,1−ジクロルエタン
(8.9)、1,2−ジクロロプロパン(9.0)、メ
チルエチルエーテル(7.6)、t−ブチルクロライド
(7.5)、ジエチルエーテル(7.4)、イソブチル
アミン(8.5)、シクロヘキサン(8.2)、オクタ
ン(7.6)、キシレン(8.8)、クメン(8.8)
が挙げられる。
In the above description, the organic solvent having the solubility parameter of 7.4 to 9.0 is, of course, the organic solvent having the solubility parameter within the range as described above.
Solubility parameter of 7.4-
Those adjusted to have a range of 9.0 can also be used. When two or more organic solvents are mixed and used, each has a solubility parameter of 7.4 to 9.
Even if it is out of the range of 0, the mixing of 7.4 to
The solvent can be used by adjusting it within the range of 9.0. Similarly, for organic solvents having a solubility parameter of 9.2 to 11.0, one type or two types are used.
A mixture of two or more solvents can be used. Specific examples of the organic solvent having a solubility parameter of 7.4 to 9.0 alone (the solubility parameter is shown in parentheses) include carbon tetrachloride (8.6) and 1,1-dichloroethane (8.9). , 1,2-dichloropropane (9.0), methyl ethyl ether (7.6), t-butyl chloride (7.5), diethyl ether (7.4), isobutylamine (8.5), cyclohexane ( 8.2), octane (7.6), xylene (8.8), cumene (8.8)
Is mentioned.

【0013】単独で9.2〜11.0の溶解度パラメー
タを有する有機溶剤の具体例としては、二流化炭素(1
0.0)、クロロホルム(9.3)、ジクロロメタン
(9.7)、アセトン(10.0)、メチルエチルケト
ン(9.3)、ピリジン(10.6)、ジクロロベンゼ
ン(10.0)、クロロベンゼン(9.5)、ベンゼン
(9.2)、ナフタレン(10.6)、ニトロベンゼン
(10.2)が挙げられる。なお、n−ヘキサン(7.
3)、キノリン(11.8)など2種以上の有機溶剤を
混合することによって所定の溶解度パラメータを有する
ものとする場合は任意の組合せが可能である。なお、混
合溶剤の溶解度パラメータは混合前のそれぞれの溶解度
パラメータおよびそれぞれのvol%に基づく比例計算
で求めることができる。
Specific examples of the organic solvent having a solubility parameter of 9.2 to 11.0 alone include carbon dioxide (1
0.0), chloroform (9.3), dichloromethane (9.7), acetone (10.0), methyl ethyl ketone (9.3), pyridine (10.6), dichlorobenzene (10.0), chlorobenzene ( 9.5), benzene (9.2), naphthalene (10.6) and nitrobenzene (10.2). In addition, n-hexane (7.
3), quinoline (11.8), or any combination of two or more kinds of organic solvents may be used to obtain a predetermined solubility parameter. The solubility parameter of the mixed solvent can be obtained by proportional calculation based on each solubility parameter before mixing and each vol%.

【0014】かくして調整されたそれぞれのピッチを用
い、例えば図1に示すような二重構造を有する紡糸装置
を用いて溶融紡糸を行うことができる。この場合、溶融
槽Aに光学的異方性相含有量の多いピッチ、好ましくは
同含有量が60〜100%のピッチを、溶融槽Bに光学
的異方性相含有量の少ないピッチ、好ましくは同含有量
が5〜60%未満のピッチを入れて紡糸する。たとえば
それぞれのピッチを振り込み、外部ヒータでピッチを溶
融させ、窒素ガスで押し出し、ボビンに巻き取ることが
できる。
Melt spinning can be carried out using the pitches thus adjusted and, for example, a spinning apparatus having a double structure as shown in FIG. In this case, a pitch having a large content of optically anisotropic phase in the melting tank A, preferably a pitch having the same content of 60 to 100%, and a pitch having a small content of optically anisotropic phase in the melting tank B, preferably Is spun with a pitch having the same content of 5 to less than 60%. For example, each pitch can be fed, melted with an external heater, extruded with nitrogen gas, and wound on a bobbin.

