JPH09272496A - Power source for flying body - Google Patents

Power source for flying body

Info

Publication number
JPH09272496A
JPH09272496A JP8281696A JP8281696A JPH09272496A JP H09272496 A JPH09272496 A JP H09272496A JP 8281696 A JP8281696 A JP 8281696A JP 8281696 A JP8281696 A JP 8281696A JP H09272496 A JPH09272496 A JP H09272496A
Authority
JP
Japan
Prior art keywords
insulated
front edge
heating
power supply
flying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8281696A
Other languages
Japanese (ja)
Inventor
Koichi Kiyotaki
浩一 清瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8281696A priority Critical patent/JPH09272496A/en
Publication of JPH09272496A publication Critical patent/JPH09272496A/en
Pending legal-status Critical Current

Links

Landscapes

  • Toys (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that the mounting of a tunnel cable transmitting a control signal and a power from a guidance part to a drive source is difficult because a space in which the internal space of a tunnel cover for protecting a tunnel cable is less in a rear wing steered type flying body which requires the tunnel cable and the tunnel cover. SOLUTION: A flying body comprises an area reduction part 15 having an outer diameter smaller than that of the flying body, a parallel part 16 provided in the reduction part 15, A rudder drive part 9 formed of a shell 14 having an enlarged part 17 which diverges from the parallel part 16 in an enlarging direction and having a surface area equal to that of the reduction part 15, a first metal cylinder 18 internally making contact with the reduction part 15 through the intermediary of an insulator, and a second metal cylinder 20 internally making contact with the enlarged part 17, insulated from the first metal cylinder 18 and having a gap in which gas having a negative pressure or a low pressure is charged are equipped. With this arrangement, it is possible to obtain power from a differential potential produced from a thermal electron effect caused by a temperature difference between the first and second metal cylinders 18, 20 which is caused during flying.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、超音速で飛しょ
うする後翼操舵の飛しょう体の電源装置に関するもので
あって、さらに詳細に述べると、後翼操舵部に、発射後
の空力加熱により機体あるいは後翼表面上に生じる温度
差によって発電する発電装置を設け、それによって所定
の電力を得ることを特徴とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply unit for a rear wing steering flying vehicle that flies at supersonic speed. More specifically, the rear wing steering section includes aerodynamic heating after launch. Is provided with a power generation device for generating power by a temperature difference generated on the surface of the airframe or the rear wing, and thereby predetermined power is obtained.

【0002】[0002]

【従来の技術】まず、従来の、この種飛しょう体の電源
装置について説明する。図11において、1は誘導部、
2は誘導部1の内部の電力負荷、3は誘導部1の内部に
設けられ、飛しょう体発射後、電力負荷2に電力供給す
るための電源装置であって、この電源装置3は電池4
と、この電池4の出力を所定の電圧に変換するなどし
て、上記電力負荷2に出力する電源回路5とで構成され
ている。6は誘導部1に設けた前翼、7は誘導部1の後
ろに設けた弾頭、8は弾頭7の後ろに設けた飛しょう体
の推進装置、9は推進装置8の後ろに設けた操舵駆動
部、10a,10bは操舵駆動部9に設けた後翼、11
a,11bは操舵駆動部9の内部に設けられ、上記後翼
10a,10bにそれぞれ対応する駆動源であって、こ
の駆動源10a,10bはタンネルケーブル12を通る
誘導部1からの制御信号と、タンネルケーブル12を通
る電源装置4からの出力電力によって後翼10a,10
bを駆動する。13はタンネルケーブル12を保護する
タンネルカバーである。
2. Description of the Related Art First, a conventional power supply device for this type of flying object will be described. In FIG. 11, 1 is a guiding part,
Reference numeral 2 is a power load inside the induction unit 1, 3 is a power supply device provided inside the induction unit 1, and supplies power to the power load 2 after launching a flying object.
And a power supply circuit 5 for outputting the output of the battery 4 to the power load 2 by converting the output of the battery 4 into a predetermined voltage. 6 is a front wing provided on the guide unit 1, 7 is a warhead provided behind the guide unit 1, 8 is a projectile propelling device provided behind the warhead 7, and 9 is steering provided behind the propulsion unit 8. The drive units 10a and 10b are rear wings provided on the steering drive unit 9, and 11
Reference characters a and 11b are provided inside the steering drive unit 9 and are drive sources respectively corresponding to the rear wings 10a and 10b. The drive sources 10a and 10b are control signals from the guide unit 1 passing through the tannel cable 12. And the rear wings 10a, 10 by the output power from the power supply device 4 passing through the tannel cable 12.
Drive b. Reference numeral 13 is a tunnel cover for protecting the tunnel cable 12.

