JPH09272990A - Inhibitor of corrosion or the like in metal surface and method for inhibiting corrosion or the like - Google Patents

Inhibitor of corrosion or the like in metal surface and method for inhibiting corrosion or the like

Info

Publication number
JPH09272990A
JPH09272990A JP11050896A JP11050896A JPH09272990A JP H09272990 A JPH09272990 A JP H09272990A JP 11050896 A JP11050896 A JP 11050896A JP 11050896 A JP11050896 A JP 11050896A JP H09272990 A JPH09272990 A JP H09272990A
Authority
JP
Japan
Prior art keywords
inhibitor
corrosion
base material
titanium dioxide
cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11050896A
Other languages
Japanese (ja)
Other versions
JP3426846B2 (en
Inventor
Toshiro Fukushima
敏郎 福島
Gunji Ueno
軍二 植野
Masasuke Itomura
昌祐 糸村
Seiji Masano
誠治 政野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANMETA ENG KK
Original Assignee
KANMETA ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANMETA ENG KK filed Critical KANMETA ENG KK
Priority to JP11050896A priority Critical patent/JP3426846B2/en
Publication of JPH09272990A publication Critical patent/JPH09272990A/en
Application granted granted Critical
Publication of JP3426846B2 publication Critical patent/JP3426846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively inhibit corrosion or corrosion cracking in the surface of a metal from occurring by using a blend of an organic or inorganic coating film forming material and grainy titanium dioxide as a corrosion inhibitor. SOLUTION: In the method using this inhibitor 1, grainy titanium dioxide is adopted on account of its good corrosion resistance and corrosion cracking resistance and the surface of a base material K made of a metal or the like is coated with the inhibitor 1 to form a coating layer of the inhibitor 1 on the surface of the base material K. At this time, a film forming material 3 is interposed between every adjacent two of grains 2 of the titanium dioxide so that every adjacent two of the grains 2 are not joined to each other and each of the grains 2 is disposed at a position independent from the other to form the coating layer of the inhibitor 1. Therefore, when a change in temp. is caused, each of the grains 2 is expanded or contracted independently from the change in volume of the base material K to prevent any swelling or cracking of the coating layer of the inhibitor 1 due to the difference in thermal expansion coefficient between the base material K and each of the grains 2 from occurring. If there is any recessed part K1 in the surface of the base material K, the recessed part K1 can be filled with the inhibitor 1 by a coating or injection method. The coating of the surface of the base material K with the inhibitor 1 can more easily be performed in a shorter time as compared with a conventional thermal spraying process or the like. Thus, any recessed part in a state subjected to pitting corrosion such as sulfide corrosion can easily and surely be filled with the inhibitor 1, and accordingly, an equipment in a state subjected to pitting corrosion can be repaired with the inhibitor 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本願発明は、金属表面の腐
食、硫化物腐食割れ、ならびに水素誘起割れ等の防止剤
及び腐食等の防止方法の改良に関するものである。
TECHNICAL FIELD The present invention relates to an inhibitor for metal surface corrosion, sulfide corrosion cracking, hydrogen-induced cracking, and the like, and improvement of a method for preventing corrosion and the like.

【0002】[0002]

