JPH09272891A - Electric-insulating oil and its production - Google Patents

Electric-insulating oil and its production

Info

Publication number
JPH09272891A
JPH09272891A JP8256196A JP8256196A JPH09272891A JP H09272891 A JPH09272891 A JP H09272891A JP 8256196 A JP8256196 A JP 8256196A JP 8256196 A JP8256196 A JP 8256196A JP H09272891 A JPH09272891 A JP H09272891A
Authority
JP
Japan
Prior art keywords
oil
insulating oil
less
base material
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8256196A
Other languages
Japanese (ja)
Other versions
JP3270677B2 (en
Inventor
Mitsufumi Matsunaga
充史 松永
Kazumitsu Fujiwara
一光 藤原
Yoshiyuki Morishima
欣之 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13777913&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH09272891(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP8256196A priority Critical patent/JP3270677B2/en
Publication of JPH09272891A publication Critical patent/JPH09272891A/en
Application granted granted Critical
Publication of JP3270677B2 publication Critical patent/JP3270677B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Insulating Materials (AREA)
  • Lubricants (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject oil which comprises a mineral oil as a base oil, specific amounts of a basic nitrogen component, a nonbasic nitrogen component, a sulfide sulfur component and an aromatic hydrocarbon component and is excellent in oxidation stability, electric-insulating property and, hydrogen gas absorbency. SOLUTION: This oil contains a base oil purified by hydrogenation and an antioxidant of a phenol compound and possesses a composition containing a total nitrogen component of less than 15ppm, a sulfide sulfur component of less than 50ppm and 15-40mass% of an aromatic hydrocarbon component. In order to obtain this electric-insulating oil, a mineral oil distillate in the range of a boiling point of 250-500 deg.C separated by initially distilling from a raw oil is treated by hydrogenation at 320-380 deg.C in the presence of a hydrogenation catalyst to obtain an electric-insulating oil base material having a composition containing a total nitrogen component of less than 15ppm, a sulfide sulfur component of less than 50ppm and 15-40mass% of an aromatic hydrocarbon. Then, 0.03-3mass% of an antioxidant of a phenol compound are added to this base material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鉱油を基油とする
電気絶縁油及びその製造方法に関し、詳しくは酸化安定
性と電気絶縁性、特に酸化初期における誘電正接の増大
を抑制し、しかも水素ガス吸収性に優れた電気絶縁油及
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrically insulating oil using a mineral oil as a base oil and a method for producing the same, and more specifically, to suppress oxidation stability and electrical insulation, particularly increase in dielectric loss tangent at the initial stage of oxidation, and to prevent hydrogen. TECHNICAL FIELD The present invention relates to an electric insulating oil having excellent gas absorption and a method for producing the same.

【0002】[0002]

【従来の技術】電気絶縁油は、変圧器、高圧ケーブル、
高圧遮断器、コンデンサー等の高圧電気機器に充填さ
れ、長期安定な耐酸化性と電気特性と耐金属腐食性を維
持することが必要である。
2. Description of the Related Art Electrical insulating oil is used for transformers, high voltage cables,
It is necessary to fill high-voltage electrical equipment such as high-voltage circuit breakers and capacitors, and maintain stable long-term stable oxidation resistance, electrical characteristics, and metal corrosion resistance.

【0003】さらに経済的に大容量送電を行うために、
50万ボルト乃至100 万ボルトの超高圧送電技術が導入さ
れるに伴い、流動帯電の問題が重要視され始めている。
これは、電気絶縁油の循環量が増加するにつれて電荷の
分離が発生し、放電による絶縁破壊に至ることがあるた
めである。この流動帯電現象は、電気絶縁油の誘電正接
(tan δ、JIS C 2101に規定の方法で測定される。以下
同じ。)の増大として観測される。これは油中に発生す
る導電性成分が原因の一つとされ、一般に酸化初期に極
大値が観測される。このため酸化初期におけるtan δの
増大傾向(以下、必要により「 tanδ max」という。)
の小さい電気絶縁油が望まれている。
In order to carry out large-capacity power transmission more economically,
With the introduction of ultra-high voltage transmission technology of 500,000 to 1 million volts, the problem of flow electrification is becoming more important.
This is because as the circulation amount of the electrical insulating oil increases, charge separation may occur, which may result in dielectric breakdown due to discharge. This flow charging phenomenon is observed as an increase in the dielectric loss tangent (tan δ, measured by the method specified in JIS C 2101; the same applies hereinafter) of the electrically insulating oil. One of the causes of this is the conductive component generated in oil, and the maximum value is generally observed at the initial stage of oxidation. Therefore, tan δ tends to increase in the initial stage of oxidation (hereinafter, referred to as “tan δ max” if necessary).
There is a demand for an electric insulating oil having a small value.

【0004】本出願人は、電気絶縁油中の特定成分の含
有量を特定範囲とすることにより、このような誘電正接
の一般的な悪化を抑制できることを提案している(特開
平6−325622号公報) 。
The present applicant has proposed that such a general deterioration of the dielectric loss tangent can be suppressed by setting the content of the specific component in the electric insulating oil within a specific range (Japanese Patent Laid-Open No. 6-325622). Issue).

【0005】[0005]

【発明が解決しようとする課題】特開平6−325622号公
報等の従来技術によって、誘電正接の一時的悪化を、あ
る程度は抑制することはできる。しかし、長期の酸化安
定性と酸化初期におけるtan δ maxとは、相反する現象
であり、特開平6−325622号公報記載の技術は、これら
を最適化したものであるが、両者ともに非常に優れた特
性を示すとは言えないものであった。このため、従来の
電気絶縁油に比べ、格段に優れた酸化安定性とtan δ m
ax双方の特性が得られる電気絶縁油が要請されている。
With the prior art such as Japanese Patent Laid-Open No. 6-325622, the temporary deterioration of the dielectric loss tangent can be suppressed to some extent. However, long-term oxidation stability and tan δ max at the initial stage of oxidation are contradictory phenomena, and the technique described in JP-A-6-325622 is an optimization of these, but both are very excellent. It could not be said that it exhibited the characteristics. Therefore, compared with conventional electrical insulating oils, the oxidation stability and tan δ m are far superior.
There is a demand for an electric insulating oil that can obtain the characteristics of both ax and ax.