【0003】[0003]

【発明が解決しようとする課題】上記のような従来の電
源装置では、誘導部1からの制御信号と出力電力を駆動
源11a,11bに伝えるためにタンネルケーブル12
が不可欠であるが、誘導部1と操舵駆動部9の間に弾頭
7と推進装置8があるため、タンネルケーブル12を飛
しょう体の内部を通して配線できず、飛しょう体の外側
にしか配線できなかった。このため、タンネルケーブル
12は、周囲の環境にさらされることになり、タンネル
ケーブル12を周囲の環境から保護するためのタンネル
カバー13が不可欠となる。このタンネルカバー13
は、一般に飛しょう体の発射機とのインターフェースや
飛しょう体の空力特性などに与える影響を少なくするた
めに小さく形成されており、このタンネルカバー13の
内部の実装可能なスペースが少ない。このため、タンネ
ルカバー13の内部を通るタンネルケーブル12の、空
力加熱に対する熱対策や、特に実装スペースを多く必要
とする誘導部1から駆動源11a,11bへの出力電力
の配線が困難という実装上の課題がある。
In the conventional power supply device as described above, the tunnel cable 12 is used for transmitting the control signal and the output power from the induction section 1 to the drive sources 11a and 11b.
Is essential, but because there is a warhead 7 and a propulsion device 8 between the guide unit 1 and the steering drive unit 9, the tunnnel cable 12 cannot be routed through the inside of the projectile, and is only routed outside the projectile. could not. Therefore, the tunnel cable 12 is exposed to the surrounding environment, and the tunnel cover 13 for protecting the tunnel cable 12 from the surrounding environment is indispensable. This tunnel cover 13
Is generally formed to be small in order to reduce the influence on the interface of the flying body with the launcher and the aerodynamic characteristics of the flying body, and the mountable space inside the tunnel cover 13 is small. For this reason, it is difficult to take thermal measures against aerodynamic heating of the tunnel cable 12 passing through the inside of the tunnel cover 13 and to wire the output power from the induction unit 1 to the drive sources 11a and 11b, which requires a large mounting space. There are implementation issues.

【0004】この発明は、かかる課題を解決するために
なされたもので、誘導部1から駆動源11a,11bへ
の出力電力をなくし、操舵駆動部9に、超音速で飛しょ
う中に操舵駆動部9もしくは後翼10が空力加熱により
受ける熱エネルギーを用いて発電し、それを駆動源11
a,11bへ供給するようにした飛しょう体の電源装置
を提案するものである。
The present invention has been made to solve the above problems, and eliminates the output power from the guide section 1 to the drive sources 11a and 11b, and causes the steering drive section 9 to perform steering drive during flight at supersonic speed. The portion 9 or the rear wing 10 generates electric power by using the thermal energy received by the aerodynamic heating, and drives it to generate the drive source 11
It proposes a power supply device for a flying object that is supplied to a and 11b.

【0005】[0005]

【課題を解決するための手段】第1の発明による電源装
置は、飛しょう体の後方にあって、飛しょう体の外径よ
り小さく絞った絞り部と、前記絞り部に設けた平行部
と、前記平行部から拡大方向に広がり、前記絞り部と同
じ表面積の拡張部を持つシェルを備えた操舵駆動部と、
前記絞り部と絶縁体を挟んで内接した金属製の第1の円
筒体と、前記拡張部と内接し、前記第1の円筒体と絶縁
され、かつ真空もしくは低圧なガスを封入した間隙を持
つ金属製の第2の円筒体を備え、飛しょう中の空力加熱
によって生じる前記絞り部と拡張部の表面温度の差を熱
伝導によって前記第1の円筒体と第2の円筒体に伝え、
前記第1の円筒体と第2の円筒体の間の熱電子効果によ
って生じる電位差から電力を得るように構成。
A power supply device according to a first aspect of the present invention comprises a narrowed portion which is behind a flying body and is narrowed down to be smaller than an outer diameter of the flying body, and a parallel portion which is provided in the narrowed portion. A steering drive unit that includes a shell that extends from the parallel portion in an expansion direction and has an expansion portion that has the same surface area as the throttle portion,
A first cylindrical body made of metal, which is inscribed with the throttle portion and the insulator interposed therebetween, and a gap which is inscribed with the expansion portion, is insulated from the first cylindrical body, and is filled with a vacuum or low-pressure gas. A second cylindrical body made of metal having, and transmitting a difference in surface temperature between the narrowed portion and the expanded portion caused by aerodynamic heating in flight to the first cylindrical body and the second cylindrical body by heat conduction,
The electric power is obtained from a potential difference caused by a thermoelectron effect between the first cylindrical body and the second cylindrical body.

【0006】また、第2の発明による電源装置は、飛し
ょう体の後方にあって、飛しょう体の外径より小さく絞
った絞り部と、前記絞り部に設けた平行部と、前記平行
部から拡大方向に広がり、前記絞り部と同じ表面積の拡
張部を持つシェルを備えた操舵駆動部と、前記シェルと
絶縁され、操舵駆動部の内部の任意の位置に設けた金属
製の第1の円筒体と、前記第1の円筒体と絶縁され、か
つ真空もしくは低圧なガスを封入した間隙を持つ金属製
の第2の円筒体と、前記絞り部に絶縁体を挟んで内接
し、かつ前記第1の円筒体と接触する第1のヒートパイ
プと、前記拡張部に内接し、かつ前記第2の円筒体と接
触する第2のヒートパイプを備え、飛しょう中の空力加
熱によって生じる前記絞り部と拡張部の表面温度の差
を、前記第1のヒートパイプと第2のヒートパイプによ
って、前記第1の円筒体と第2の円筒体に伝え、前記第
1の円筒体と第2の円筒体の間の熱電子効果によって生
じる電位差から電力を得るように構成。
Further, the power supply device according to the second aspect of the present invention is, behind the flying body, a narrowed portion which is narrower than the outer diameter of the flying body, a parallel portion provided in the narrowed portion, and the parallel portion. From the steering drive unit including a shell having an expansion portion having the same surface area as the narrowed portion, and a metal first member that is insulated from the shell and is provided at an arbitrary position inside the steering drive unit. A cylindrical body, a second cylindrical body made of metal, which is insulated from the first cylindrical body and has a gap in which a vacuum or low-pressure gas is sealed, and is inscribed with the narrowed portion sandwiching an insulating body, and A first heat pipe that contacts the first cylindrical body, and a second heat pipe that is inscribed in the expansion portion and that contacts the second cylindrical body, and the throttle that is generated by aerodynamic heating in flight Difference between the surface temperature of the expansion part and the surface temperature of the expansion part And a second heat pipe to transfer the electric power to the first and second cylindrical bodies and obtain electric power from a potential difference caused by a thermoelectron effect between the first and second cylindrical bodies. Configured.