【従来の技術】従来、広範囲な腐食環境における金属製
構造物の材料選択に関して、種々実験が行なわれ、使用
環境に適応するような構造材が用いられている。そし
て、機器製作時の溶接残留応力が腐食におよぼす影響を
未然に防止するために、応力除去の熱処理や機材保護の
ための腐食抑制剤の中和剤添加、カソード防食、pH調
整が適用され、また耐食性クラッド材等の使用あるいは
環境遮断の不動態化処理など、想定される腐食環境に適
応するような対策と改善策が検討されてきた。また、実
用機器においては、腐食抑制のためのプロセス変更、機
器増設など、その対策が数多く考えられてきたが、実際
の機器類では腐食減肉、応力腐食割れが機器運転使用後
の経年経過過程で生じることや、その腐食要因が石油類
製造過程による硫化水素、ナフテン酸、水素などや結露
の影響などが含まれる。例えば、石油、重油、石炭など
硫黄分を含む原料を用いた金属材料からなる精製装置ま
たは燃焼装置においては、硫化物腐食や硫化物腐食割れ
ならびに水素誘起割れなどの要因誘発が生じるため、低
温環境では鉛ライニング(ホモゲン法)、耐酸モルタル
セメント(キャスタブル)、ゴム、FRP樹脂ライニン
グ、アルミニウム溶射などが用いられている。しかし、
石油、石炭、精製装置の使用環境は有機溶剤系物質の製
造と含硫黄成分の燃焼や冷却、精製(SO2 、H2 O、
2 S、H2 など)の製造工程において、腐食性環境は
時々刻々微妙に変動する。したがって、完全に環境遮断
する方法は困難である。また、鉛ライニング、ホモゲン
は加工作業の環境安全性からみて加工技術者の減少と耐
食性、耐熱性に限界がある。またアルミニウムライニン
グまたはアルミ溶射は使用環境のpH値に左右され、耐
食性に使用限界がある。そのため、装置材料としてCr
鋼、Cr−Mo鋼、18Cr−8Ni鋼などおよびこれ
らの合成クラッド鋼などが用いられていた。しかし、建
設後数年の使用運転経過により、硫化腐食割れや水素誘
起割れなど、特に溶接近傍から始まる腐食割れの拡大が
生じていた。既存機器への適正な防食対策としては、腐
食抑制剤以外には、基材がクロムマンガン鋼やクロムモ
リブデン鋼など、高圧容器用鋼板に熱影響を与えるよう
な、耐食材の板張り溶接やセメントライニング時のスタ
ッド溶接などを使用することはできない。その理由は既
存基材に局部的に熱影響を与えると、硫化物や水素の影
響を受けた基材欠陥がさらに拡大するためである。した
がって、既存機器は使い捨てとなり、新規に機器を製作
する方法が採られていた。一方、このような石油精製装
置等における水素誘起割れなど防止法として、二酸化チ
タン(TiO2 )等の容射皮膜を施すことが有効である
との報告もなされている。ところが、現場等において容
射皮膜を施すには、設備や技術を要し、容易に行うのが
困難である。又、容射による場合は、使用温度が高くな
ると(80°C程度以上)と硫化物腐食環境において1
年〜3年経過未満で溶射皮膜の膨れ、亀裂、酸化模様を
生じるおそれがある。これは、基材Kと溶射皮膜b、例
えば炭素鋼の基材Kに二酸化チタンの溶射皮膜bを施す
と、容射の際に容射粒b1…b1が炭素鋼の表面に溶融
状態で打ち付けられ粒同士が連続的に結合した溶射皮膜
層bを形成するが、図2に示すようにこの溶射皮膜層b
の熱膨張係数b1と鉄素材の熱膨張係数K1とに差があ
り、その熱膨張係数差による体積変化に差が生じること
も要因の一つと考えられる。この防止策としては、溶射
皮膜層bと基材Kとの間に下地溶射または中間溶射から
なる皮膜の緩衝層を設けることも考えられるが、下地溶
射または中間溶射を施したのでは、一層作業が困難且
つ、時間を要してしまう。更に、上記溶射の場合、図5
に示すように基材Kに硫化物腐食等により複数の小孔状
の凹部K1が形成された孔食腐食状態のまま初期溶射を
施すと、基材表面状態が外観的に溶射前と同様な凹部K
1を有する孔食腐食状態を呈する。一方、石油精製装置
等の腐食や割れ等の点検に際しては、例えば孔食腐食が
発見されると、点検の都度、スクレーパーや金属棒、ナ
イフなどで凹部K1の異物質を除去する方法が採られ
る。そのため、例えば溶射施工前の基材表面状態を把握
していないものが点検すると、溶射皮膜に異常なく良好
であるが、凹部K1に機器環境物質が推積して外観的に
腐食孔食の状態(痕跡)と紛らわしいため、あたかも腐
食孔食が進展したかのように目視されてしまう。その結
果、皮膜点検時に、スクレーパーや金属棒、ナイフなど
で凹部K1の異物質を除去し、点検者による凹部K1の
溶射皮膜の損傷懸念がある。又、この場合において、推
積した異物質を放置しておいたのでは、凹部K1の腐食
濃縮影響が増すことも凹部K1の腐食進展の要因となっ
てまう。
2. Description of the Related Art Conventionally, various experiments have been conducted on the selection of materials for metal structures in a wide range of corrosive environments, and structural materials suitable for the environment of use have been used. Then, in order to prevent the effect of welding residual stress on the corrosion when manufacturing the equipment, heat treatment for stress removal, addition of a neutralizing agent of corrosion inhibitor for protection of equipment, cathodic protection, pH adjustment are applied, In addition, measures and improvement measures have been studied to adapt to the assumed corrosive environment, such as the use of corrosion-resistant clad materials or passivation treatment for environmental protection. In practical equipment, many measures have been considered such as process change for corrosion suppression and equipment expansion.However, in actual equipment, corrosion thinning and stress corrosion cracking are the aging process after operation and use of equipment. And the corrosion factors include hydrogen sulfide, naphthenic acid, hydrogen, etc. in the petroleum production process and the effect of dew condensation. For example, in a refining device or a combustion device made of a metal material using a raw material containing a sulfur content such as petroleum, heavy oil, and coal, factors such as sulfide corrosion, sulfide corrosion cracking, and hydrogen-induced cracking occur, so that low temperature environment In, lead lining (homogen method), acid resistant mortar cement (castable), rubber, FRP resin lining, aluminum spraying, etc. are used. But,
The environment for using petroleum, coal, and refining equipment is the production of organic solvent-based substances, combustion and cooling of sulfur-containing components, refining (SO 2 , H 2 O,
In the manufacturing process of (H 2 S, H 2, etc.), the corrosive environment fluctuates minute by minute. Therefore, it is difficult to completely shield the environment. In addition, lead lining and homogen have a decrease in the number of processing engineers and a limit in corrosion resistance and heat resistance in view of the environmental safety of processing work. Further, the aluminum lining or the aluminum spraying is influenced by the pH value of the environment in which it is used, and has a limit in its corrosion resistance. Therefore, Cr is used as the device material.
Steel, Cr-Mo steel, 18Cr-8Ni steel and the like, and synthetic clad steels thereof have been used. However, after several years of operation after construction, the expansion of corrosion cracks such as sulfide corrosion cracking and hydrogen induced cracking, especially starting near the weld, has occurred. As a suitable anti-corrosion measure for existing equipment, in addition to corrosion inhibitors, plate-like welding of food materials and cement lining where the base material has a heat effect on steel plates for high-pressure containers, such as chrome manganese steel and chrome molybdenum steel. It is not possible to use stud welding etc. The reason is that if the existing base material is locally affected by heat, the base material defects affected by sulfide and hydrogen will further expand. Therefore, the existing device has become disposable and a method of newly manufacturing the device has been adopted. On the other hand, it has been reported that applying a thermal spray coating of titanium dioxide (TiO 2 ) is effective as a method for preventing hydrogen-induced cracking in such petroleum refining equipment. However, it is difficult to apply the thermal spray coating in the field etc. easily because it requires equipment and technology. In the case of radiation, when the operating temperature becomes higher (about 80 ° C or more), it becomes 1 in the sulfide corrosive environment.
There is a risk of swelling, cracking, and oxidation pattern of the thermal spray coating within a year to less than 3 years. This is because when the base material K and the sprayed coating b, for example, the carbon steel base material K is applied with the titanium dioxide sprayed coating b, the spray particles b1 ... b1 are struck in a molten state on the surface of the carbon steel during spraying. The sprayed coating layer b in which the grains are continuously bonded to each other is formed, and as shown in FIG.
It is considered that one of the factors is that there is a difference between the coefficient of thermal expansion b1 and the coefficient of thermal expansion K1 of the iron material, which causes a difference in volume change due to the difference in coefficient of thermal expansion. As a preventive measure, it is conceivable to provide a buffer layer of a coating composed of undercoating or intermediate spraying between the sprayed coating layer b and the base material K, but if the undercoating or intermediate spraying is performed, it is possible to further work. Is difficult and time consuming. Further, in the case of the above thermal spraying, as shown in FIG.
When the initial thermal spraying is performed on the base material K in a pitting corrosion state in which a plurality of small-pit-shaped concave portions K1 are formed due to sulfide corrosion or the like, the base material surface state is visually similar to that before the thermal spraying. Recess K
Exhibits a pitting corrosion condition with 1. On the other hand, when inspecting the oil refining equipment for corrosion or cracks, for example, if pitting corrosion is found, a method of removing a foreign substance in the recess K1 with a scraper, a metal rod, a knife or the like is adopted every time the inspection is performed. . Therefore, for example, if a person who does not know the surface condition of the base material before the thermal spraying is inspected, the thermal spray coating is normal and good, but the equipment environmental substance is deposited in the concave portion K1 and the appearance of corrosion pitting is apparent. Since it is confused with (trace), it is visually observed as if corrosion pitting corrosion has progressed. As a result, when inspecting the coating, foreign substances in the recess K1 are removed by a scraper, a metal rod, a knife or the like, and there is a concern that an inspector may damage the sprayed coating in the recess K1. Further, in this case, if the accumulated foreign substance is left as it is, the influence of corrosion concentration on the recess K1 is increased, which also causes the progress of corrosion on the recess K1.

【0003】[0003]

【発明が解決しようとする課題】本願発明は、以上の実
情に鑑み提案されたもので、金属表面の腐食等を起こし
易い雰囲気で使用される金属製機器類等の金属表面の腐
食等の防止剤及び腐食等の防止方法を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above circumstances, and prevents the metal surface corrosion of metal equipment used in an atmosphere where metal surface corrosion easily occurs. The purpose is to provide a chemical agent and a method for preventing corrosion.