【0015】本発明においてはコア部のピッチは光学的
異方性相含有量について単一成分からなっていても2以
上の成分からなっていてもよい。また、シース部のピッ
チも光学的異方性相含有量について単一成分からなって
いても2以上の成分からなっていてもよい。シース部は
コア部の断面の外側に有ればよい。コア部の外周を完全
に被覆していることが好ましいが、部分的に被覆してい
てもよい。コア部とシース部の境界部分については光学
的異方性相含有量が連続的に変化していても非連続的に
変化していてもよい。
In the present invention, the pitch of the core portion may be composed of a single component or two or more components with respect to the content of the optically anisotropic phase. Also, the pitch of the sheath portion may be composed of a single component or two or more components with respect to the optically anisotropic phase content. The sheath portion may be outside the cross section of the core portion. It is preferable that the outer periphery of the core portion is completely covered, but it may be partially covered. At the boundary portion between the core portion and the sheath portion, the content of the optically anisotropic phase may change continuously or discontinuously.

【0016】本発明のピッチ繊維のフィラメント内部の
構造はコア部とシース部の複合構造を有しているが、コ
ア/シース面積比は通常0.1〜10、好ましくは0.
1〜3であることが望ましい。なお、該コア/シース面
積比は繊維軸に垂直なピッチ繊維断面の面積比である。
該面積比の求め方は、ピッチ繊維を炭化して炭素繊維と
した後、炭素繊維断面のSEM観察により行うことがで
きる。該SEM観察においてコア部は通常ラジアル構
造、シース部は通常ランダム構造を有している。該コア
部は溶融槽Aのピッチ、該シース部は溶融槽Bのピッチ
により形成することができる。前記のような装置で複合
紡糸する際のピッチ繊維のコア/シース面積比は例えば
それぞれを構成するピッチの押出圧力によって制御する
ことができる。
The structure inside the filament of the pitch fiber of the present invention has a composite structure of a core portion and a sheath portion, and the core / sheath area ratio is usually 0.1 to 10, preferably 0.
It is desirable that it is 1-3. The core / sheath area ratio is the area ratio of the pitch fiber cross section perpendicular to the fiber axis.
The area ratio can be determined by carbonizing pitch fibers to form carbon fibers and then observing the cross section of the carbon fibers by SEM. In the SEM observation, the core portion usually has a radial structure and the sheath portion usually has a random structure. The core portion can be formed by the pitch of the melting tank A, and the sheath portion can be formed by the pitch of the melting tank B. The core / sheath area ratio of the pitch fibers during the composite spinning with the above-mentioned device can be controlled by, for example, the extrusion pressure of the pitches forming the respective pitch fibers.

【0017】かくして溶融紡糸して得られたピッチ繊維
は、次に酸化性ガス雰囲気下での不融化処理に供され
る。酸化性ガスとしては、通常、酸素、オゾン、空気、
窒素酸化物、ハロゲン、亜硫酸ガス等の酸化性ガスの1
種もしくは2種以上が用いられる。この不融化処理は、
被処理体であるピッチ繊維が軟化変形しない温度条件下
で実施される。通常20〜360℃、好ましくは100
〜320℃で不融化される。また処理時間は通常5分〜
10時間である。不融化処理されたピッチ繊維は、次に
不活性ガス雰囲気下で炭化処理して二重構造を有する炭
素繊維とすることができる。該炭化処理は通常500〜
3500℃、好ましくは800〜3000℃で行われ
る。一般には炭化に要する時間は0.5分〜10時間で
ある。
The pitch fiber thus obtained by melt spinning is then subjected to an infusibilizing treatment in an oxidizing gas atmosphere. The oxidizing gas is usually oxygen, ozone, air,
One of oxidizing gases such as nitrogen oxides, halogens, and sulfurous acid gas
Species or two or more species are used. This infusibilization process is
It is carried out under a temperature condition in which the pitch fiber which is the object to be processed is not softened and deformed. Usually 20 to 360 ° C., preferably 100
Infusibilized at ~ 320 ° C. The processing time is usually 5 minutes
10 hours. The infusibilized pitch fiber can then be carbonized in an inert gas atmosphere to form a carbon fiber having a double structure. The carbonization is usually 500-
It is carried out at 3500 ° C., preferably 800 to 3000 ° C. Generally, the time required for carbonization is 0.5 minutes to 10 hours.