【0006】そこで、本発明は、酸化安定性、tan δ m
axの抑制性及び水素ガス吸収性の全てを兼ね備えた電気
絶縁油及びその製造方法を提供することを目的とする。
具体的には、本発明は、酸化安定性という面では、酸化
安定性が0.6mgKOH/g以下(JIS C 2320に規定する品質)
はもとより、更には0.05mgKOH/g以下を満足し、
かつtan δ maxの抑制性の面では、tan δ max値が0.3
%以下、さらには0.1%以下を満足し,かつ高い水素ガ
ス吸収性を有するような、電気絶縁油及びその製造方法
を提供することを目的とする。
Therefore, the present invention provides the oxidative stability, tan δ m
An object of the present invention is to provide an electric insulating oil having both ax suppressing property and hydrogen gas absorbing property and a method for producing the same.
Specifically, in the present invention, in terms of oxidative stability, the oxidative stability is 0.6 mgKOH / g or less (the quality specified in JIS C 2320).
Of course, further satisfy 0.05mgKOH / g or less,
In addition, in terms of suppressing tan δ max, the tan δ max value is 0.3
% And further 0.1% or less, and an object of the present invention is to provide an electrically insulating oil having a high hydrogen gas absorption and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記課題を
解決すべく鋭意検討を重ねた結果、本発明に至ったもの
である。即ち、本発明の電気絶縁油は、水素化精製した
基油を用い、フェノール化合物からなる酸化防止剤を含
有する電気絶縁油において、全窒素分が15ppm以下、ス
ルフィド硫黄分が50ppm 以下及び芳香族炭化水素分が15
〜40質量%の組成を有することを特徴とする、電気絶縁
油に係るものである。
The inventor of the present invention has reached the present invention as a result of extensive studies to solve the above problems. That is, the electrical insulating oil of the present invention, using a hydrorefined base oil, in an electrical insulating oil containing an antioxidant consisting of a phenol compound, the total nitrogen content is 15ppm or less, sulfide sulfur content is 50ppm or less and aromatic Hydrocarbon content is 15
The present invention relates to an electrically insulating oil, which has a composition of about 40% by mass.

【0008】また本発明の電気絶縁油の製造方法は、原
油から蒸留分離した沸点範囲250 〜500 ℃の鉱油留分
を、水素化精製触媒を用いて、温度320 〜380 ℃の範囲
で水素化処理し、全窒素分が15ppm 以下、スルフィド硫
黄分が50ppm 以下、芳香族炭化水素が15〜40質量%の組
成を有する電気絶縁油基材を製造し、この電気絶縁油基
材に、フェノール化合物からなる酸化防止剤を0.03〜3
質量%含有させることを特徴とする。
In the method for producing an electrically insulating oil of the present invention, a mineral oil fraction having a boiling point range of 250 to 500 ° C. which is distilled and separated from crude oil is hydrolyzed at a temperature of 320 to 380 ° C. using a hydrorefining catalyst. Treated to produce an electric insulating oil base material having a composition of total nitrogen content of 15 ppm or less, sulfide sulfur content of 50 ppm or less, and aromatic hydrocarbon of 15 to 40% by mass. Antioxidant consisting of 0.03-3
It is characterized by containing mass%.

【0009】前記水素化処理の後に、必要に応じて、芳
香族炭化水素を選択的に抽出する溶剤により、ラフィネ
ート収率60〜90容量%の条件で溶剤抽出精製を行うこと
により、全窒素分が15ppm 以下、スルフィド型硫黄分が
50ppm 以下、芳香族炭化窒素分が15〜40質量%の組成を
有する電気絶縁油基材を製造できる。
After the hydrogenation treatment, if necessary, a solvent for selectively extracting aromatic hydrocarbons is used to carry out solvent extraction and purification under the conditions of a raffinate yield of 60 to 90% by volume to obtain a total nitrogen content. Is 15ppm or less, sulfide type sulfur content is
An electrically insulating oil base material having a composition of 50 ppm or less and an aromatic nitrogen carbon content of 15 to 40 mass% can be produced.

【0010】また、本発明の電気絶縁油の製造方法にお
いては、下記の各工程により、塩基性窒素分が1ppm 以
下、非塩基性窒素分が15ppm 以下、スルフィド型硫黄分
が50ppm 以下及び芳香族炭化水素含有量が15〜40質量%
の組成を有する電気絶縁油を製造することができる。
In the method for producing an electric insulating oil of the present invention, the basic nitrogen content is 1 ppm or less, the non-basic nitrogen content is 15 ppm or less, the sulfide-type sulfur content is 50 ppm or less, and the aromatic group by the following steps. Hydrocarbon content 15-40% by mass
An electric insulating oil having the composition of can be produced.

【0011】(i) 原油から蒸留分離した沸点範囲250 〜
500 ℃の鉱油留分を、水素化精製触媒を用いて、温度32
0 〜380 ℃の範囲で水素化処理し、必要に応じて、(ii)
前記水素化処理後に、芳香族炭化水素を選択的に抽出す
る溶剤により、ラフィネート収率60〜90容量%の条件で
溶剤抽出精製を行うことによって、全窒素分が15ppm以
下、スルフィド型硫黄分が50ppm 以下、芳香族炭化水素
分が15〜40質量%の組成を有する電気絶縁油基材を製造
する。更に、必要に応じて、(iii) 水素化処理の前又は
後に脱蝋処理を行い、所定の流動点を得る工程を行う。
この脱蝋は、溶剤脱蝋でも水素化脱蝋でも良い。更に必
要に応じて、(iv)アルキルベンゼン、酸化防止剤を電気
絶縁油基材に混合する前又は混合した後に、固体吸着剤
処理を行い、(v) 混合した電気絶縁油基材100 重量部に
対して、長鎖アルキルベンゼンを10〜40重量部を混合
し、(vi)フェノール化合物からなる酸化防止剤を電気絶
縁油基材に対して0.03〜3質量%添加する。
(I) Boiling point range of 250-
The mineral oil fraction at 500 ° C was heated to 32 ° C using a hydrorefining catalyst.
Hydrotreating in the range of 0 to 380 ℃, if necessary, (ii)
After the hydrogenation treatment, with a solvent that selectively extracts aromatic hydrocarbons, by performing solvent extraction purification under the conditions of a raffinate yield of 60 to 90% by volume, the total nitrogen content is 15 ppm or less, and the sulfide-type sulfur content is An electrically insulating oil base material having a composition of 50 ppm or less and an aromatic hydrocarbon content of 15 to 40 mass% is produced. Further, if necessary, (iii) a dewaxing treatment is performed before or after the hydrotreating treatment to perform a step of obtaining a predetermined pour point.
This dewaxing may be solvent dewaxing or hydrodewaxing. Further, if necessary, (iv) alkylbenzene, antioxidant is treated with a solid adsorbent before or after mixing with the electric insulating oil base material, and (v) 100 parts by weight of the mixed electric insulating oil base material is added. On the other hand, 10 to 40 parts by weight of long-chain alkylbenzene is mixed, and (vi) an antioxidant consisting of a phenol compound is added in an amount of 0.03 to 3% by mass based on the electric insulating oil base material.

【0012】以下、本発明の内容を詳細に説明する。は
じめに本明細書で使用する用語について説明する。
The contents of the present invention will be described in detail below. First, terms used in the present specification will be described.