【0004】本願発明は、特に、石油および石炭、コー
クスなどの精製または燃焼に用いる金属製機器の硫化物
腐食または硫化物腐食割れならびに水素誘起割れを、容
易に確実に防止し得る金属表面の腐食等の防止剤及び腐
食等の防止方法を提供することを目的とする。
The present invention is particularly applicable to metal surface corrosion that can easily and reliably prevent sulfide corrosion or sulfide corrosion cracking and hydrogen-induced cracking of metal equipment used for refining or burning petroleum, coal, coke and the like. It is an object of the present invention to provide such an inhibitor and a method for preventing corrosion.

【0005】[0005]

【課題を解決するための手段】本願発明に係る金属表面
の腐食等の防止剤は、有機系又は無機系の皮膜形成剤
と、粒状の二酸化チタンとが配合されたものである。
The preventive agent for metal surface corrosion and the like according to the present invention is a mixture of an organic or inorganic film forming agent and granular titanium dioxide.

【0006】二酸化チタンは、従来から耐腐食、耐腐食
割れ等の良好な材料として知られており、この二酸化チ
タンが腐食、腐食割れ等の防止剤として機能する。本願
発明では、粒状のものが使用される。粒状で使用するこ
とにより、図1に示すように使用する対象物としての基
材Kの表面上に配位された場合に、各粒2…2間に皮膜
形成剤3が介在して粒2、2同士が接続することなく別
個独立に配位して防止剤1の層全体を構成する。従っ
て、環境の温度変化に際して各粒2…2が基材Kの体積
変化と無関係に膨張・収縮することができ、溶射した場
合のように基材との熱膨張係数差による皮膜の膨れや亀
裂等の発生を防止できる。
Titanium dioxide has hitherto been known as a material having good corrosion resistance and corrosion cracking resistance, and this titanium dioxide functions as an inhibitor for corrosion and corrosion cracking. In the present invention, a granular material is used. When used in a granular form, when the particles are coordinated on the surface of the base material K as an object to be used as shown in FIG. The two layers of the inhibitor 1 are entirely coordinated independently of each other without being connected to each other. Therefore, when the temperature of the environment changes, the particles 2 ... 2 can expand and contract independently of the volume change of the base material K, and swelling or cracking of the film due to the difference in thermal expansion coefficient from the base material as in the case of thermal spraying. Can be prevented.

【0007】二酸化チタンの各粒2の大きさは、特に限
定されず、例えば0.3〜50μm程度のものが市販さ
れているのでこれを使用することもできるが、10μm
程度以下のものを使用すると基材Kに硫化物腐食等によ
る孔食腐食状態の凹部K1に容易に入り込ませることが
できる点で好ましい。このような10μm程度以下の小
粒の粒状二酸化チタンを得るには、二酸化チタンを金属
表面に溶射する場合と同様に、二酸化チタンを10μm
程度以下の小粒状にして水に溶射する。これにより、溶
射された二酸化チタンの粒は水に冷却され、丸みのある
10μm程度以下の大きさのものが得られる。
The size of each particle 2 of titanium dioxide is not particularly limited, and for example, those having a particle size of about 0.3 to 50 μm are commercially available.
It is preferable to use a material having an amount of not more than about this because the base material K can be easily inserted into the concave portion K1 in a pitting corrosion state due to sulfide corrosion or the like. In order to obtain such small-sized granular titanium dioxide having a particle size of about 10 μm or less, titanium dioxide is added to 10 μm in the same manner as in the case of spraying titanium dioxide on a metal surface.
It is sprayed in water by making it into small particles of less than about the size. As a result, the sprayed titanium dioxide particles are cooled by water, and round particles having a size of about 10 μm or less are obtained.

【0008】皮膜形成剤3は、基材Kの表面に皮膜を形
成して接着することにより、粒状の二酸化チタンを基材
の表面に層状に配位させておく等のためのもので、温度
変化に伴う基材Kの膨張・収縮に対応し得るものであれ
ば使用でき、有機系の合成樹脂、或いは、無機系のケイ
酸ナトリウムや無機質系エチルシリケート等が使用でき
る。有機系の合成樹脂としては、エポキシ系樹脂、フェ
ノール樹脂、シリコン樹脂、塩化ビニール樹脂、熱可塑
性のフェノール樹脂、フッソ系樹脂、更にはフラン系樹
脂等が例示でき、これらから選択される一種又は二種以
上のものを組み合わせて使用できる。
The film forming agent 3 is for forming a film on the surface of the base material K and adhering it to form granular titanium dioxide in a layered manner on the surface of the base material. Any material can be used as long as it can cope with the expansion and contraction of the base material K due to changes, and organic synthetic resin, inorganic sodium silicate, inorganic ethyl silicate, or the like can be used. Examples of the organic synthetic resin include epoxy resin, phenol resin, silicone resin, vinyl chloride resin, thermoplastic phenol resin, fluorine resin, furan resin, and the like, and one or two selected from these. Combinations of more than one species can be used.

【0009】そして、これらの皮膜形成剤3と二酸化チ
タン2とにより構成される防止剤1は、次のようにして
形成される。まず、有機系の合成樹脂、或いは、無機系
のケイ酸ナトリウム等の皮膜形成剤3を包含させた溶剤
中に、粒状の二酸化チタンを入れ、混合攪拌して得られ
る。皮膜形成剤3と二酸化チタン2との配合割合は、皮
膜形成剤10〜60%に対して二酸化チタン90〜40
%の配合容量にしておくのが好ましく、より好ましく
は、皮膜形成剤10〜40%に対して二酸化チタン90
〜60%程度の配合容量である。皮膜形成剤に対して二
酸化チタンが40%以下になると腐食、腐食割れ、又は
水素誘起割れ防止の効果が発揮され難くなってしまう。
一方、90%以上になると粘性が大きくなってしまい、
塗布し難くなるおそれがある。又、90%以上になると
全体としての熱膨張係数が二酸化チタンに依存する割合
が大きくなり、その結果として、基材Kの熱膨張係数と
の差が大きくなって好ましくないからである。例えば、
シリコン樹脂20%、二酸化チタン80%程度の配合容
量で防止剤を形成した場合の全体としての熱膨張係数4
を、図2に示す。この図2は、各種の溶射皮膜及び鉄素
材の各熱膨張係数を図表にしたものであり、この図2中
に、本願発明の防止剤の熱膨張係数4を併記している。
本願発明の防止剤の熱膨張係数4は、図2に示すように
鉄素材の熱膨張係数K1と近似し、特に、200〜30
0°Cの高温では接近している。従って、高温下でも鉄
鋼からなる基材Kと防止剤との体積変化に差が生じるこ
とがなく、体積変化に伴う防止剤の膨れ、亀裂、酸化模
様の生じるおそれを防止できる。尚、防止剤の熱膨張係
数4は、二酸化チタンの配合割合を変えれることにより
調整でき、例えば二酸化チタンの配合割合を少なくすれ
ば小さくでき、基材に応じて調整できる。又、シリコン
樹脂に代えて上述の他の樹脂を使用した場合の熱膨張係
数4も、シリコン樹脂の場合と略同程度となる。
The inhibitor 1 composed of the film forming agent 3 and the titanium dioxide 2 is formed as follows. First, granular titanium dioxide is put into a solvent containing an organic synthetic resin or an inorganic film forming agent 3 such as sodium silicate, and the mixture is obtained by mixing and stirring. The mixing ratio of the film forming agent 3 and the titanium dioxide 2 is 90 to 40 titanium dioxide with respect to 10 to 60% of the film forming agent.
%, And more preferably 90% titanium dioxide to 10 to 40% film-forming agent.
The blending volume is about 60%. When titanium dioxide is 40% or less with respect to the film forming agent, the effect of preventing corrosion, corrosion cracking, or hydrogen-induced cracking becomes difficult to be exhibited.
On the other hand, if it exceeds 90%, the viscosity will increase,
It may be difficult to apply. On the other hand, when it is 90% or more, the coefficient of thermal expansion as a whole depends on titanium dioxide, and as a result, the difference from the coefficient of thermal expansion of the base material K becomes large, which is not preferable. For example,
Thermal expansion coefficient 4 as a whole when an inhibitor is formed with a compounding volume of about 20% silicon resin and 80% titanium dioxide
Is shown in FIG. FIG. 2 is a diagram showing the thermal expansion coefficients of various thermal spray coatings and iron materials. In FIG. 2, the thermal expansion coefficient 4 of the inhibitor of the present invention is also shown.
The thermal expansion coefficient 4 of the inhibitor of the present invention is close to the thermal expansion coefficient K1 of the iron material as shown in FIG.
It is close at the high temperature of 0 ° C. Therefore, there is no difference in the volume change between the base material K made of steel and the inhibitor even at high temperature, and it is possible to prevent the inhibitor from being swollen, cracked, or oxidized due to the volume change. The coefficient of thermal expansion 4 of the inhibitor can be adjusted by changing the compounding ratio of titanium dioxide, and can be decreased by decreasing the compounding ratio of titanium dioxide, for example, and can be adjusted according to the substrate. Further, the coefficient of thermal expansion 4 when the above-mentioned other resin is used instead of the silicone resin is substantially the same as that of the silicone resin.