【0018】以上のようにして得られる炭素繊維は通常
0.6GPa以上、好ましくは0.7GPa以上、5G
Pa以下の圧縮強度を有している。また弾性率は通常3
00GPa以上、好ましくは400GPa以上、100
0GPa以下、引張強度は通常3GPa以上、好ましく
は3.5GPa以上、10GPa以下とすることができ
る。尚、本明細書中で用いられる光学的異方性相含有量
(%)は、ピッチを樹脂に埋め込み研磨後、偏光顕微鏡
で直交ニコル下で観察、写真撮影を行い、光学異方性の
部分の面積割合を測定して、紡糸用ピッチの光学的異方
性相含有量とした。炭素繊維の圧縮強度は単繊維を反動
圧縮法(S.R.ALLEN J.Mater.Sc
i.22(1987)853)により測定したものであ
る。
The carbon fiber obtained as described above is usually 0.6 GPa or more, preferably 0.7 GPa or more, 5 G or more.
It has a compressive strength of Pa or less. The elastic modulus is usually 3
00 GPa or more, preferably 400 GPa or more, 100
The tensile strength can be 0 GPa or less, and the tensile strength is usually 3 GPa or more, preferably 3.5 GPa or more and 10 GPa or less. The optically anisotropic phase content (%) used in the present specification is a portion of the optical anisotropy obtained by observing under a crossed Nicols with a polarizing microscope and photographing after embedding a pitch in a resin and polishing. The area ratio was measured to determine the optically anisotropic phase content of the spinning pitch. The compressive strength of carbon fiber is determined by the reaction compression method (SR ALLEN J. Mater. Sc) of single fiber.
i. 22 (1987) 853).

【0019】溶解度パラメータは、以下の式で表すこと
ができる。 δ={ΔHvRT/V}1/2 ここでδは溶解度パラメータ、Hvは材料の気化熱、R
はモルガス定数、Tはケルビン温度、Vはモル容量であ
る。これに関してはJ.Hildebrandおよび
R.Scottの「非電解質の溶解性(Solugil
ity of Non−Electrolyes)」、
第3版、ラインホルド出版社、ニューヨーク、1949
年およびPrentice Hallの「レギュラー溶
液(Regular Solutions)」、New
Jersey、1962年を参照されたい。ピッチの
平均分子量は数平均分子量であり、ピッチのベンゼン可
溶分についてはそのままオスモメーターで数平均分子量
を測定し、ピッチのベンゼン不溶分については触媒量の
リチウムとエチレンジアミンにより水素化した後、オス
モメーターにより数平均分子量を測定した。
The solubility parameter can be expressed by the following equation. δ = {ΔHvRT / V} 1/2 where δ is the solubility parameter, Hv is the heat of vaporization of the material, R
Is the molar gas constant, T is the Kelvin temperature, and V is the molar volume. Regarding this, J. Hildebrand and R.L. Scott's "Solubility of Non-Electrolytes (Sorugil
it of Non-Electrolyes) ",
Third Edition, Reinhold Publishing Company, New York, 1949.
Year and Prentice Hall "Regular Solutions", New
See Jersey, 1962. The average molecular weight of the pitch is the number average molecular weight.For the benzene soluble content of the pitch, the number average molecular weight is measured as it is with an osmometer, and for the benzene insoluble content of the pitch, after hydrogenation with a catalytic amount of lithium and ethylenediamine, The number average molecular weight was measured with a meter.

【0020】[0020]

【発明の効果】実施例から明らかなように本発明の二重
構造を有する炭素繊維は引張強度および引張弾性率に優
れているのみならず、圧縮強度が高いという特徴を有し
ている。
As is apparent from the examples, the carbon fiber having a double structure of the present invention is not only excellent in tensile strength and tensile elastic modulus, but also has a characteristic of high compressive strength.