【0013】全窒素分 (Nt) ;JIS K 2609 (1980) 「原
油及び石油製品窒素分試験方法」に規定の方法で測定さ
れる値であり、有機窒素化合物として油中に含有される
窒素分の総量をいう。
Total nitrogen content (Nt); value measured by the method specified in JIS K 2609 (1980) "Test method for nitrogen content of crude oil and petroleum products". Nitrogen content contained in oil as organic nitrogen compound The total amount of

【0014】塩基性窒素分 (Nb) ;米国UOP社試験法
(UOP Method) No.313〜70 「Nitrogen Bases in Petr
oleum Distillates by Color Indicator Titration」で
規定される方法で測定される値である。この測定法は試
料油を氷酢酸に溶解し、内部指示薬としてクリスタルバ
イオレットを用い、氷酢酸中で過塩素酸によって滴定す
る方法である。
Basic Nitrogen Content (Nb); UOP Method No.313-70 "Nitrogen Bases in Petr"
oleum Distillates by Color Indicator Titration ”. In this measurement method, a sample oil is dissolved in glacial acetic acid, and crystal violet is used as an internal indicator, and titration is performed with perchloric acid in glacial acetic acid.

【0015】非塩基性窒素分 (Nn) ;前記Nt及びNbから
次式によって求められる。 Nn=Nt−Nb 全窒素分は、もともと原油中に天然に存在するののほ
か、水素化精製工程での核水添、脱アルキル等で変成さ
れた有機窒素化合物の構成元素であり、潤滑油留分中の
窒素化合物としては、キノリン、アクリジン、インドー
ル、ピロール、カルバゾールの誘導体が代表的である、
塩基性窒素分は前述のように過塩素酸による滴定で検知
され得る塩基性を有する窒素化合物の構成元素であり、
NtとNbの差が非塩基性窒素分である。
Non-basic nitrogen content (Nn); determined from the above Nt and Nb by the following formula. Nn = Nt-Nb Total nitrogen is a constituent element of organic nitrogen compounds that have been naturally present in crude oil and have been modified by nuclear hydrogenation and dealkylation in the hydrorefining process. Typical nitrogen compounds in the fraction are quinoline, acridine, indole, pyrrole and carbazole derivatives.
The basic nitrogen component is a constituent element of a nitrogen compound having basicity that can be detected by titration with perchloric acid as described above,
The difference between Nt and Nb is the non-basic nitrogen content.

【0016】全硫黄分 (St) ;油中に存在する有機硫黄
化合物を構成する硫黄分の総量である。かかる有機硫黄
化合物には、スルフィド類、チオフェン類等が包含され
る。StはJIS K 2541に規定する方法で測定される。
Total sulfur content (St): The total amount of sulfur content that constitutes an organic sulfur compound present in oil. Such organic sulfur compounds include sulfides and thiophenes. St is measured by the method specified in JIS K 2541.

【0017】スルフィド型硫黄分 (Sf) ;下記一般式
(i) 又は(ii)で示される有機硫黄化合物を構成している
硫黄の総量である。即ち、鉱物中にもともと含有されて
いたもの、水素化処理中にチオフェン型有機硫黄化合物
が核水素化されて精製したもの、あるいは新たに添加さ
れたもののいずれでもよい。式中、R1 、R2 は炭素数
10〜15のアルキル基又は芳香族炭化水素を表わす。
3 、R4 は、水素原子又はアルキル基を表す。
Sulfide type sulfur (Sf); the following general formula
It is the total amount of sulfur constituting the organic sulfur compound shown in (i) or (ii). That is, it may be either one originally contained in the mineral, one obtained by purifying the thiophene type organic sulfur compound by nuclear hydrogenation during the hydrogenation treatment, or one newly added. In the formula, R 1 and R 2 are carbon numbers
It represents an alkyl group of 10 to 15 or an aromatic hydrocarbon.
R 3 and R 4 represent a hydrogen atom or an alkyl group.

【0018】一般式(i) :〔R1 −S−R2 〕 一般式(ii)General formula (i): [R 1 -S-R 2 ] General formula (ii)

【化1】 Embedded image

【0019】本発明でいうスルフィド型硫黄分とは、以
下に説明する方法により分離・定量される値である。通
常使用される薄層クロマトグラフィー用の薄層板(例え
ばガラス板上に0.25mm程度の厚さにシリカゲルを塗布し
たもの)に塩化パラジウムの0.5 wt%の塩酸酸性のアセ
トン−水混合液を噴霧し、風乾後試料油の2〜4μl を
スポット点着し、四塩化炭素液により点着位置より約10
cm展開させた後、クロロホルム/メタノール(容積比9
/1)混合液で更に約5cm展開する。
The sulfide type sulfur content in the present invention is a value which is separated and quantified by the method described below. Spraying a 0.5 wt% hydrochloric acid-acidified acetone-water mixture of palladium chloride onto a commonly used thin-layer chromatography thin-layer plate (for example, a glass plate coated with silica gel to a thickness of about 0.25 mm) Then, after air-drying, 2-4 μl of the sample oil is spotted, and carbon tetrachloride solution is used for about 10 minutes from the spotting position.
cm, and then chloroform / methanol (volume ratio 9
/ 1) Develop about 5 cm with the mixed solution.

【0020】この操作により、スルフィド型硫黄化合
物、炭化水素及び他の有機硫黄化合物と分離し、黄色の
発色スポットを示す。該発色スポット部に、デンシトメ
ーター(例えば島津製作所2波長クロマトスキャナーOS
−910 型) で380nm の可視光をあて、吸光度を求める。
試料油を測定する際に、スルフィド濃度既知の試料を同
時に展開し、同様の測定を行う。これによって、試料中
に含有されるスルフィド型硫黄分が定量される。
By this operation, sulfide type sulfur compounds, hydrocarbons and other organic sulfur compounds are separated, and yellow colored spots are shown. A densitometer (such as Shimadzu 2-wavelength chromatograph OS
Apply 380 nm visible light with a −910 type) and obtain the absorbance.
When measuring a sample oil, a sample with a known sulfide concentration is developed at the same time, and the same measurement is performed. Thereby, the sulfide type sulfur content contained in the sample is quantified.

【0021】本発明においては、芳香族炭化水素量は、
ASTM D2549−84に準拠した方法により定量される値であ
る。また、ASTM D5186−91に準拠して超臨界流体クロマ
トグラフィー(SFC) で測定しても同様な結果が得られ
る。
In the present invention, the amount of aromatic hydrocarbon is
It is a value determined by a method according to ASTM D2549-84. Similar results can be obtained by measuring with supercritical fluid chromatography (SFC) according to ASTM D5186-91.