【0010】尚、上記の配合割合は、皮膜形成剤3とし
てエポキシ系樹脂等の有機系の合成樹脂を使用する場合
でも無機系のケイ酸ナトリウムやエチルシリケートを使
用する場合でも、同様である。
The above mixing ratios are the same whether an organic synthetic resin such as an epoxy resin is used as the film forming agent 3 or an inorganic sodium silicate or ethyl silicate is used.

【0011】尚、エポキシ系樹脂を使用する場合は、温
度80°C以下、フェノール樹脂を使用する場合は、温
度200°C以下、シリコン樹脂を使用する場合は、温
度550°C以下の使用環境下で使用するのが好まし
い。一方、無機系のケイ酸ナトリウムを使用する場合
は、使用環境が550°C以下で上記有機系樹脂で溶解
又は劣化する場合であって、500°C以上の場合に使
用するのが好ましい。又、防止剤の粘性は、特に限定さ
れず、基材の表面に塗布し得る程度であれば良く、使用
条件に応じて適宜変更し得る。
When an epoxy resin is used, the temperature is 80 ° C or lower, when a phenol resin is used, the temperature is 200 ° C or lower, and when a silicone resin is used, the temperature is 550 ° C or lower. It is preferably used below. On the other hand, when the inorganic sodium silicate is used, it is preferably dissolved or deteriorated in the above organic resin at a use environment of 550 ° C. or lower, and is preferably used at 500 ° C. or higher. The viscosity of the inhibitor is not particularly limited as long as it can be applied to the surface of the substrate, and can be appropriately changed according to the use conditions.

【0012】本願発明に係る金属表面の腐食等の防止方
法は、上記の防止剤を、流動性を有する状態で直接塗布
することにより、金属表面の腐食、腐食割れ、水素誘起
割れ等を防止するものである。
The method of preventing corrosion of a metal surface according to the present invention prevents corrosion, corrosion cracking, hydrogen-induced cracking, etc. of a metal surface by directly applying the above-mentioned inhibitor in a fluid state. It is a thing.

【0013】本願発明は、金属製機器等の基材Kを新規
製作し所定位置に設置する前に予め基材Kに塗布して使
用される場合の他、既に所定位置に設置されて可動され
ている基材Kの点検時の補修として塗布して使用され
る。尚、補修として塗布する場合、例えば基材Kの表面
にめっき層や溶射層が施されている場合もあるが、その
場合もめっき層や溶射層の上からそのまま塗布すれば良
い。従って、本願発明は、基材Kの表面が基地の場合に
限らず、めっき層、アルミ溶射やチタン溶射等の溶射層
が施されている場合等、基材Kの表面状態の如何に関わ
らずに使用できる。尚、塗布前の基材表面は油脂類等の
不純異物質を除去し洗浄しておくのが好ましい。
The invention of the present application is not limited to the case where a base material K such as a metal device is newly manufactured and applied to the base material K in advance before being installed at a predetermined position, and it is already installed and movable at a predetermined position. It is applied and used as a repair at the time of inspecting the base material K. In the case of applying as a repair, for example, the surface of the substrate K may be provided with a plating layer or a thermal spraying layer. In that case, the coating may be applied directly from the plating layer or the thermal spraying layer. Therefore, the present invention is not limited to the case where the surface of the base material K is a base, and is not limited to the case where a surface of the base material K is applied, such as a case where a plating layer, a sprayed layer such as aluminum sprayed or titanium sprayed is applied. Can be used for The surface of the base material before coating is preferably cleaned by removing impurities such as fats and oils.

【0014】基材K表面への塗布は、刷毛等で行えば良
いが、塗布剤の粘度又は基材Kの凹部K1の状態等によ
り凹部K1内に入り難いような場合は、へら等で押し込
むようにする。塗布の厚さtは、特に限定されず、環境
や塗布する基材K等に応じて適宜変更できるが、30μ
m程度以上であれば石油および石炭、コークスなどの精
製または燃焼に用いる金属製機器の硫化物腐食または硫
化物腐食割れならびに水素誘起割れを防止できる。
The surface of the base material K may be coated with a brush or the like, but if it is difficult to enter the recess K1 due to the viscosity of the coating agent or the state of the recess K1 of the base material K, it is pressed with a spatula or the like. To do so. The coating thickness t is not particularly limited and can be appropriately changed depending on the environment, the substrate K to be coated, etc.
If it is about m or more, sulfide corrosion or sulfide corrosion cracking and hydrogen-induced cracking of metal equipment used for refining or burning petroleum, coal, coke, etc. can be prevented.

【0015】このようにして、防止剤を基材の表面に直
接塗布するようにすれば、設備や機材等が全く不要で、
しかも誰にでも容易に短時間で行うことができる。又、
基材Kの表面に腐食による凹部K1が形成されている場
合でも、凹部K1内に確実に金属表面塗布剤を充填で
き、補修することができる。しかも、塗布後は、平滑状
に形成でき、点検時にスクレーパーや金属棒、ナイフな
どで塗布層が傷を付けられるようなことが防止される。
In this way, if the inhibitor is applied directly to the surface of the base material, no equipment or equipment is required,
Moreover, anyone can easily do it in a short time. or,
Even when the concave portion K1 is formed on the surface of the base material K due to corrosion, the metallic surface coating agent can be reliably filled in the concave portion K1 and repaired. Moreover, it can be formed into a smooth shape after coating, and it is possible to prevent the coating layer from being scratched by a scraper, a metal rod, a knife or the like during inspection.