【0021】[0021]

【実施例】【Example】

(実施例1)減圧軽油をゼオライト触媒の存在下に48
5℃、0.2MPaにて流動接触分解した際に副生した
沸点300℃以上の重質油を温度405℃、圧力1.3
MPaで3時間加熱処理を施した。この熱処理油から固
形不溶分を遠心分離し、該不溶分含量を5ppm以下と
した。次に、固形不溶分を分離除去した熱処理油を温度
270℃、圧力6.7hPa、膜厚2mmで薄膜蒸留を
行い軟化点100℃のピッチ(1)を得た。このピッチ
(1)を不活性ガス下に390℃で14時間加熱処理を
施し、光学的異方性相90%のピッチ(2)を得た。ピ
ッチ(2)の軟化点は265℃であった。次に、ピッチ
(1)をニッケル−モリブデン担持触媒の固定床に温度
320℃、水素圧力15MPa、LHSV0.25で連
続的に処理した後、触媒残渣、不溶性固形を0.5μm
のフィルターで加圧濾過してピッチ1分子当たり8モル
の水素が付加した軟化点40℃の水添ピッチ(3)を得
た。
(Example 1) Vacuum light oil 48 was added in the presence of a zeolite catalyst.
Heavy oil having a boiling point of 300 ° C. or higher, which is a by-product of fluid catalytic cracking at 5 ° C. and 0.2 MPa, has a temperature of 405 ° C. and a pressure of 1.3.
Heat treatment was performed at MPa for 3 hours. The solid insoluble matter was centrifuged from the heat-treated oil to adjust the content of the insoluble matter to 5 ppm or less. Next, the heat-treated oil from which solid insoluble matter was separated and removed was subjected to thin film distillation at a temperature of 270 ° C., a pressure of 6.7 hPa, and a film thickness of 2 mm to obtain pitch (1) having a softening point of 100 ° C. This pitch (1) was heat-treated under an inert gas at 390 ° C. for 14 hours to obtain a pitch (2) having an optically anisotropic phase of 90%. The softening point of pitch (2) was 265 degreeC. Next, the pitch (1) was continuously treated on a fixed bed of a nickel-molybdenum-supported catalyst at a temperature of 320 ° C., hydrogen pressure of 15 MPa and LHSV of 0.25, and then the catalyst residue and insoluble solid were 0.5 μm.
By pressure filtration with a filter of No. 2, hydrogenated pitch (3) having a softening point of 40 ° C., in which 8 mol of hydrogen was added per pitch molecule, was obtained.

【0022】この水添ピッチ(3)gに対し、窒素を6
00ml/分で通気しながら攪拌し、400℃で3.5
時間熱処理を行って軟化点205℃、光学的異方性相含
有量45%の光学的異方性ピッチを得た。この光学的異
方性ピッチを微粉砕した後、該ピッチ3gに対しn−ヘ
キサン(40vol%)−ベンゼン(60vol%)混
合溶剤(溶解度パラメータ:8.4)100mlの割合
にて、60℃で抽出処理を行い、n−ヘキサン−ベンゼ
ン混合溶剤不溶分を採取した。次に、該n−ヘキサン−
ベンゼン混合溶剤不溶分3gに対しベンゼン(75vo
l%)−キノリン(25vol%)混合溶剤(溶解度パ
ラメータ:9.9)100mlの割合にて、80℃で抽
出処理を行い、ベンゼン−キノリン混合溶剤可溶分を採
取した。該ベンゼン−キノリン混合溶剤可溶分から溶剤
を除去して軟化点240℃、光学的異方性相含有量35
%のピッチ(4)を得た。かく調製されたピッチ(2)
を図1に示した紡糸装置の溶融槽Aに、ピッチ(4)を
溶融槽Bに入れ溶融槽Aを790kPa、溶融槽Bに1
50kPaの圧力をかけて溶融紡糸を実施しシース/コ
ア構造のピッチ繊維を得た。次いで、ピッチ繊維をNO
2 を3vol%含有する空気中で1℃/分で230℃ま
で昇温し230℃で60分間保持した後、窒素中で5℃
/分で750℃まで昇温し750℃で15分間保持し、
次いで100℃/分で2000℃まで昇温して加熱処理
を行い11μmでシース/コア比が0.5の炭素繊維を
得た。得られた炭素繊維の弾性率は520GPa、引張
強度は3.90GPa、圧縮強度は0.85GPaであ
った。
To this hydrogenated pitch (3) g, nitrogen was added to 6
Stir with aeration at 00 ml / min, 3.5 at 400 ° C
Heat treatment was performed for a time to obtain an optically anisotropic pitch having a softening point of 205 ° C. and an optically anisotropic phase content of 45%. After finely pulverizing this optically anisotropic pitch, 100 g of a mixed solvent (solubility parameter: 8.4) of n-hexane (40 vol%)-benzene (60 vol%) per 3 g of the pitch was added at 60 ° C. Extraction treatment was performed to collect the insoluble matter in the n-hexane-benzene mixed solvent. Next, the n-hexane-
Benzene (75 vo) for 3 g of benzene mixed solvent insoluble matter
1%)-quinoline (25 vol%) mixed solvent (solubility parameter: 9.9) at a ratio of 100 ml was subjected to an extraction treatment at 80 ° C. to collect a benzene-quinoline mixed solvent-soluble component. The solvent was removed from the benzene-quinoline mixed solvent-soluble component to obtain a softening point of 240 ° C. and an optically anisotropic phase content of 35.
% Pitch (4) was obtained. The pitch thus prepared (2)
To the melting tank A of the spinning device shown in FIG. 1, the pitch (4) is put into the melting tank B, the melting tank A is 790 kPa, and the melting tank B is 1
Melt spinning was performed by applying a pressure of 50 kPa to obtain a pitch fiber having a sheath / core structure. Then, pitch fiber is NO
After heating up to 230 ° C at 1 ° C / min in air containing 2 vol% of 2 and holding at 230 ° C for 60 minutes, 5 ° C in nitrogen
The temperature is raised to 750 ° C. at a rate of −1 min / min and held at 750 ° C. for 15 minutes,
Then, the temperature was raised to 2000 ° C. at 100 ° C./min and heat treatment was performed to obtain carbon fibers having a sheath / core ratio of 0.5 at 11 μm. The elastic modulus of the obtained carbon fiber was 520 GPa, the tensile strength was 3.90 GPa, and the compressive strength was 0.85 GPa.