【0007】また、第3の発明による電源装置は、双く
さび形状の後翼の前縁部に設けられて、周囲と絶縁され
た凸形の加熱部と、前記前縁部と絶縁され、かつ前記前
縁部と同じ外気接触面積を持つ前記後翼の後縁部に設け
られて、前記加熱部と対向し、真空もしくは低圧なガス
を封入した間隙を持った凹形の冷却部を備え、飛しょう
中の空力加熱によって生じる前記前縁部と後縁部の表面
温度の差から、前記加熱部と冷却部の間に温度差が生
じ、前記加熱部と冷却部の間の熱電子効果によって生じ
る電位差から電力を得るように構成。
The power supply device according to the third aspect of the present invention is provided at the front edge portion of the rear wedge-shaped rear wing and has a convex heating portion insulated from the surroundings, and is insulated from the front edge portion, and Provided at the trailing edge of the rear blade having the same outside air contact area as the leading edge, facing the heating section, and having a concave cooling section having a gap filled with vacuum or low-pressure gas, Due to the difference in surface temperature between the leading edge portion and the trailing edge portion caused by aerodynamic heating in flight, a temperature difference occurs between the heating portion and the cooling portion, and due to a thermoelectron effect between the heating portion and the cooling portion. Configured to obtain electric power from the resulting potential difference.

【0008】また、第4の発明による電源装置は、双く
さび形状の後翼の前縁部に設けられて、周囲と絶縁され
た複数の凸形の加熱部と、前記前縁部と絶縁され、かつ
前記前縁部と同じ外気接触面積を持つ前記後翼の後縁部
に設けられて、前記加熱部と対向し、真空もしくは低圧
なガスを封入した間隙を持つ複数の凹形の冷却部を備
え、飛しょう中の空力加熱によって生じる前記前縁部と
後縁部の表面温度の差から、前記加熱部と冷却部の間に
温度差が生じることになり、前記加熱部と冷却部の間の
熱電子効果によって生じる電位差から電力を得るように
構成。
The power supply device according to the fourth aspect of the invention is provided with a plurality of convex heating portions provided on the front edge of the twin wedge-shaped rear wing and insulated from the surroundings, and insulated from the front edge. A plurality of concave cooling sections provided at the trailing edge section of the rear blade having the same outside air contact area as the leading edge section, facing the heating section and having gaps filled with vacuum or low-pressure gas. The temperature difference between the heating portion and the cooling portion is caused by the difference in surface temperature between the leading edge portion and the trailing edge portion caused by aerodynamic heating during flight. It is configured to obtain electric power from the potential difference caused by the thermionic effect between them.

【0009】また、第5の発明による電源装置は、双く
さび形状の後翼の前縁部に設けた平行部にあって、周囲
と絶縁された凸形の加熱部と、前記平行部と絶縁され、
かつ前記前縁部と同じ外気接触面積を持つ前記後翼の後
縁部に設けられて、前記加熱部と対向し、真空もしくは
低圧なガスを封入した間隙を持つ凹形の冷却部を備え、
飛しょう中の空力加熱によって生じる前記前縁部と後縁
部の表面温度の差から、前記加熱部と冷却部の間に温度
差が生じることになり、前記加熱部と冷却部の間の熱電
子効果によって生じる電位差から電力を得るように構
成。
In the power supply device according to the fifth aspect of the present invention, a convex heating portion insulated from the surroundings is provided in the parallel portion provided at the leading edge portion of the rear wedge-shaped rear wing, and the parallel portion is insulated from the parallel heating portion. Is
And a concave cooling section provided at the trailing edge of the rear blade having the same outside air contact area as the leading edge, facing the heating section and having a gap filled with vacuum or low-pressure gas,
Due to the difference in surface temperature between the leading edge portion and the trailing edge portion caused by aerodynamic heating in flight, a temperature difference will occur between the heating portion and the cooling portion, and the heat between the heating portion and the cooling portion will be increased. It is configured to obtain electric power from the potential difference caused by the electronic effect.