【0016】尚、本願発明の使用対象物は、硫化物腐食
または硫化物腐食割れならびに水素誘起割れの発生する
頻度の高い石油精製装置、石炭を主原料とする液化装
置、諸種の化学プラントならびにコークスおよび製鉄用
撓結鉱石装置、重油、石油、石炭を燃焼材として用いる
火力発電などのボイラー装置機器類に特に適したもので
あるが、これに限らず、腐食又は腐食割れの防止剤とし
て使用でき、種々の金属製品に使用できる。
The object of use of the present invention is a petroleum refining apparatus in which sulfide corrosion or sulfide corrosion cracking and hydrogen-induced cracking frequently occur, a liquefaction apparatus using coal as a main raw material, various chemical plants and coke. It is especially suitable for flexible ore equipment for iron making, boiler equipment such as thermal power generation using heavy oil, petroleum, and coal as combustion materials, but it is not limited to this and can be used as a corrosion or corrosion cracking inhibitor. It can be used for various metal products.

【0017】[0017]

【実施例】以下、本願発明の実施例を具体的に説明す
る。
EXAMPLES Examples of the present invention will be specifically described below.

【0018】実施例1Example 1

【0019】まず、防止剤を次のようにして作製した。
エポキシ樹脂、シリコン樹脂、フェノール樹脂、塩化ビ
ニール樹脂の各ワニス(樹脂成分中に顔料の含まない透
明な液状のもの)を、下記の表1に示す組成からなる4
種類の皮膜形成剤を製作する。又、これらと別に、二酸
化チタン材を加熱溶融し、蒸留水中に溶射して、脱水乾
燥して得られた二酸化チタン微粒粉(0.3〜10μ
m)を製作した後、上記各ワニスと二酸化チタン微粒粉
とを表1に示す混合比率で混合攪拌することにより4種
類の防止剤1a…1dを得た(表1中の防止剤NO1a
〜1d)。又、エチルシリケート28及び40の各液体
を用いて無機質エチルシリケート液を製作し、これと別
に製作した上記二酸化チタン微粒粉(0.3〜10μ
m)とを、下記の表2に示す混合比率で混合攪拌するこ
とにより防止剤を得た(表2中の防止剤NO1e)。
First, an inhibitor was prepared as follows.
Each varnish of epoxy resin, silicone resin, phenolic resin, vinyl chloride resin (a transparent liquid in which the resin component does not contain a pigment) has the composition shown in Table 1 below.
Make a variety of film-forming agents. Separately from these, titanium dioxide material is heated and melted, sprayed in distilled water, and dehydrated and dried to obtain fine particles of titanium dioxide (0.3 to 10 μm).
m) was produced, and then each varnish and fine particles of titanium dioxide were mixed and stirred at a mixing ratio shown in Table 1 to obtain four kinds of inhibitors 1a ... 1d (inhibitor NO1a in Table 1).
~ 1d). Further, an inorganic ethyl silicate liquid was produced using each liquid of ethyl silicate 28 and 40, and the titanium dioxide fine powder (0.3 to 10 μm) produced separately from this liquid was produced.
m) was mixed and stirred at a mixing ratio shown in Table 2 below to obtain an inhibitor (inhibitor NO1e in Table 2).

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】次に、SM400B(JIS G 311
4)鋼板から、既存現場機器の腐食孔食した凹部K1を
有する状態の基材に模擬する図3(A)(B)に示す形状の幅
Vが20mm、長さLが100mm、厚さHが7mmの
四角柱状の第1試験用材を製作し、第1試験用材の上面
に上記防止剤1a〜1e各々を30μmの厚さtに塗布
することにより、試料NO1〜10の5種類の試験片
(表5中の試料NO1〜NO5、表6中の試料NO6〜
NO10、但し、試料NO1、NO6は、防止剤1aを
塗布したもの、試料NO2、NO7は、防止剤1bを塗
布したもの、試料NO3、NO8は、防止剤1cを塗布
したもの、試料NO4、NO9は、防止剤1dを塗布し
たもの、試料NO5、NO10は、防止剤1eを塗布し
たもの)を作製する。又、同様に、図3(A)(B)に示す形
状の幅Vが20mm、長さLが100mm、厚さHが9
mmの四角柱状の第2試験用材を製作し、第2試験用材
の上面に上記防止剤1a〜1e各々を30μmの厚さt
に塗布することにより、試料NO11〜15の5種類の
試験片(表7中の試料NO11〜NO15、但し、試料
NO11は、防止剤1aを塗布したもの、試料NO12
は、防止剤1bを塗布したもの、試料NO13は、防止
剤1cを塗布したもの、試料NO14は、防止剤1dを
塗布したもの、試料NO15は、防止剤1eを塗布した
もの)を作製し、計10種類の試験片を作製した。
Next, SM400B (JIS G 311)
4) The width V of the shape shown in FIGS. 3 (A) and 3 (B) that simulates the base material of the existing field equipment having the corroded pits K1 of the existing field equipment is 20 mm, the length L is 100 mm, and the thickness H is 4). 5 mm test pieces of sample Nos. 1 to 10 by manufacturing a first test material in the form of a quadrangular prism having a thickness of 7 mm and applying the above-mentioned inhibitors 1a to 1e to the upper surface of the first test material to a thickness t of 30 μm. (Samples NO1 to NO5 in Table 5 and Samples NO6 to 6 in Table 6)
NO10, where samples NO1 and NO6 are coated with the inhibitor 1a, samples NO2 and NO7 are coated with the inhibitor 1b, samples NO3 and NO8 are coated with the inhibitor 1c, samples NO4 and NO9 Are coated with the inhibitor 1d, and samples NO5 and NO10 are coated with the inhibitor 1e). Similarly, in the shape shown in FIGS. 3A and 3B, the width V is 20 mm, the length L is 100 mm, and the thickness H is 9 mm.
mm square prism second test material is manufactured, and each of the above inhibitors 1a to 1e is applied to the upper surface of the second test material with a thickness t of 30 μm.
5 kinds of test pieces of sample NO11 to 15 (sample NO11 to NO15 in Table 7, where sample NO11 is the one coated with the inhibitor 1a, sample NO12
Are coated with the inhibitor 1b, sample NO13 is coated with the inhibitor 1c, sample NO14 is coated with the inhibitor 1d, sample NO15 is coated with the inhibitor 1e). A total of 10 types of test pieces were prepared.