【0022】次に本発明の電気絶縁油について説明す
る。本発明で用いられる基油は、粘度5〜30cST (40
℃) を有する鉱油、又は鉱油と長鎖アルキルベンゼンの
混合物であることが好ましい。長鎖アルキルベンゼン
は、電気絶縁油として公知のものであり、具体的には炭
素数9〜36の直鎖又は分岐のアルキル基で置換されたア
ルキルベンゼンが好ましい。
Next, the electric insulating oil of the present invention will be described. The base oil used in the present invention has a viscosity of 5 to 30 cST (40
C)) or a mixture of mineral oil and long-chain alkylbenzene. The long-chain alkylbenzene is known as an electrically insulating oil, and specifically, an alkylbenzene substituted with a linear or branched alkyl group having 9 to 36 carbon atoms is preferable.

【0023】本発明の電気絶縁油は、前記の基油中に、
塩基性窒素分Nb、非塩基性窒素分Nn、スルフィド硫黄分
Sf及び芳香族炭化水素分が特定量ないし特定範囲の量を
含有する。
The electrical insulating oil of the present invention comprises the above base oil,
Basic nitrogen content Nb, non-basic nitrogen content Nn, sulfide sulfur content
Sf and the aromatic hydrocarbon content contain a specific amount or a specific range amount.

【0024】即ち、酸化安定性という面で、酸価が0.6m
g KOH/g 以下 (JIS C 2320に規定する品質)を満足する
ように酸化安定性を向上させるには、塩基性窒素分Nbは
1ppm 以下に制御され、好ましくは0となるように制御
される。Nnは、酸価の増加には問題ないが、色相劣化を
もたらすため、15ppm 以下が好ましく、さらには7ppm
以下が好ましい。
That is, in terms of oxidative stability, the acid value is 0.6 m.
In order to improve the oxidation stability so as to satisfy g KOH / g or less (the quality specified in JIS C 2320), the basic nitrogen content Nb is controlled to 1 ppm or less, preferably 0. . Nn has no problem in increasing the acid value, but since it causes hue deterioration, it is preferably 15 ppm or less, further 7 ppm.
The following is preferred.

【0025】Sfは、フェノール系酸化防止剤の添加効果
を妨害するため、少ない方が望ましい。ただし150ppm以
下であり、酸価0.05mg KOH/gを満たせば問題はない。し
かしながら tanδ maxを0.1 %以下に保つには、Sfは50
ppm 以下でなければならず、更に好ましくは10ppm 以下
である。
Since Sf interferes with the effect of addition of the phenolic antioxidant, it is desirable that the Sf be small. However, it is 150 ppm or less, and there is no problem if the acid value is 0.05 mg KOH / g. However, to keep tan δ max below 0.1%, Sf should be 50
It should be below ppm, and more preferably below 10 ppm.

【0026】また電気絶縁油が具備しなければならない
耐コロナ性、即ち水素ガス吸収性を十分に付与するに
は、芳香族炭化水素が適当量必要であり、具体的には1
5質量%以上とすることが必要であり、20質量%以上含
有することが好ましい。また、芳香族炭化水素が40質量
%を越えて存在すると、光安定性の劣化を導く。
Further, in order to sufficiently impart the corona resistance that the electric insulating oil must have, that is, the hydrogen gas absorption, an appropriate amount of aromatic hydrocarbon is required, and specifically, 1
It is necessary to make it 5 mass% or more, and it is preferable to contain 20 mass% or more. If the aromatic hydrocarbon exceeds 40% by mass, the photostability is deteriorated.

【0027】以上のことを整理すると、塩基性窒素分Nb
は1ppm 以下、好ましくはゼロ、非塩基性窒素分Nnが15
ppm 以下、好ましくは7ppm 以下、スルフィド型硫黄分
Sfが50ppm 以下、好ましくは10ppm 以下、芳香族炭化水
素分15〜40質量%、好ましくは20〜40質量%含有するこ
とである。
Summarizing the above, the basic nitrogen content Nb
Is 1 ppm or less, preferably zero, and the non-basic nitrogen content Nn is 15
ppm or less, preferably 7 ppm or less, sulfide type sulfur content
Sf is 50 ppm or less, preferably 10 ppm or less, and aromatic hydrocarbon content is 15 to 40% by mass, preferably 20 to 40% by mass.

【0028】次いで、水素化精製処理の好ましい態様に
ついて述べる。鉱油留分を、水素化精製触媒を用いて、
320℃〜380℃の範囲で水素化処理し、必要に応じ
て、水素化処理後に、芳香族炭化水素を選択的に抽出す
る溶剤により、ラフネート収率60〜90容量%の条件
で溶剤抽出精製を行うことによって、精製鉱油を製造す
る。水素化精製触媒としては、シリカ、アルミナ、シリ
カアルミナ等の担体に、Ni、Co、Mo、W等の金属
の一種または二種以上を担持した触媒を使用できる。
Next, a preferred embodiment of the hydrorefining treatment will be described. The mineral oil fraction was converted into a hydrorefining catalyst using
Hydrotreating in the range of 320 ° C. to 380 ° C., and optionally, after the hydrotreating, with a solvent for selectively extracting aromatic hydrocarbons, solvent extraction purification under conditions of a rafnate yield of 60 to 90% by volume. To produce a refined mineral oil. As the hydrorefining catalyst, a catalyst in which one or more metals such as Ni, Co, Mo and W are supported on a carrier such as silica, alumina or silica-alumina can be used.

【0029】水素化精製処理の条件としては、温度を3
20℃〜380℃の範囲とする以外に、水素分圧を45
〜120kg/cm2 の範囲に設定することが好まし
く、より好ましくは、60〜100kg/cm2 の範囲
に設定する。他の条件としては、液空間速度(LHS
V)を0.2〜2.0Hr- 1 とする。更に脱硫率が好
ましくは95%以上、より好ましくは98%以上となる
ように条件を設定し、脱窒素率が好ましくは95%以
上、より好ましくは98%以上となるように条件設定す
ることが好ましく、かつ分解率5%以下となるように条
件設定することが好ましい。
The conditions for the hydrorefining treatment are that the temperature is 3
In addition to the range of 20 ℃ ~ 380 ℃, hydrogen partial pressure 45
It is preferable to set in the range of 120 to 120 kg / cm 2 , and more preferably in the range of 60 to 100 kg / cm 2 . Other conditions include liquid space velocity (LHS
The V) 0.2~2.0Hr - 1 to. Further, the conditions may be set so that the desulfurization rate is preferably 95% or more, more preferably 98% or more, and the denitrification rate is preferably 95% or more, more preferably 98% or more. It is preferable to set the conditions so that the decomposition rate is 5% or less.

【0030】〔フェノール化合物〕酸化防止剤となるフ
ェノール化合物としては、下記の化学式2、3、4に示
す各フェノール化合物が好ましく、化学式2に示すフェ
ノール化合物が最も好ましい。
[Phenol Compound] As the phenol compound serving as an antioxidant, the phenol compounds represented by the following chemical formulas 2, 3, and 4 are preferable, and the phenol compound represented by the chemical formula 2 is most preferable.