【0010】また、第6の発明による電源装置は、双く
さび形状の後翼の前縁部に設けた平行部にあって、周囲
と絶縁された複数の凸形の加熱部と、前記平行部と絶縁
され、かつ前記前縁部と同じ外気接触面積を持つ前記後
翼の後縁部に設けられて、前記加熱部と対向し、真空も
しくは低圧なガスを封入した間隙を持つ複数の凹形の冷
却部を備え、飛しょう中の空力加熱によって生じる前記
前縁部と後縁部の表面温度の差から、前記加熱部と冷却
部の間に温度差が生じることになり、前記加熱部と冷却
部の間の熱電子効果によって生じる電位差から電力を得
るように構成。
In the power supply device according to the sixth aspect of the present invention, a plurality of convex heating portions insulated from the surroundings are provided in the parallel portion provided at the leading edge portion of the rear wedge-shaped rear wing, and the parallel portion is provided. A plurality of concave shapes that are insulated from each other and that are provided at the trailing edge of the rear blade that has the same outside air contact area as the leading edge, face the heating section, and that have a gap filled with a vacuum or low-pressure gas. The cooling portion, the difference in surface temperature between the leading edge portion and the trailing edge portion caused by aerodynamic heating during flight, a temperature difference occurs between the heating portion and the cooling portion, the heating portion and It is configured to obtain electric power from the potential difference caused by the thermoelectron effect between the cooling parts.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.図1はこの発明の実施の形態1を示す構
成図で、図において1は誘導部、6は誘導部1に設けた
前翼、7は誘導部1の後ろに設けた弾頭、8は弾頭7の
後ろに設けた推進装置、9は推進装置8の後ろに設けた
操舵駆動部、10a,10bは操舵駆動部9に設けた後
翼、11a,11bは操舵駆動部9の内部に設けられ、
後翼10a,10bにそれぞれ対応する駆動源であっ
て、この駆動源11a,11bはタンネルケーブル12
を通る誘導部1からの制御信号により後翼10a,10
bを制御する。13はタンネルケーブル12を保護する
タンネルカバー、14は操舵駆動部にあって、飛しょう
体の外径より小さく絞った絞り部15と、絞り部15に
設けた平行部16と、平行部16から拡大方向に広が
り、絞り部15と同じ表面積を持つ拡張部17を備えた
シェル、18は絞り部15と絶縁体19を挟んで内接す
る金属製の第1の円筒体、20は拡張部20に内接し、
第1の円筒体18と絶縁され、かつ真空もしくは低圧な
ガスを封入した間隙を持つ金属製の第2の円筒体、5は
第1の円筒体18と第2の円筒体20の間で生じる電位
差を所定の電圧に変換するなどして、駆動源11a,1
1bへ出力する電源回路である。
Embodiment 1. 1 is a configuration diagram showing a first embodiment of the present invention. In the figure, 1 is a guide portion, 6 is a front wing provided on the guide portion 1, 7 is a warhead provided behind the guide portion 1, and 8 is a warhead 7. , 9 is a steering drive unit provided behind the propulsion device 8, 10a and 10b are rear wings provided on the steering drive unit 9, and 11a and 11b are provided inside the steering drive unit 9.
The drive sources 11a and 11b are drive sources corresponding to the rear wings 10a and 10b, respectively.
The rear wings 10a, 10 by the control signal from the guiding section 1 passing through
Control b. Reference numeral 13 is a tannel cover for protecting the tannel cable 12, 14 is a steering drive portion, and a throttle portion 15 that is narrowed to a smaller diameter than the outer diameter of the flying body, a parallel portion 16 provided in the throttle portion 15, and a parallel portion. A shell provided with an expansion portion 17 that expands from 16 in the direction of expansion and has the same surface area as the throttle portion 15, 18 is a first metal cylindrical body inscribed between the throttle portion 15 and the insulator 19, and 20 is an expansion portion. Inscribed in 20,
A second metal cylinder 5, which is insulated from the first cylinder 18 and has a gap filled with a vacuum or low-pressure gas, is formed between the first cylinder 18 and the second cylinder 20. By converting the potential difference into a predetermined voltage, the drive sources 11a, 1
It is a power supply circuit for outputting to 1b.

【0012】上記のように構成された飛しょう体の電源
装置において、超音速で飛しょう中の絞り部15の表面
の圧力をP1、拡張部17の表面の圧力をP2とおく
と、P1,P2の関係は”数1”のようになる。
In the power supply device for a flying vehicle constructed as described above, if the pressure on the surface of the throttle portion 15 flying at supersonic speed is P1 and the pressure on the surface of the expansion portion 17 is P2, P1, The relationship of P2 is as shown in "Equation 1".

【0013】[0013]

【数1】 [Equation 1]

【0014】ここで、絞り部15の表面から外気までの
熱伝達率をh1、拡張部17の表面から外気までの熱伝
達率をh2とおくと、圧力と熱伝達率の関係は”数2”
のようになる。
Here, if the heat transfer coefficient from the surface of the throttle portion 15 to the outside air is h1, and the heat transfer coefficient from the surface of the expansion portion 17 to the outside air is h2, the relationship between the pressure and the heat transfer coefficient is "Equation 2". ”
become that way.

【0015】[0015]

【数2】 [Equation 2]

【0016】ただし、nは流れの状態によって決まる定
数であり、層流の場合n=0.5、乱流の場合n=0.
3である。ここで”数1”と”数2”より、h1,h2
の関係は”数3”のようになる。
However, n is a constant determined by the flow state, n = 0.5 for laminar flow and n = 0.
3. Here, from "Equation 1" and "Equation 2", h1, h2
The relationship is as in "Equation 3".

【0017】[0017]

【数3】 (Equation 3)

【0018】ここで、断熱壁温度をT0、絞り部15の
表面温度をT1、拡張部17の表面温度をT2、絞り部
15の表面積をA1、拡張部17の表面積をA2とおく
と、絞り部15と拡張部17の表面温度はそれぞれ”数
4”、”数5”のようになる。
Assuming that the heat insulating wall temperature is T0, the surface temperature of the narrowed portion 15 is T1, the surface temperature of the expanded portion 17 is T2, the surface area of the narrowed portion 15 is A1, and the surface area of the expanded portion 17 is A2, The surface temperatures of the portion 15 and the extension portion 17 are as shown in "Equation 4" and "Equation 5", respectively.