【0023】そして、これらの腐食、腐食割れ試験を、
水素誘起割れ試験方法(NACETM 0177−9
0、NACE=National Associati
onof Corrosion Engineers)
と、グリセリン置換法による水素量測定試験(NACE
TM 0177−90)、及び硫化物応力腐食割れ試
験方法(NACE TM 0177−90)を採用して
行った。水素誘起割れ試験は、第1試験用材に上記各防
止剤1a…1eを塗布することにより作製した試料NO
1〜NO5を用い、下記の表3に示す環境条件の下で行
った。又、グリセリン置換法による水素量測定試験は、
第1試験用材に上記各防止剤1a…1eを塗布すること
により作製した試料NO6〜NO10を用い、下記の表
4に示す試験条件で行った。一方、硫化物応力腐食割れ
試験方法は、第2試験用材に上記各防止剤1を塗布する
ことにより作製した試料NO11〜NO15を用い、下
記の表3に示す環境条件の下で、図4に示す試験器具1
0にセットし負荷応力P(試験片11の降伏応力の0.
8倍)を試験片11にかけることにより行った。
Then, these corrosion and corrosion cracking tests are
Hydrogen-induced cracking test method (NACETM 0177-9
0, NACE = National Associate
onof Corrosion Engineers)
And hydrogen content measurement test by glycerin substitution method (NACE
TM 0177-90) and sulfide stress corrosion cracking test method (NACE TM 0177-90). The hydrogen-induced cracking test is a sample NO prepared by applying the above-mentioned respective inhibitors 1a ... 1e to the first test material.
1 to NO5 were used under the environmental conditions shown in Table 3 below. Also, the hydrogen amount measurement test by the glycerin substitution method is
Using the samples 1 to 6 prepared by applying the above inhibitors 1a ... 1e to the first test material, the test conditions were shown in Table 4 below. On the other hand, the sulfide stress corrosion cracking test method uses the samples NO11 to NO15 prepared by applying the respective inhibitors 1 to the second test material, and under the environmental conditions shown in Table 3 below, FIG. Test equipment 1
The load stress P (the yield stress of the test piece 11 was set to 0.
8 times) was applied to the test piece 11.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】以上の試験を行い、水素誘起割れ試験、及
び硫化物応力腐食割れ試験については、試験後、各試料
について外観を目視で確認するとともに、超音波探傷試
験により欠陥を確認したので、それを下記の表5、表7
各々に示す。又、グリセリン置換法による水素量測定試
験で測定した値を、その結果を下記の表6に示す。
The above-mentioned tests were carried out, and for the hydrogen-induced cracking test and the sulfide stress corrosion cracking test, after the tests, the appearance of each sample was visually confirmed, and the defects were confirmed by the ultrasonic flaw detection test. Tables 5 and 7 below
Shown in each. The values measured in the hydrogen content measurement test by the glycerin substitution method are shown in Table 6 below.

【0027】[0027]

【表5】 [Table 5]

【0028】[0028]

【表6】 [Table 6]

【0029】[0029]

【表7】 [Table 7]

【0030】また、比較例として、SM400B鋼板
を、上記の第1試験用材と同一形状に形成した生地のま
まのもの(試料16、17)、以下同様に、第1試験用
材と同一形状に形成した耐水素誘起割れ鋼板(JIS
G 3103)の生地のままのもの(試料18、1
9)、SM400B鋼板に二酸化チタンを含まないエポ
キシ樹脂を30μm塗布したもの(試料20、21)、
SM400B鋼板に二酸化チタンを含まない塩化ビニー
ル樹脂を30μm塗布したもの(試料22、23)、S
M400B鋼板に二酸化チタンを含まないシリコン樹脂
を30μm塗布したもの(試料24、25)、SM40
0B鋼板に二酸化チタンを含まないエチールシリケート
液を30μm塗布したもの(試料26、27)、SM4
00B鋼板に直接溶射皮膜したもの(試料28、29)
を夫々作製し、水素誘起割れ試験、グリセリン置換法に
よる水素量測定試験各々の比較試験を、上記と同条件で
行ったので、下記の表5、表7各々に示す。
Further, as a comparative example, the SM400B steel plate was formed into the same shape as the first test material as it was (Samples 16 and 17), and the same shape as the first test material was used. Hydrogen-proof induced cracked steel sheet (JIS
G 3103) as-is (Sample 18, 1)
9), SM400B steel sheet coated with 30 μm of epoxy resin containing no titanium dioxide (Samples 20 and 21),
SM400B steel sheet coated with 30 μm of vinyl chloride resin not containing titanium dioxide (Samples 22 and 23), S
M400B steel plate coated with 30 μm of silicon resin not containing titanium dioxide (Samples 24 and 25), SM40
0B steel plate coated with 30 μm of an ethyl silicate solution containing no titanium dioxide (Samples 26 and 27), SM4
00B steel sheet directly sprayed (Samples 28 and 29)
Comparative tests of the hydrogen-induced cracking test and the hydrogen content measurement test by the glycerin substitution method were conducted under the same conditions as above, and are shown in Table 5 and Table 7 below.

【0031】又、SM400B鋼板を、上記の第2試験
用材と同一形状に形成した生地のままのもの(試料3
0)、以下同様に、第2試験用材と同一形状に形成した
耐水素誘起割れ鋼板の生地のままのもの(試料31)、
SM400B鋼板に二酸化チタンを含まないエポキシ樹
脂を30μm塗布したもの(試料32)、SM400B
鋼板に二酸化チタンを含まない塩化ビニール樹脂を30
μm塗布したもの(試料33)、SM400B鋼板に二
酸化チタンを含まないシリコン樹脂を30μm塗布した
もの(試料34)、SM400B鋼板に二酸化チタンを
含まないエチールシリケート液を30μm塗布したもの
(試料35)、SM400B鋼板に直接溶射皮膜したも
の(試料36)を夫々作製し、硫化物応力腐食割れ試験
の比較試験を、上記と同条件で比較試験を行ったので、
下記の表6に示す。
Further, the SM400B steel sheet was formed into the same shape as that of the above-mentioned second test material, and was left as it was (Sample 3
0), the same as the following, the same as that of the second test material, but the same as that of the hydrogen-resistant induced cracking steel sheet (Sample 31),
SM400B steel plate coated with 30 μm of epoxy resin containing no titanium dioxide (Sample 32), SM400B
30% vinyl chloride resin containing no titanium dioxide on the steel plate
μm coated (Sample 33), SM400B steel plate coated with 30 μm of silicon resin not containing titanium dioxide (Sample 34), SM400B steel plate coated with 30 μm of titanium dioxide-free Ethyl silicate solution (Sample 35) , SM400B steel sheet directly spray-coated (Sample 36) were prepared, and the comparative test of the sulfide stress corrosion cracking test was performed under the same conditions as described above.
It is shown in Table 6 below.