【0023】(実施例2)ピッチ(2)を溶融槽Aに、
ピッチ(4)を溶融槽Bに入れ溶融槽Aを625kP
a、溶融槽Bに175kPaの圧力をかけて溶融紡糸を
実施しシース/コア構造のピッチ繊維となし、実施例1
と同様な方法で11μmでシース/コア比が1の炭素繊
維を得た。得られた炭素繊維の弾性率は420GPa、
引張強度は3.80GPa、圧縮強度は1.0GPaで
あった。
(Example 2) The pitch (2) was placed in the melting tank A,
Pitch (4) is put in melting tank B and melting tank A is set to 625 kP
a, a pressure of 175 kPa was applied to the melting tank B to carry out melt spinning to obtain pitch fibers having a sheath / core structure, and Example 1
A carbon fiber having a sheath / core ratio of 1 and a thickness of 11 μm was obtained in the same manner as in (1). The elastic modulus of the obtained carbon fiber is 420 GPa,
The tensile strength was 3.80 GPa and the compressive strength was 1.0 GPa.

【0024】(実施例3)ピッチ(3)を不活性ガス下
に400℃で12時間加熱処理を施し、光学的異方性相
95%のピッチ(5)を得た。ピッチ(5)の軟化点は
245℃であった。ピッチ(5)を溶融槽Aに、ピッチ
(4)を溶融槽Bに入れ溶融槽Aを285kPa、溶融
槽Bに130kPaの圧力をかけて溶融紡糸を実施しシ
ース/コア構造のピッチ繊維となし、実施例1と同様な
方法で10μmでシース/コア比が0.38の炭素繊維
を得た。得られた炭素繊維の弾性率は560GPa、引
張強度は4.20GPa、圧縮強度は0.95GPaで
あった。
Example 3 Pitch (3) was subjected to heat treatment at 400 ° C. for 12 hours under an inert gas to obtain pitch (5) having an optically anisotropic phase of 95%. The softening point of the pitch (5) was 245 ° C. Pitch (5) is put in the melting tank A, pitch (4) is put in the melting tank B, melting tank A is applied at 285 kPa, and melting tank B is applied at a pressure of 130 kPa to carry out melt spinning to obtain a pitch fiber having a sheath / core structure. A carbon fiber having a sheath / core ratio of 0.38 and a thickness of 10 μm was obtained in the same manner as in Example 1. The elastic modulus of the obtained carbon fiber was 560 GPa, the tensile strength was 4.20 GPa, and the compressive strength was 0.95 GPa.