【0019】[0019]

【数4】 (Equation 4)

【0020】[0020]

【数5】 (Equation 5)

【0021】ここで、実施の形態1では絞り部15と拡
張部17の表面積が等しいので、”数3”と”数4”
と”数5”から、絞り部15の表面温度T1と拡張部1
7の表面温度T2の関係は”数6”のようになる。
Here, in the first embodiment, since the surface areas of the narrowed portion 15 and the expanded portion 17 are the same, "Equation 3" and "Equation 4"
And from "Equation 5", the surface temperature T1 of the narrowed portion 15 and the expanded portion 1
The relationship of the surface temperature T2 of No. 7 is as shown in "Equation 6".

【0022】[0022]

【数6】 (Equation 6)

【0023】”数6”の関係より、飛しょう中の空力加
熱によって、絞り部15と拡張部17の表面温度に差が
生じることになる。
From the relation of "Equation 6", aerodynamic heating during flight causes a difference in surface temperature between the throttle portion 15 and the expansion portion 17.

【0024】このため、絞り部15と拡張部17にそれ
ぞれ接触している第1の円筒体18と第2の円筒体20
の間に温度差が生じ、第1の円筒体18と第2の円筒体
20の間の熱電子効果によって生じる電位差を電源回路
5で所定の電圧に変換するなどして、駆動源11a,1
1bに出力可能となる。
Therefore, the first cylindrical body 18 and the second cylindrical body 20 which are in contact with the narrowed portion 15 and the expanded portion 17, respectively.
A temperature difference occurs between the drive sources 11a, 1 and the potential difference generated by the thermoelectron effect between the first cylindrical body 18 and the second cylindrical body 20 is converted into a predetermined voltage by the power supply circuit 5.
It becomes possible to output to 1b.

【0025】実施の形態2.図2はこの発明の実施の形
態2を示す構成図で、図において、1と5から17は前
記実施の形態1と全く同一のものである。18は平行部
16の内部に設けられ、シェル14と絶縁された金属製
の第1の円筒体、20は第1の円筒体18と絶縁され、
かつ真空もしくは低圧なガスを封入した間隙を持つ金属
製の第2の円筒体、21は絞り部15に絶縁体17を挟
んで内接し、かつ第1の円筒体18と接触する第1のヒ
ートパイプ、22は拡張部17と内接し、かつ第2の円
筒体20と接触する第2のヒートパイプである。
Embodiment 2 2 is a block diagram showing a second embodiment of the present invention. In the figure, 1 and 5 to 17 are exactly the same as those of the first embodiment. 18 is provided inside the parallel portion 16 and is made of a metal first cylindrical body that is insulated from the shell 14, and 20 is insulated from the first cylindrical body 18,
The second heat source 21 is made of metal and has a gap in which a vacuum or low-pressure gas is sealed. The first heat source 21 is inscribed in the narrowed portion 15 with the insulator 17 in between and is in contact with the first heat source 18. The pipe, 22 is a second heat pipe that is inscribed in the expanded portion 17 and is in contact with the second cylindrical body 20.

【0026】上記のように構成された電源装置では、超
音速で飛しょう中、”数6”の関係によって絞り部15
と拡張部17の表面温度に差が生じる。この温度差は第
1のヒートパイプ21と第2のヒートパイプ22によっ
てそれぞれ第1の円筒体18と第2の円筒体20に伝わ
り、第1の円筒体18と第2の円筒体20の間に温度差
が生じ、第1の円筒体18と第2の円筒体20の間の熱
電子効果によって生じる電位差を電源回路5で所定の電
圧に変換するなどして、駆動源11a,11bに出力可
能となる。
In the power supply device configured as described above, the throttle unit 15 is caused by the relationship of "Equation 6" while flying at supersonic speed.
And the surface temperature of the expanded portion 17 is different. This temperature difference is transmitted to the first cylindrical body 18 and the second cylindrical body 20 by the first heat pipe 21 and the second heat pipe 22, respectively, and between the first cylindrical body 18 and the second cylindrical body 20. A difference in temperature occurs in the first cylindrical body 18 and the second cylindrical body 20 and the potential difference caused by the thermoelectron effect is converted into a predetermined voltage by the power supply circuit 5, and output to the drive sources 11a and 11b. It will be possible.

【0027】実施の形態3.図3及び図4はこの発明の
実施の形態3を示す構成図で、これらの図において、1
と5から9と12と13は前記実施の形態1と全く同一
のものである。10a,10bは操舵駆動部9に設けた
双くさび形状の後翼、23は後翼10a,10bの前縁
部24に設けられて、周囲と絶縁した凸形の加熱部、2
5は前縁部24と絶縁体18を挟んで固定され、かつ前
縁部24と同じ外気接触面積を持つ後縁部26に設けら
れて、加熱部23と対向し、真空もしくは低圧なガスを
封入した間隙を持った凹形の冷却部である。
Embodiment 3 3 and 4 are configuration diagrams showing a third embodiment of the present invention. In these figures, 1
5 to 9 and 12 and 13 are exactly the same as those in the first embodiment. Reference numerals 10a and 10b are twin wedge-shaped rear wings provided in the steering drive unit 9, and 23 is provided in a front edge portion 24 of the rear wings 10a and 10b, and is a convex heating unit that is insulated from the surroundings.
Reference numeral 5 is fixed to the front edge portion 24 and the insulator 18 and is provided at the rear edge portion 26 having the same outside air contact area as that of the front edge portion 24 so as to face the heating portion 23 and generate a vacuum or low pressure gas. It is a concave cooling unit with a sealed gap.