【0031】[0031]

【化2】 化学式2において、R11およびR13は、炭素数3〜12の
分枝鎖アルキル基を表し、R1 2 はメチル基またはエチ
ル基または基−CH2CH2COOR14を示す。R14は、炭素数1
〜20のアルキル基を示す。この好適例としては、2,6
−ジ−ターシャリーブチルパラクレゾール、ステアリル
−β−(3,5−ジ−ターシャリーブチル−4−ヒドロ
キシフェニル)プロピオネートを例示できる。
Embedded image In Chemical Formula 2, R 11 and R 13 represents a branched alkyl group having 3 to 12 carbon atoms, R 1 2 denotes a -CH 2 CH 2 COOR 14 methyl group or an ethyl group or a group. R 14 has 1 carbon atom
Represents up to 20 alkyl groups. The preferred example is 2,6
Examples thereof include di-tert-butyl para-cresol and stearyl-β- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate.

【0032】[0032]

【化3】 化学式3において、R15は、炭素数3〜12の分枝鎖アル
キル基を表し、R16は、メチル基またはエチル基を表
し、R17は、炭素数1〜4のアルキリデン基またはメチ
レン基を表す。この好適例として、2,2′−メチレン
ビス(6−ターシャリーブチル−4−メチルフェノー
ル)、2−2′−メチレンビス(6−ターシャリーブチ
ル−4−エチルフェノール)を例示できる。
Embedded image In Chemical Formula 3, R 15 represents a branched chain alkyl group having 3 to 12 carbon atoms, R 16 represents a methyl group or an ethyl group, and R 17 represents an alkylidene group having 1 to 4 carbon atoms or a methylene group. Represent Preferred examples of this include 2,2'-methylenebis (6-tert-butyl-4-methylphenol) and 2-2'-methylenebis (6-tert-butyl-4-ethylphenol).

【0033】[0033]

【化4】 化学式4において、R18は、炭素数3〜12の分枝鎖アル
キル基を表し、R19は、水素または炭素数1〜12のアル
キル基を表す。R20は、R19が水素を表す場合は、メチ
ル基を表し、R19が炭素数1〜12のアルキル基を表す場
合は、水素を表す。R21は、直接結合、メチレン基、ま
たは炭素数1〜4のアルキリデン基を示す。この好適例
として、4,4′−メチレンビス(2,6−ジ−ターシ
ャリーブチルフェノール)を例示できる。
Embedded image In Chemical Formula 4, R 18 represents a branched chain alkyl group having 3 to 12 carbon atoms, and R 19 represents hydrogen or an alkyl group having 1 to 12 carbon atoms. R 20 represents a methyl group when R 19 represents hydrogen, and represents hydrogen when R 19 represents an alkyl group having 1 to 12 carbon atoms. R 21 represents a direct bond, a methylene group, or an alkylidene group having 1 to 4 carbon atoms. As a preferred example of this, 4,4'-methylenebis (2,6-di-tert-butylphenol) can be exemplified.

【0034】フェノール化合物の添加量は、電気絶縁油
の全重量に対して0.03〜3質量%でる。これが0.03質量
%未満であると、電気絶縁油の酸化安定性が低く、3質
量%を越えると、コストに見合った酸化安定性が得られ
ないばかりか、かえって酸化を促進することがある。こ
の観点から、フェノール化合物の添加量は電気絶縁油の
全重量に対して0.1 〜1重量%とすることが好ましく、
0.2 〜0.5 質量%とすることが特に好ましい。
The amount of the phenol compound added is 0.03 to 3% by mass based on the total weight of the electric insulating oil. If it is less than 0.03% by mass, the oxidation stability of the electrical insulating oil is low, and if it exceeds 3% by mass, not only the oxidation stability commensurate with the cost cannot be obtained, but also the oxidation may be accelerated. From this viewpoint, the addition amount of the phenol compound is preferably 0.1 to 1% by weight based on the total weight of the electric insulating oil,
It is particularly preferable that the content is 0.2 to 0.5% by mass.

【0035】〔他の添加物〕本発明による電気絶縁油に
は、金属不活性剤となるベンゾトリアゾール、その誘導
体など、また、流動点降下剤となるポリアルキルメタク
リレート、エチレン−プロピレン共重合体、アルキル化
ナフタレン重縮合体などを添加することもできる。
[Other Additives] The electrically insulating oil according to the present invention includes benzotriazole which is a metal deactivator, a derivative thereof, polyalkyl methacrylate which is a pour point depressant, ethylene-propylene copolymer, and the like. It is also possible to add an alkylated naphthalene polycondensate or the like.

【0036】[0036]

【実施例】以下、本発明の実施例に基き、本発明の内容
について更に詳細に説明すると共に本発明の効果を例証
する。なおかかる実施例によって本発明が何ら制限され
ないことはもとよりである。
Hereinafter, the contents of the present invention will be described in more detail based on examples of the present invention, and the effects of the present invention will be illustrated. It should be noted that the present invention is not limited to the embodiments.

【0037】(実施例1) 〔鉱油留分〕アラビアンライト原油から常法によって、
常圧蒸留と減圧蒸留で分離し、原料基油(40℃粘度:
9.4mm2 /g、全硫黄分:2.54質量%、全窒素分:
357ppm、沸点範囲250℃〜400℃)を得た。
(Example 1) [Mineral oil fraction] From Arabian light crude oil by a conventional method,
Separated by atmospheric distillation and vacuum distillation, raw base oil (40 ° C viscosity:
9.4 mm 2 / g, total sulfur content: 2.54% by mass, total nitrogen content:
357 ppm, boiling point range 250 ° C to 400 ° C) was obtained.

【0038】(絶縁油基材1の製造)前記原料基油を以
下の条件で水素化精製処理して、脱硫率99%、脱窒素率
97%、分解率2%で、精製鉱油を得た。水素化精製は、
触媒としてシリカアルミナ担体にニッケル1.0 質量%、
モリブデン12.0質量%を担持したものを用い、水素分
圧:90kg/cm2G 、反応温度350 ℃、液空間速度 (LHSV)
1.0 hr-1の条件で行った。
(Production of Insulating Oil Base Material 1) The raw material base oil was hydrorefined under the following conditions to obtain a desulfurization rate of 99% and a denitrification rate.
Refined mineral oil was obtained with 97% and a decomposition rate of 2%. Hydrorefining
1.0 mass% nickel on silica-alumina carrier as catalyst,
Using one carrying 12.0 mass% molybdenum, hydrogen partial pressure: 90 kg / cm 2 G, reaction temperature 350 ° C, liquid hourly space velocity (LHSV)
It was conducted under the condition of 1.0 hr -1 .