【0032】結果は、水素誘起割れ試験及び硫化物応力
腐食割れ試験においては、表5、表7に示すように比較
例のもの(表5中の試料NO16、18、20、22、
24、26、表7中の試料NO28〜33)では、外観
に、膨れ、割れ、孔食、斑点さび等が見られ、又、超音
波探傷試験で二酸化チタンを溶射したもの(試料28、
36)を除いて欠陥が認められた。これに対し、本願発
明の防止剤を塗布したもの(表5中の試料NO1〜NO
5、表7中の試料NO11〜NO15)では、外観に異
常が認められず、又、超音波探傷試験でいずれも欠陥が
認められなかった。一方、グリセリン置換法による水素
量測定試験では、表6に示すように比較例のもの(表6
中の試料NO17、19、21、23、25、27)
は、二酸化チタンを溶射したもの(試料28)を除き、
水素吸収量が多く認められたが、本願発明の防止剤を塗
布したものは、水素吸収量が殆ど認められなかった。以
上の結果から、本願発明の防止剤を塗布したものは、水
素誘起割れ試験、水素量測定試験、及び硫化物応力腐食
割れ試験で良好であった。
The results show that in the hydrogen-induced cracking test and the sulfide stress corrosion cracking test, as shown in Tables 5 and 7, those of the comparative examples (samples NO 16, 18, 20, 22, in Table 5;
Nos. 24, 26, and sample Nos. 28 to 33 in Table 7), blisters, cracks, pitting corrosion, spot rust, etc. were found in the appearance, and those obtained by spraying titanium dioxide in an ultrasonic flaw detection test (Sample 28,
Defects were observed except for 36). On the other hand, those coated with the inhibitor of the present invention (samples NO1 to NO in Table 5)
5 and samples No. 11 to No. 15) in Table 7, no abnormalities were found in the appearance, and no defects were found in the ultrasonic flaw detection test. On the other hand, in the hydrogen amount measurement test by the glycerin substitution method, as shown in Table 6, those of Comparative Example (Table 6
Sample No.17, 19, 21, 23, 25, 27)
Except for those sprayed with titanium dioxide (Sample 28),
A large amount of absorbed hydrogen was observed, but the one coated with the inhibitor of the present invention showed almost no absorbed amount of hydrogen. From the above results, the one coated with the inhibitor of the present invention was good in the hydrogen-induced cracking test, the hydrogen content measurement test, and the sulfide stress corrosion cracking test.

【0033】実施例2Embodiment 2

【0034】石油精製装置の常圧蒸留器塔頂より排出さ
れる気体ガスは、ガス吸収装置に導入され、LPガスや
硫化水素等が含まれ、各機器の精製工程によって、燃料
ガスと廃棄ガスに分離される。又、廃棄ガス洗浄工程に
おいては、アミン系の中和剤等が用いられ、酸性濃度を
低下させる対応が計られている。しかし、燃料ガス中の
腐食ミストが機器内に局部又は全面に付着堆積し、機器
の比較的低温部分で硫化物の腐食及び水素誘起割れ、基
材の膨れが観察された。そこで、本願発明の防止剤を塗
布した模擬試験片を作製し、模擬試験片を加熱炉(マッ
クル炉)に挿入して、試験を行った。この試験は、先の
実施例1で使用した表5中の試料NO2(シリコン樹脂
に二酸化チタンを包含させた防止剤を試験用片に塗布し
たもの)と同一の模擬試験片を使用し、その模擬試験片
を加熱炉(マックル炉)の250°C中に挿入し、30
分間維持した後、常温蒸留中に急冷させた。この操作を
50回繰り返し、模擬試験片の熱衝撃試験を行った。
尚、模擬試験片として、シリコン樹脂に二酸化チタンを
包含させた防止剤を使用したのは、使用温度が250°
Cを考慮したためである。結果は、防止剤の膨れ、シリ
コン樹脂の劣化状況、密着性に異常のないことが確認さ
れた。尚、既存実機器への防止剤実施工は、現状2ヵ年
毎の定期点検開放時に現地点検したが防止剤は全て異常
なく良好である。以後、防止剤の効果年数を追跡確証と
する。
The gas gas discharged from the overhead of the atmospheric distillation unit of the petroleum refining apparatus is introduced into the gas absorption apparatus and contains LP gas, hydrogen sulfide and the like. Depending on the refining process of each device, the fuel gas and the waste gas are discharged. Is separated into Also, in the waste gas cleaning step, an amine-based neutralizing agent or the like is used to reduce the acid concentration. However, corrosion mist in fuel gas was locally or entirely deposited inside the equipment, and corrosion of sulfide and hydrogen-induced cracking and swelling of the base material were observed in a relatively low temperature portion of the equipment. Therefore, a simulated test piece coated with the inhibitor of the present invention was prepared, and the simulated test piece was inserted into a heating furnace (muckle furnace) and tested. This test uses the same simulated test piece as the sample NO2 in Table 5 used in Example 1 above (the test piece is coated with an inhibitor in which titanium dioxide is included in a silicon resin), Insert the simulated test piece into the heating furnace (Muckle furnace) at 250 ° C,
After maintaining for a minute, it was quenched during normal temperature distillation. This operation was repeated 50 times to perform a thermal shock test on the simulated test piece.
In addition, as the simulated test piece, the inhibitor in which the titanium dioxide is included in the silicon resin is used because the operating temperature is 250 °.
This is because C is taken into consideration. As a result, it was confirmed that there was no swelling of the inhibitor, deterioration of the silicone resin, and adhesion. In addition, the preventive agent implementation work on the existing actual equipment was inspected on-site at the time of regular inspection and opening every two years, but all the preventive agents are in good condition. After that, the number of years of effectiveness of the preventive agent will be used as the follow-up confirmation.

【0035】[0035]

【発明の効果】以上、本願発明の金属表面の腐食等の防
止剤は、腐食環境下における腐食、腐食割れを効果的に
防止できる。又、硫化物腐食または硫化物腐食割れなら
びに水素誘起割れをも防止でき、しかも、高温下でも、
基材との熱膨張係数差による皮膜の膨れや亀裂等の発生
を防止できる。従って、石油および石炭、コークスなど
の精製または燃焼に用いる金属製機器の表面の腐食等の
防止剤として適したものとなる。
As described above, the metal surface corrosion inhibitor of the present invention can effectively prevent corrosion and corrosion cracking in a corrosive environment. It can also prevent sulfide corrosion or sulfide corrosion cracking and hydrogen-induced cracking, and even at high temperatures,
It is possible to prevent swelling and cracking of the film due to the difference in thermal expansion coefficient from the base material. Therefore, it is suitable as an inhibitor for corrosion of the surface of metal equipment used for refining or burning petroleum, coal, coke and the like.

【0036】又、本願発明の金属表面の腐食等の防止方
法は、従来の溶射等に比し、容易に且つ短時間で行うこ
とができる。又、粒状の二酸化チタンを包含した防止剤
を使用することにより、硫化物腐食等による孔食腐食状
態の凹部に二酸化チタンを容易且つ確実に充填でき、孔
食腐食状態の機器等の補修を行うことができる。
Further, the method of preventing corrosion of the metal surface of the present invention can be carried out easily and in a short time as compared with the conventional thermal spraying. In addition, by using an inhibitor containing granular titanium dioxide, titanium dioxide can be easily and surely filled in the concave portion in the pitting corrosion state due to sulfide corrosion, etc., and the equipment in the pitting corrosion state is repaired. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の防止剤を、基材に塗布した状態の断
面説明図である。
FIG. 1 is a cross-sectional explanatory view of a state in which an inhibitor of the present invention is applied to a base material.

【図2】各種の溶射皮膜及び鉄素材とともに、本願発明
の一実施形態の防止剤の熱膨張性係数を折れ線グラフで
表した図表である。
FIG. 2 is a line graph showing the thermal expansion coefficient of an inhibitor according to an embodiment of the present invention together with various thermal spray coatings and iron materials.