【0028】超音速で飛しょう中の前縁部24の表面の
圧力をP2、後縁部26の表面の圧力をP1とおくと”
数1”の関係となる。前縁部24の表面温度をT2、後
縁部26の表面温度をT1とおくと、前記実施の形態1
で説明した原理より、”数6”の関係となり、前縁部2
4と後縁部26の表面温度に差が生じることになる。
If the pressure on the surface of the leading edge portion 24 during flight at supersonic speed is P2 and the pressure on the surface of the trailing edge portion 26 is P1, "
The relation of the equation 1 is obtained. When the surface temperature of the leading edge portion 24 is T2 and the surface temperature of the trailing edge portion 26 is T1, the above-described first embodiment is performed.
According to the principle explained in Section 1, the relation of "Equation 6" is established, and the leading edge 2
4 and the surface temperature of the trailing edge portion 26 are different from each other.

【0029】このため、加熱部23と冷却部25の間に
温度差が生じ、加熱部23と冷却部25の間の熱電子効
果によって生じる電位差を電源回路5で所定の電圧に変
換するなどして、駆動源11a,11bに出力可能とな
る。
Therefore, a temperature difference occurs between the heating section 23 and the cooling section 25, and the potential difference caused by the thermoelectron effect between the heating section 23 and the cooling section 25 is converted into a predetermined voltage by the power supply circuit 5. Then, it becomes possible to output to the drive sources 11a and 11b.

【0030】実施の形態4.図5及び図6はこの発明の
実施の形態4を示す構成図で、これらの図において、1
と5から9と12と13は前記実施の形態1と全く同一
のものである。10a,10bは操舵駆動部9に設けた
双くさび形状の後翼、23は後翼10a,10bの前縁
部24に設けられて、周囲と絶縁した複数の凸形の加熱
部、25は前縁部24と絶縁体18を挟んで固定され、
かつ前縁部24と同じ外気接触面積を持つ後縁部26に
設けられて、加熱部23と対向し、真空もしくは低圧な
ガスを封入した間隙を持った複数の凹形の冷却部であ
る。
Fourth Embodiment 5 and 6 are block diagrams showing a fourth embodiment of the present invention. In these figures, 1
5 to 9 and 12 and 13 are exactly the same as those in the first embodiment. Reference numerals 10a and 10b are twin wedge-shaped rear wings provided in the steering drive unit 9, 23 is a front edge portion 24 of the rear wings 10a and 10b, and a plurality of convex heating units insulated from the surroundings. It is fixed by sandwiching the edge 24 and the insulator 18,
A plurality of concave cooling sections are provided on the rear edge section 26 having the same outside air contact area as the front edge section 24, face the heating section 23, and have a gap filled with vacuum or low-pressure gas.

【0031】この実施の形態4の場合も、前記実施の形
態3で述べたと同様に、超音速で飛しょう中の空力加熱
によって生じる前縁部24と後縁部26の表面温度の差
から、加熱部23と冷却部27の間に温度差が生じ、加
熱部23と冷却部27の間の熱電子効果によって生じる
電位差を電源回路5により所定の電圧に変換するなどし
て、駆動源11a,11bに出力可能となる。
Also in the case of the fourth embodiment, similarly to the third embodiment, from the difference in surface temperature between the leading edge portion 24 and the trailing edge portion 26 caused by aerodynamic heating during flight at supersonic speed, A temperature difference occurs between the heating unit 23 and the cooling unit 27, and a potential difference caused by the thermoelectron effect between the heating unit 23 and the cooling unit 27 is converted into a predetermined voltage by the power supply circuit 5, and the driving source 11a, It becomes possible to output to 11b.

【0032】実施の形態5.図7及び図8はこの発明の
実施の形態5を示す構成図で、これらの図において、1
と5から9と12と13は前記実施の形態1と全く同一
のものである。10a,10bは操舵駆動部9に設けた
双くさび形状の後翼、23は後翼10a,10bの前縁
部に設けた平行部16にあって、周囲と絶縁した凸形の
加熱部、25は前縁部24と絶縁体18を挟んで固定さ
れ、かつ前縁部24と同じ外気接触面積を持つ後縁部2
6に設けられて、加熱部23と対向し、真空もしくは低
圧なガスを封入した間隙を持った凹形の冷却部である。
Embodiment 5 7 and 8 are configuration diagrams showing a fifth embodiment of the present invention. In these figures, 1
5 to 9 and 12 and 13 are exactly the same as those in the first embodiment. Reference numerals 10a and 10b are twin wedge-shaped rear wings provided in the steering drive unit 9, and 23 is a parallel section 16 provided at the front edges of the rear wings 10a and 10b, and is a convex heating unit that is insulated from the surroundings. Is fixed by sandwiching the front edge portion 24 and the insulator 18, and has the same outside air contact area as the front edge portion 24.
6 is a concave cooling unit which is provided in 6 and faces the heating unit 23 and has a gap filled with a vacuum or low-pressure gas.