【0039】メチルエチルケトン/トルエン混合溶媒
(容量比1/1)を、この精製鉱油に対して2.6 倍添加
して、−32.5℃に冷却した後、濾過し、流動点−30℃の
脱蝋油を得た。さらに活性白土を1.5 質量%添加し、60
℃で20分間攪拌した後、濾別し絶縁油基材1を得た。こ
の絶縁油基材1の性状を表1に示す。
A mixed solvent of methyl ethyl ketone / toluene (volume ratio 1/1) was added 2.6 times to this refined mineral oil, cooled to -32.5 ° C., and then filtered to obtain a dewaxed oil having a pour point of −30 ° C. Obtained. Further, add 1.5% by mass of activated clay to 60
After stirring at 0 ° C. for 20 minutes, it was filtered to obtain an insulating oil base material 1. Table 1 shows the properties of the insulating oil base material 1.

【0040】上述の基材1とDBPC(2,6−ジ−タ
ーシャリーブチルパラクレゾール)とを、質量比99.7:
0.3 で混合し、実施例となる電気絶縁油Aを得る。この
電気絶縁油Aの酸化安定性、誘電正接、連続 tanδの極
大値、体積抵抗率、水素ガス吸収性を評価して表1に示
し、また、tan δの時間変化(連続tan δ)を図1に示
す。
The above base material 1 and DBPC (2,6-di-tert-butyl paracresol) were mixed in a mass ratio of 99.7:
Mix at 0.3 to obtain an electrical insulating oil A as an example. The oxidation stability, dielectric loss tangent, maximum value of continuous tan δ, volume resistivity, and hydrogen gas absorbency of this electrical insulating oil A were evaluated and shown in Table 1. Also, the time change of tan δ (continuous tan δ) is shown in the figure. Shown in 1.

【0041】〔絶縁油基材2の製造〕上記原料基油を、
水素化脱蝋することで水素化脱蝋油を得、さらに、水素
化精製を行なった後、240 ℃以下の軽質留分を除去して
絶縁油基材2を得た。この絶縁油基材2の性状を表1に
示し、tan δの時間変化を図1に示す。
[Production of Insulating Oil Base Material 2]
A hydrodewaxed oil was obtained by hydrodewaxing, and after hydrorefining, a light fraction at 240 ° C. or lower was removed to obtain an insulating oil base material 2. The properties of this insulating oil base material 2 are shown in Table 1, and the change with time of tan δ is shown in FIG.

【0042】水素化脱蝋は、触媒としてZSM−5型の
ゼオライトを用い、水素分圧:90kg/cm2G 、反応温度:
371 ℃、液空間速度(LHSV):1.5 hr-1の条件で行
なった。また、水素化精製は、アルミナ担体にMo, Niな
どを担持した触媒を用い、水素分圧:90kg/cm2G 、反応
温度:339 ℃、液空間速度 (LHSV) :0.6 hr-1の条件で
行なった。
In the hydrodewaxing, ZSM-5 type zeolite was used as a catalyst, hydrogen partial pressure: 90 kg / cm 2 G, reaction temperature:
It was carried out under the conditions of 371 ° C. and liquid hourly space velocity (LHSV): 1.5 hr −1 . The hydrorefining is carried out under the conditions of hydrogen partial pressure: 90 kg / cm 2 G, reaction temperature: 339 ℃, liquid hourly space velocity (LHSV): 0.6 hr -1 , using a catalyst in which Mo, Ni, etc. are supported on an alumina carrier. I did it in.

【0043】〔電気絶縁油Bの製造〕アルミナ系吸着剤
で処理し、濾紙濾過した上述の水素化脱蝋基材と、DB
PC(2,6−ジ−ターシャリーブチルパラクレゾー
ル)とを、重量比99.7:0.3 で混合し、実施例となる電
気絶縁油Bを得る。この電気絶縁素Bの酸化安定性、誘
電正接、連続tan δの極大値、体積抵抗率、水素ガス吸
収性を評価して表1に示し、また、tan δの時間変化を
図1に示す。
[Production of Electrical Insulating Oil B] The above hydrodewaxed base material treated with an alumina-based adsorbent and filtered with a filter paper, and DB.
PC (2,6-di-tert-butyl para-cresol) is mixed in a weight ratio of 99.7: 0.3 to obtain an electrically insulating oil B as an example. The oxidation stability, dielectric loss tangent, maximum value of continuous tan δ, volume resistivity and hydrogen gas absorbency of this electrical insulator B are evaluated and shown in Table 1, and tan δ with time is shown in FIG.

【0044】〔評価方法〕「全硫黄分」は、JIS K 2541
に準拠した。「全窒素分」は、JIS K 2609に準拠して測
定した。芳香族炭化水素量は超臨界流体クロマトグラフ
ィー(SFC)により測定した。「酸化安定性」は、JI
S C 2101の酸化安定性試験に準拠し、全酸値、スラッジ
量により評価した。「誘電正接」および「体積抵抗率」
は、JIS C2101に準拠して測定した。「連続tan δ」
は、「石油学会製品部会絶縁油分科会技術資料」(1985
年3月)に記載の方法で測定した。また、水素ガス吸収
性は電気絶縁材料研究会絶縁油分科会技術資料 No.6
(1965) に記載の方法(部会法)により測定した。
[Evaluation method] "Total sulfur content" is JIS K 2541
Compliant. The "total nitrogen content" was measured according to JIS K 2609. The amount of aromatic hydrocarbon was measured by supercritical fluid chromatography (SFC). "Oxidative stability" is JI
Based on the oxidation stability test of SC 2101, the total acid value and the amount of sludge were evaluated. "Dielectric loss tangent" and "Volume resistivity"
Was measured in accordance with JIS C2101. "Continuous tan δ"
Is "Technical Data of Insulating Oil Subcommittee of Japan Petroleum Institute Product Section" (1985
(March, 2013). In addition, the hydrogen gas absorption is based on the technical data No. 6 of the Insulating Oil Subcommittee of the Electrical Insulation Materials Study Group.
It was measured by the method (section method) described in (1965).

【0045】[0045]

【表1】 [Table 1]

【0046】〔比較例1〕上述の原料基油を、フルフラ
ール溶媒を用いて溶剤抽出精製した後、メチルエチルケ
トン/トルエン混合溶媒を用いて溶媒脱蝋を行ない、−
32.5℃で濾別し、活性白土処理して基材3を得る。上述
の絶縁油基材2と、この基材3とを質量比97:3で混合
し、アルミナ系吸着剤で処理し、濾過することで、比較
例1の電気絶縁油Cを得る。この電気絶縁油Cの性状お
よび評価結果を、表2および図1に示す。
Comparative Example 1 The above-mentioned raw material base oil was subjected to solvent extraction purification using a furfural solvent, and then solvent dewaxing was carried out using a methyl ethyl ketone / toluene mixed solvent,
A base material 3 is obtained by filtering at 32.5 ° C. and treating with activated clay. The insulating oil base material 2 and the base material 3 are mixed at a mass ratio of 97: 3, treated with an alumina-based adsorbent, and filtered to obtain an electric insulating oil C of Comparative Example 1. The properties and evaluation results of this electric insulating oil C are shown in Table 2 and FIG.