【図3】(A) は、本願発明の防止剤を試験用材に塗布し
た試験片の一部を省略した横断面図、(B) は、その縦断
面図である。
FIG. 3A is a cross-sectional view in which a part of a test piece in which the inhibitor of the present invention is applied to a test material is omitted, and FIG. 3B is a vertical cross-sectional view thereof.

【図4】硫化物応力腐食割れ試験方法に用いる試験器具
の説明図である。
FIG. 4 is an explanatory diagram of a test device used in a sulfide stress corrosion cracking test method.

【図5】基材に溶射を施した従来例の断面説明図であ
る。
FIG. 5 is a cross-sectional explanatory view of a conventional example in which a base material is sprayed.

【符号の説明】[Explanation of symbols]

1 防止剤 2 二酸化チタンの粒 3 皮膜形成剤 K 基材 K1 凹部 1 inhibitor 2 particles of titanium dioxide 3 film forming agent K base material K1 recess

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有機系又は無機系の皮膜形成剤と、粒状
の二酸化チタンとが配合されてなることを特徴とする金
属表面の腐食等の防止剤。
1. A preventive agent for corrosion of a metal surface, which comprises an organic or inorganic film forming agent and granular titanium dioxide.
【請求項2】 有機系又は無機系の皮膜形成剤と粒状の
二酸化チタンとを配合した防止剤を準備し、この防止剤
を、流動性を有する状態で金属表面に塗布することを特
徴とする金属表面の腐食等の防止方法。
2. An inhibitor prepared by mixing an organic or inorganic film forming agent and granular titanium dioxide is prepared, and the inhibitor is applied to a metal surface in a fluid state. How to prevent metal surface corrosion.
JP11050896A 1996-04-05 1996-04-05 Inhibitor of sulfide corrosion cracking and hydrogen-induced cracking on metal surface and method for preventing sulfide corrosion cracking and hydrogen-induced cracking of metal surface Expired - Lifetime JP3426846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11050896A JP3426846B2 (en) 1996-04-05 1996-04-05 Inhibitor of sulfide corrosion cracking and hydrogen-induced cracking on metal surface and method for preventing sulfide corrosion cracking and hydrogen-induced cracking of metal surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11050896A JP3426846B2 (en) 1996-04-05 1996-04-05 Inhibitor of sulfide corrosion cracking and hydrogen-induced cracking on metal surface and method for preventing sulfide corrosion cracking and hydrogen-induced cracking of metal surface

Publications (2)

Publication Number Publication Date
JPH09272990A true JPH09272990A (en) 1997-10-21
JP3426846B2 JP3426846B2 (en) 2003-07-14

Family

ID=14537564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11050896A Expired - Lifetime JP3426846B2 (en) 1996-04-05 1996-04-05 Inhibitor of sulfide corrosion cracking and hydrogen-induced cracking on metal surface and method for preventing sulfide corrosion cracking and hydrogen-induced cracking of metal surface

Country Status (1)

Country Link
JP (1) JP3426846B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009315A (en) * 2005-06-01 2007-01-18 Central Res Inst Of Electric Power Ind Sulfidation corrosion resistant high temperature member, method for producing the same, and method for preventing sulfidation corrosion in high temperature member
JP2007327107A (en) * 2006-06-08 2007-12-20 Petroleum Energy Center Metallic structure having coating of rust-preventive agent and method for producing the metallic structure
WO2008117665A1 (en) 2007-03-27 2008-10-02 Central Research Institute Of Electric Power Industry Method of preventing sulfide corrosion, high-temperature member with resistance to sulfide corrosion, and method of repairing heat-transfer tube
JP2018119243A (en) * 2017-01-26 2018-08-02 新日鐵住金株式会社 Steel cord and rubber-steel cord composite

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009315A (en) * 2005-06-01 2007-01-18 Central Res Inst Of Electric Power Ind Sulfidation corrosion resistant high temperature member, method for producing the same, and method for preventing sulfidation corrosion in high temperature member
JP2007327107A (en) * 2006-06-08 2007-12-20 Petroleum Energy Center Metallic structure having coating of rust-preventive agent and method for producing the metallic structure
WO2008117665A1 (en) 2007-03-27 2008-10-02 Central Research Institute Of Electric Power Industry Method of preventing sulfide corrosion, high-temperature member with resistance to sulfide corrosion, and method of repairing heat-transfer tube
JP5110608B2 (en) * 2007-03-27 2012-12-26 一般財団法人電力中央研究所 Sulfide corrosion prevention method, sulfide corrosion resistant high temperature member and heat transfer tube repair method
JP2018119243A (en) * 2017-01-26 2018-08-02 新日鐵住金株式会社 Steel cord and rubber-steel cord composite

Also Published As

Publication number Publication date
JP3426846B2 (en) 2003-07-14

Similar Documents

Publication Publication Date Title
CN112893055A (en) COREX gas chamber bottom plate anticorrosion treatment method
TWI427160B (en) Corrosion resistance of the ship with excellent steel
JP3426846B2 (en) Inhibitor of sulfide corrosion cracking and hydrogen-induced cracking on metal surface and method for preventing sulfide corrosion cracking and hydrogen-induced cracking of metal surface
US3574652A (en) Protective coating on a metallic surface
Standard Surface preparation and protective coating
Calabrese et al. Surface characterization of atmospherically corroded and blast cleaned steel
Dohojda et al. Protection of steel structures with paint coatings in the context of environmental pollution
Bischoff et al. Fouling repellent coating for shell-and-tube heat exchangers
Paglia et al. The deterioration of 100 years old coated steel bridges
O'Kane et al. Detection and monitoring of naphthenic acid corrosion in a visbreaker unit using hydrogen flux measurements
Cotton Effects of service environments on aluminum-brazed titanium (ABTi)
Eun et al. Fabrication and Construction of Equipment and Piping
Norris Preparing Steel Surfaces for Thick-Film Intumescent Fireproofing
Jaric et al. Inspection and repair quality plan of regeneration gas heater
Soape Investigating the Effects of Corrosion on the Fatigue Life of Welded Steel Attachments
Al-Kaseasbeh Graduate School
Maitra et al. Optimizing Wallpaper Cladding Repair of Wet FGD Air Pollution Control Systems in the Power Industry
Aller et al. Advanced ceramic coating to prevent hot vanadate ashes corrosion in a coke calciner heat recuperator
Majeed CRITICAL INTERFACIAL CHARACTERISTICS OF EPOXY COATING ADHESION ON STEEL SURFACES
Yamshchikova et al. Selection of Protective Coating System for Tank Inner Surface
Knotkova et al. Crevice corrosion in bolted lap joints made of weathering steels
Jackel Surface Preparation, a Comparative Analysis of Existing Standards: A Proposed Marine Standard
Appleman et al. Maintenance Coating of Weathering Steel: Interim Report
Mendonçaa et al. Analysis and elaboration of anti-corrosion coatings processes of external piping in corrosive atmospheres
Qi Use of Hot Water Pressure Wash Surface Preparation and HRCSA Coatings in Bridge Maintenance

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term