【0033】この実施の形態5の場合も、前記実施の形
態3で述べたと同様に、超音速で飛しょう中の空力加熱
によって生じる前縁部24と後縁部26の表面温度の差
から、加熱部23と冷却部27の間に温度差が生じ、加
熱部23と冷却部27の間の熱電子効果によって生じる
電位差を電源回路5により所定の電圧に変換するなどし
て、駆動源11a,11bに出力可能となる。
Also in the case of the fifth embodiment, as in the case of the third embodiment, from the difference in surface temperature between the leading edge portion 24 and the trailing edge portion 26 caused by aerodynamic heating during flight at supersonic speed, A temperature difference occurs between the heating unit 23 and the cooling unit 27, and a potential difference caused by the thermoelectron effect between the heating unit 23 and the cooling unit 27 is converted into a predetermined voltage by the power supply circuit 5, and the driving source 11a, It becomes possible to output to 11b.

【0034】実施の形態6.図9及び図10はこの発明
の実施の形態6を示す構成図で、これらの図において、
1と5から9と12と13は前記実施の形態1と全く同
一のものである。10a,10bは操舵駆動部9に設け
た双くさび形状の後翼、23は後翼10a,10bの前
縁部に設けた平行部16にあって、周囲と絶縁した複数
の凸形の加熱部、25は前縁部24と絶縁体18を挟ん
で固定され、かつ前縁部24と同じ外気接触面積を持つ
後縁部26に設けられて、加熱部23と対向し、真空も
しくは低圧なガスを封入した間隙を持った複数の凹形の
冷却部である。
Embodiment 6 FIG. 9 and 10 are configuration diagrams showing a sixth embodiment of the present invention. In these figures,
1 and 5 to 9 and 12 and 13 are exactly the same as those in the first embodiment. Reference numerals 10a and 10b are twin wedge-shaped rear wings provided in the steering drive unit 9, and 23 is a parallel section 16 provided at the front edges of the rear wings 10a and 10b. , 25 are fixed on both sides of the insulator 18 and the front edge 24, and are provided on the rear edge 26 having the same outside air contact area as the front edge 24, and are opposed to the heating section 23, and are in a vacuum or low pressure gas. It is a plurality of concave cooling units with a gap enclosing them.

【0035】この実施の形態6の場合も、前記実施の形
態3で述べたと同様に、超音速で飛しょう中の空力加熱
によって生じる前縁部24と後縁部26の表面温度の差
から、加熱部23と冷却部27の間に温度差が生じ、加
熱部23と冷却部27の間の熱電子効果によって生じる
電位差を電源回路5により所定の電圧に変換するなどし
て駆動源11a,11bに出力可能となる。
Also in the case of the sixth embodiment, as in the case of the third embodiment, from the difference in surface temperature between the front edge portion 24 and the rear edge portion 26 caused by aerodynamic heating during flight at supersonic speed, A temperature difference occurs between the heating unit 23 and the cooling unit 27, and a potential difference caused by a thermoelectron effect between the heating unit 23 and the cooling unit 27 is converted into a predetermined voltage by the power supply circuit 5, and the drive sources 11a and 11b. Can be output to.

【0036】ところで前記説明では、この発明を超音速
で飛しょうする後翼操舵の飛しょう体に利用する場合に
ついて述べたが、同様な条件にある飛しょう体の操舵駆
動部の電源確保に利用できることは言うまでもない。
By the way, in the above description, the present invention has been described as being applied to a flying vehicle for steering a rear wing that flies at supersonic speed. It goes without saying that you can do it.

【0037】[0037]

【発明の効果】以上のように、この発明によれば、後翼
操舵の飛しょう体の操舵駆動部に、超音速で飛しょう中
に操舵駆動部もしくは後翼が空力加熱により受ける熱エ
ネルギーを用いて発電し、それを駆動源へ出力可能な電
源装置を設けることにより、誘導部から駆動源への出力
電力の配線が不要となり、タンネルカバーの内部のタン
ネルケーブルの実装が容易になるという効果がある。
As described above, according to the present invention, the steering drive unit of the flying vehicle for steering the rear wing receives the thermal energy received by the aerodynamic heating of the steering drive unit or the rear wing during flight at supersonic speed. By using a power supply device that can generate power and output it to the drive source, wiring of output power from the induction part to the drive source is not required, and it is easy to mount the tunnel cable inside the tunnel cover. There is an effect.

【0038】また、この発明による操舵駆動部と後翼に
設けた電源装置は、その動作原理から超音速で飛しょう
する後翼操舵の飛しょう体ならば、その種類に関係なく
適用可能なものであり、主に構成品も、金属製の円筒
体、ヒートパイプ等の極めて簡単な部品であり、部品点
数も少なくできており、このため保守点検及び外部電源
の必要もなく、かつ、飛しょう体の姿勢に関係なく電力
を得ることができ、発生電圧も容易に高くとれ、安全性
にも極めて優れているという効果がある。
In addition, the steering drive unit and the power supply device provided on the rear wing according to the present invention can be applied to any rear wing steering flying body that can fly at supersonic speed regardless of its type because of its operating principle. The components are also extremely simple parts such as metal cylinders and heat pipes, and the number of parts can be reduced. Therefore, there is no need for maintenance and inspection, and there is no need for an external power source. There is an effect that electric power can be obtained regardless of the posture of the body, the generated voltage can be easily taken high, and the safety is also extremely excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施の形態1を示す構成図であ
る。
FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】 この発明の実施の形態2を示す構成図であ
る。
FIG. 2 is a configuration diagram showing a second embodiment of the present invention.

【図3】 この発明の実施の形態3を示す構成図であ
る。
FIG. 3 is a configuration diagram showing a third embodiment of the present invention.

【図4】 この発明の実施の形態3の後翼の断面形状を
示す構成図である。
FIG. 4 is a configuration diagram showing a cross-sectional shape of a rear wing according to a third embodiment of the present invention.