【0047】〔比較例2〕絶縁油基材1をフルフラール
250 %を用いて80℃でラフィネート収率55%で接触させ
た後、アルミナ系吸着剤で処理し、濾過を行った。これ
とDBPC(2,6−ジ−ターシャリーブチルパラクレ
ゾール)とを、重量比99.7:0.3 で混合し、比較例2と
なる電気絶縁油Dを得る。
Comparative Example 2 Insulating oil base material 1 was furfural
250% of the raffinate was contacted with 80% at a raffinate yield of 55%, then treated with an alumina-based adsorbent and filtered. This and DBPC (2,6-di-tert-butyl paracresol) are mixed at a weight ratio of 99.7: 0.3 to obtain an electrically insulating oil D as Comparative Example 2.

【0048】〔比較例3〕前記原料基油を以下の条件で
水素化精製処理して、分解率15%で精製鉱油2を得た。
水素化精製は、触媒としてシリカアルミナ担体にニッケ
ル1.0 重量%、モリブデン12.0質量%を担持したものを
用い、水素分圧:100kg/cm2G、反応温度395 ℃、液空間
速度(LHSV)0.5 hr-1の条件で行った。
Comparative Example 3 The above raw material base oil was hydrorefined under the following conditions to obtain a refined mineral oil 2 with a decomposition rate of 15%.
For hydrorefining, a silica-alumina carrier supporting 1.0% by weight of nickel and 12.0% by weight of molybdenum was used as a catalyst. Hydrogen partial pressure: 100 kg / cm 2 G, reaction temperature 395 ° C., liquid hourly space velocity (LHSV) 0.5 hr. It was performed under the condition of -1 .

【0049】上記の精製鉱油2を、メチルエチルケトン
/トルエン混合溶媒(容量比1/1)を、油に対して2.
6 倍添加して、−32.5℃に冷却した後、濾過し、流動点
−30℃の脱蝋油を得た。さらに活性白土を1.5 質量%添
加し、60℃で20分間攪拌した後、濾別し、絶縁油基材4
を得た。この基材4とDBPC(2,6−ジ−ターシャ
リーブチルパラクレゾール)とを、重量比99.7:0.3 で
混合し、比較例3となる電気絶縁油Eを得る。これら電
気絶縁油D,Eの酸化安定性、誘電正接、体積抵抗率、
水素ガス吸収性を評価して表2に示す。
The above purified mineral oil 2 was mixed with methyl ethyl ketone / toluene mixed solvent (volume ratio 1/1) to the oil to obtain 2.
The mixture was added 6 times, cooled to -32.5 ° C, and then filtered to obtain a dewaxed oil having a pour point of -30 ° C. Furthermore, 1.5% by mass of activated clay was added, and the mixture was stirred at 60 ° C for 20 minutes and then filtered off.
I got This base material 4 and DBPC (2,6-di-tert-butyl para-cresol) are mixed at a weight ratio of 99.7: 0.3 to obtain an electrically insulating oil E as Comparative Example 3. Oxidation stability of these electric insulating oils D and E, dielectric loss tangent, volume resistivity,
The hydrogen gas absorption is evaluated and shown in Table 2.

【0050】〔比較例4、5〕フェノール系酸化防止剤
の含まれていない市販の電気絶縁油を電気絶縁油Fとし
た(比較例4)。また、電気絶縁油FとDBPC(2,
6−ジ−ターシャリーブチルパラクレゾール)とを、重
量比99.7:0.3 で混合し、電気絶縁油Gとする(比較例
5)。これらの電気絶縁油F、Gの性状および評価結果
を、表2および図1に併せて示す。
[Comparative Examples 4 and 5] Commercially available electrical insulating oil containing no phenolic antioxidant was used as electrical insulating oil F (Comparative Example 4). In addition, electric insulating oil F and DBPC (2,
6-di-tert-butyl para-cresol) is mixed in a weight ratio of 99.7: 0.3 to obtain an electrically insulating oil G (Comparative Example 5). Properties of these electric insulating oils F and G and evaluation results are also shown in Table 2 and FIG.

【0051】[0051]

【表2】 [Table 2]

【0052】上記の結果から明らかなように、本実施例
の電気絶縁油A,Bによれば、連続tan δの時間変化に
おいて極大値を生じることなく、誘電正接(tan δ)は
安定に0.1 %以下にできる。また、体積抵抗率、酸化安
定性なども電気絶縁油として充分な特性を示すものであ
ることがわかる。
As is clear from the above results, according to the electric insulating oils A and B of this embodiment, the dielectric loss tangent (tan δ) was stably 0.1 without causing the maximum value in the continuous tan δ change with time. It can be less than or equal to%. Further, it can be seen that the volume resistivity, the oxidation stability and the like show sufficient characteristics as an electric insulating oil.

【0053】比較例の電気絶縁油D,Eは芳香族炭化水
素含量(アロマ含有量)が低いため、水素ガス吸収性が
負の値、すなわち水素ガスを発生してしまっている。比
較例の電気絶縁油C,Fにおいては、tan δの時間変化
において極大値を生じ、酸化安定性が低い。電気絶縁油
Fにおいては、誘電正接が0.5 %に達する。比較例の電
気絶縁油Gにおいては、フェノール化合物を添加してい
るが、やはり連続tanδの時間変化において誘電正接が
0.3 %以上に悪化する。
Since the electric insulating oils D and E of the comparative examples have a low aromatic hydrocarbon content (aroma content), the hydrogen gas absorbency is a negative value, that is, hydrogen gas is generated. In the electrical insulating oils C and F of the comparative example, the maximum value occurs with the time change of tan δ, and the oxidation stability is low. In the electric insulating oil F, the dielectric loss tangent reaches 0.5%. In the electrical insulating oil G of the comparative example, the phenol compound was added, but the dielectric loss tangent was also changed with the continuous tan δ change with time.
It deteriorates to 0.3% or more.

【0054】[0054]

【発明の効果】本発明による電気絶縁油は、鉱油留分か
ら製造された基材を主成分とし、酸化防止剤となるフェ
ノール化合物を0.03〜3質量%含み、全窒素分Nt 15ppm
以下、スルフィド硫黄分Sf 50ppm以下、芳香族炭化水素
15〜40質量%のものである。本発明によれば、誘電正接
(tanδ)を安定に低くすることができ、かつ、体積抵抗
率などの電気特性や、酸化安定性及び耐コロナ性も充分
な、電気絶縁油を得ることができるものであり、電気機
器の安定な運転に有効なものである。
The electrical insulating oil according to the present invention contains a base material produced from a mineral oil fraction as a main component, contains a phenol compound as an antioxidant in an amount of 0.03 to 3% by mass, and has a total nitrogen content of Nt 15 ppm.
Sulfide sulfur content Sf 50ppm or less, aromatic hydrocarbon
15 to 40% by mass. According to the present invention, the dielectric loss tangent
(tan δ) can be stably lowered, and electrical insulating oil with sufficient electrical properties such as volume resistivity, oxidation stability and corona resistance can be obtained, and the stability of electrical equipment can be obtained. It is effective for easy driving.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の電気絶縁油A、B、および比
較例の電気絶縁油C、D、Eの各 tanδの時間変化を示
すグラフである。
FIG. 1 is a graph showing changes with time of tan δ of electric insulating oils A and B of examples of the present invention and electric insulating oils C, D and E of comparative examples.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C10M 101:02 129:10) C10N 40:16 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C10M 101: 02 129: 10) C10N 40:16