【0025】(比較例1)ピッチ(2)をノズル径0.
5mmφ、L/D=1の紡糸器で紡糸し、ピッチ繊維と
なし実施例1と同様な方法で11μmの炭素繊維を得
た。得られた炭素繊維の弾性率は530GPa、引張強
度は3.90GPa、圧縮強度は0.45GPaであっ
た。
(Comparative Example 1) The pitch (2) was set to a nozzle diameter of 0.
Spinning was carried out using a spinning machine of 5 mmφ and L / D = 1 to obtain pitch fibers and carbon fibers of 11 μm were obtained in the same manner as in Example 1. The elastic modulus of the obtained carbon fiber was 530 GPa, the tensile strength was 3.90 GPa, and the compressive strength was 0.45 GPa.

【0026】(比較例2)ピッチ(5)を比較例1で用
いた紡糸器でピッチ繊維となし、実施例1と同様な方法
で10μmの炭素繊維を得た。得られた炭素繊維の弾性
率は550GPa、引張強度は3.50GPa、圧縮強
度は0.53GPaであった。
(Comparative Example 2) Pitch (5) was made into pitch fibers by the spinning machine used in Comparative Example 1, and 10 μm carbon fibers were obtained by the same method as in Example 1. The elastic modulus of the obtained carbon fiber was 550 GPa, the tensile strength was 3.50 GPa, and the compressive strength was 0.53 GPa.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による紡糸装置の一例を示す断面図。FIG. 1 is a sectional view showing an example of a spinning device according to the present invention.

【符号の説明】[Explanation of symbols]

1 溶解槽A 2 溶解槽B 3 鋳込みヒーター 4 ピッチ吐出孔 5 紡糸圧力調製孔 6 ピッチ繊維コア部 7 ピッチ繊維シース部 8 ピッチ繊維 1 Melting Tank A 2 Melting Tank B 3 Casting Heater 4 Pitch Discharge Hole 5 Spinning Pressure Adjusting Hole 6 Pitch Fiber Core 7 Pitch Fiber Sheath 8 Pitch Fiber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光学異方性相含有量の異なる2以上のピ
ッチを複合紡糸してなるピッチ繊維。
1. A pitch fiber obtained by composite spinning two or more pitches having different optically anisotropic phase contents.
JP8486396A 1996-04-08 1996-04-08 Pitch fiber Pending JPH09273030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8486396A JPH09273030A (en) 1996-04-08 1996-04-08 Pitch fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8486396A JPH09273030A (en) 1996-04-08 1996-04-08 Pitch fiber

Publications (1)

Publication Number Publication Date
JPH09273030A true JPH09273030A (en) 1997-10-21

Family

ID=13842654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8486396A Pending JPH09273030A (en) 1996-04-08 1996-04-08 Pitch fiber

Country Status (1)

Country Link
JP (1) JPH09273030A (en)

Similar Documents

Publication Publication Date Title
EP0054437B1 (en) Carbonaceous pitch with dormant anisotropic components, process for preparation thereof, and use thereof to make carbon fibres
US4497789A (en) Process for the manufacture of carbon fibers
JPS62270685A (en) Production of mesophase pitch
US4115527A (en) Production of carbon fibers having high anisotropy
EP0349307B1 (en) Process for producing pitch-based carbon fibres superior in compressive physical properties
JPS61155491A (en) Pitch for carbon fiber
EP0124062B1 (en) A method for the preparation of pitches for spinning carbon fibers
JPS5841914A (en) Preparation of high-strength and high-modulus carbon fiber
JPH045710B2 (en)
JPH05132675A (en) Production of pitch
JPH09273030A (en) Pitch fiber
JPS5988922A (en) Preparation of pitch for spinning
JPH0133572B2 (en)
JPH0148312B2 (en)
JPS5841915A (en) Preparation of high-strength and high-modulus carbon fiber
JPS6312689A (en) Production of precursor pitch for carbon fiber
JPS59136383A (en) Preparation of pitch for producing carbon fiber
JPH0413450B2 (en)
JPH0144752B2 (en)
JP3055295B2 (en) Pitch-based carbon fiber and method for producing the same
JPS59147081A (en) Pitch as starting material of carbon fiber
JPH0148313B2 (en)
JPS5988923A (en) Manufacture of carbon fiber
JP3018660B2 (en) Spinning pitch for carbon fiber and method for producing the same
JP2511263B2 (en) A method for producing carbon fiber from raw materials prepared by pre-processing the components in petroleum-based pitch