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素化精製した基油を用い、フェノール
化合物からなる酸化防止剤を含有する電気絶縁油におい
て、全窒素分が15ppm 以下、スルフィド硫黄分が50ppm
以下及び芳香族炭化水素分が15〜40質量%の組成を有す
ることを特徴とする、電気絶縁油。
1. An electrically insulating oil containing a hydrogenated refined base oil and containing an antioxidant composed of a phenol compound, wherein the total nitrogen content is 15 ppm or less and the sulfide sulfur content is 50 ppm.
An electrically insulating oil characterized in that it has the following composition and an aromatic hydrocarbon content of 15 to 40% by mass.
【請求項2】 原油から蒸留分離した沸点範囲250 〜50
0 ℃の鉱油留分を、水素化精製触媒を用いて、温度 320
〜380 ℃の範囲で水素化処理し、全窒素分が15ppm 以
下、スルフィド硫黄分が50ppm 以下、芳香族炭化水素が
15〜40質量%の組成を有する電気絶縁油基材を製造し、
この電気絶縁油基材に、フェノール化合物からなる酸化
防止剤を0.03〜3質量%含有させることを特徴とする、
電気絶縁油の製造方法。
2. A boiling point range of 250 to 50 obtained by distillation separation from crude oil.
A mineral oil fraction at 0 ° C was heated at a temperature of 320 ° C using a hydrorefining catalyst.
Hydrogenated in the range of ~ 380 ℃, total nitrogen content 15ppm or less, sulfide sulfur content 50ppm or less, aromatic hydrocarbons
Producing an electrically insulating oil base material having a composition of 15-40% by mass,
This electrical insulating oil base material contains an antioxidant consisting of a phenol compound in an amount of 0.03 to 3% by mass.
Method for producing electric insulating oil.
JP8256196A 1996-04-04 1996-04-04 Electrical insulating oil and method for producing the same Expired - Lifetime JP3270677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8256196A JP3270677B2 (en) 1996-04-04 1996-04-04 Electrical insulating oil and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8256196A JP3270677B2 (en) 1996-04-04 1996-04-04 Electrical insulating oil and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09272891A true JPH09272891A (en) 1997-10-21
JP3270677B2 JP3270677B2 (en) 2002-04-02

Family

ID=13777913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8256196A Expired - Lifetime JP3270677B2 (en) 1996-04-04 1996-04-04 Electrical insulating oil and method for producing the same

Country Status (1)

Country Link
JP (1) JP3270677B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001054138A1 (en) * 2000-01-18 2001-07-26 Exxon Research And Engineering Company Manufacture of electrical oil enriched with hydrofined gas oil for improved oxidation and electrical resistance
US6365037B1 (en) 1997-12-26 2002-04-02 Japan Energy Corporation Production process of low pour-point oil
US7666295B2 (en) 2005-10-20 2010-02-23 Ergon Refining, Inc. Uninhibited electrical insulating oil
EP2546275A2 (en) 2002-09-05 2013-01-16 Daicel Chemical Industries, Ltd. Curable epoxy resin compositions, epoxy resin compositions for the encapsulation of electronic parts, stabilizers for electrical insulating oils, and casting epoxy resin compositions for electrical insulation.
KR101317594B1 (en) * 2007-10-26 2013-10-11 에스케이종합화학 주식회사 Electrical insulation oil composition having improved hydrogen absorptiveness

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365037B1 (en) 1997-12-26 2002-04-02 Japan Energy Corporation Production process of low pour-point oil
WO2001054138A1 (en) * 2000-01-18 2001-07-26 Exxon Research And Engineering Company Manufacture of electrical oil enriched with hydrofined gas oil for improved oxidation and electrical resistance
US6355850B1 (en) * 2000-01-18 2002-03-12 Exxon Research And Engineering Company Manufacture of electrical oil enriched with hydrofined gas oil for improved oxidation and electrical resistance
EP2546275A2 (en) 2002-09-05 2013-01-16 Daicel Chemical Industries, Ltd. Curable epoxy resin compositions, epoxy resin compositions for the encapsulation of electronic parts, stabilizers for electrical insulating oils, and casting epoxy resin compositions for electrical insulation.
US7666295B2 (en) 2005-10-20 2010-02-23 Ergon Refining, Inc. Uninhibited electrical insulating oil
KR101317594B1 (en) * 2007-10-26 2013-10-11 에스케이종합화학 주식회사 Electrical insulation oil composition having improved hydrogen absorptiveness

Also Published As

Publication number Publication date
JP3270677B2 (en) 2002-04-02

Similar Documents

Publication Publication Date Title
KR100711294B1 (en) Novel hydrocarbon base oil for lubricants with very high viscosity index
JP4217289B2 (en) Hydrogen conversion process for producing lubricating base oil
JP4829894B2 (en) Dielectric fluid and method of making the same
JP3011782B2 (en) Method for producing transformer oil composition from hydrocracking feedstock
AU2006284862A1 (en) A mineral insulating oil, a process for preparing a mineral insulating oil, and a process for using a mineral insulating oil
JPS5837642B2 (en) electrical insulation oil
CA1072734A (en) Electrical insulating oil
US3925220A (en) Process of comprising solvent extraction of a blended oil
JP3270677B2 (en) Electrical insulating oil and method for producing the same
KR20110065506A (en) Reformer distillate as gassing additive for transformer oils
JPS5812961B2 (en) electrical insulation oil
JP3679272B2 (en) Electrical insulation oil
EP0091249B1 (en) Electrical insulating oil having high oxidation stability and method for production thereof
JP2649474B2 (en) Electrical insulating oil and method for producing the same
EP1148112A2 (en) Rubber process oil, high-viscosity base oil, and process for the production thereof
JP3261040B2 (en) Method for producing electrical insulating oil
JP3690649B2 (en) Electric insulating oil and base oil for electric insulating oil
JP3255890B2 (en) Electrical insulating oil
EP2082406A1 (en) Electrical oil composition
US4008148A (en) Method for the preparation of insulating oil
JPH11263985A (en) Production of electrical insulating oil
JPS606044B2 (en) Electrical insulation oil composition
JP2003530460A (en) Process oil production method
JP3989080B2 (en) Method for producing electrical insulating oil
El-Gayar et al. Transformer oils prepared from the vacuum distillates of Egyptian crude paraffinic petroleum

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080118

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term