【図5】 この発明の実施の形態4を示す構成図であ
る。
FIG. 5 is a configuration diagram showing a fourth embodiment of the present invention.

【図6】 この発明の実施の形態4の後翼の断面形状を
示す構成図である。
FIG. 6 is a configuration diagram showing a cross-sectional shape of a rear wing according to a fourth embodiment of the present invention.

【図7】 この発明の実施の形態5を示す構成図であ
る。
FIG. 7 is a configuration diagram showing a fifth embodiment of the present invention.

【図8】 この発明の実施の形態5の後翼の断面形状を
示す構成図である。
FIG. 8 is a configuration diagram showing a cross-sectional shape of a rear wing according to a fifth embodiment of the present invention.

【図9】 この発明の実施の形態6を示す構成図であ
る。
FIG. 9 is a configuration diagram showing a sixth embodiment of the present invention.

【図10】 この発明の実施の形態6の後翼の断面形状
を示す構成図である。
FIG. 10 is a configuration diagram showing a cross-sectional shape of a rear wing according to a sixth embodiment of the present invention.

【図11】 従来の後翼操舵の飛しょう体の構成図であ
る。
FIG. 11 is a configuration diagram of a conventional rear-wing steering flying body.

【符号の説明】[Explanation of symbols]

1 誘導部、2 電力負荷、3 電源装置、4 電池、
5 電源回路、6 前翼、7 弾頭、8 推進装置、9
操舵駆動部、10 後翼、11 駆動源、12 タン
ネルケーブル、13 タンネルカバー、14 シェル、
15 絞り部、16 平行部、17 拡張部、18 第
1の円筒体、19 絶縁体、20 第2の円筒体、21
第1のヒートパイプ、22 第2のヒートパイプ、2
3 加熱部、24 前縁部、25 冷却部、26 後縁
部。
1 induction part, 2 power load, 3 power supply device, 4 batteries,
5 power circuits, 6 front wings, 7 warheads, 8 propulsion devices, 9
Steering drive section, 10 rear wing, 11 drive source, 12 tunnel cable, 13 tunnel cover, 14 shell,
15 narrowed portion, 16 parallel portion, 17 extended portion, 18 first cylindrical body, 19 insulator, 20 second cylindrical body, 21
First heat pipe, 22 second heat pipe, 2
3 heating part, 24 front edge part, 25 cooling part, 26 rear edge part.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 飛しょう体の後方にあって、飛しょう体
の外径より小さく絞った絞り部と、前記絞り部に設けた
平行部と、前記平行部から拡大方向に広がり、前記絞り
部と同じ表面積の拡張部を持つシェルを備えた操舵駆動
部と、前記絞り部と絶縁体を挟んで内接した金属製の第
1の円筒体と、前記拡張部と内接し、前記第1の円筒体
と絶縁され、かつ真空もしくは低圧なガスを封入した間
隙を持つ金属製の第2の円筒体を備えたことを特徴とす
る飛しょう体の電源装置。
1. A narrowed portion that is located behind the flying body and has a diameter smaller than the outer diameter of the flying body, a parallel portion provided on the narrowed portion, and a widened portion from the parallel portion in an expanding direction. A steering drive unit including a shell having an expanded portion having the same surface area as the above, a first cylindrical body made of metal inscribed between the throttle unit and an insulator, and an inscribed portion of the expanded unit. A power supply device for a flying object, characterized in that it is provided with a second metal cylinder that is insulated from the cylinder and has a gap filled with a vacuum or low-pressure gas.
【請求項2】 飛しょう体の後方にあって、飛しょう体
の外径より小さく絞った絞り部と、前記絞り部に設けた
平行部と、前記平行部から拡大方向に広がり、前記絞り
部と同じ表面積の拡張部を持つシェルを備えた操舵駆動
部と、前記シェルと絶縁され、操舵駆動部の内部の任意
の位置に設けた金属製の第1の円筒体と、前記第1の円
筒体と絶縁され、かつ真空もしくは低圧なガスを封入し
た間隙を持つ金属製の第2の円筒体と、前記絞り部に絶
縁体を挟んで内接し、かつ前記第1の円筒体と接触する
第1のヒートパイプと、前記拡張部に内接し、かつ前記
第2の円筒体と接触する第2のヒートパイプとを備えた
ことを特徴とする飛しょう体の電源装置。
2. A narrowed portion which is behind the flying body and is narrowed to be smaller than the outer diameter of the flying body, a parallel portion provided on the narrowed portion, and a narrowed portion which spreads in an expanding direction from the parallel portion. A steering drive unit including a shell having an expanded portion having the same surface area as the above; a first cylindrical body made of metal, which is insulated from the shell and is provided at an arbitrary position inside the steering drive unit; A second cylindrical body made of metal, which is insulated from the body and has a gap in which a vacuum or low-pressure gas is sealed, and is inscribed in the narrowed portion with an insulator interposed between the second cylindrical body and the first cylindrical body. A power supply device for a flying object, comprising: a heat pipe No. 1; and a second heat pipe inscribed in the expansion portion and in contact with the second cylindrical body.
【請求項3】 双くさび形状の後翼の前縁部に設けら
れ、周囲と絶縁された凸形の加熱部と、前記前縁部と絶
縁され、かつ前記前縁部と同じ外気接触面積を持つ前記
後翼の後縁部に設けられて、前記加熱部と対向し、真空
もしくは低圧なガスを封入した間隙を持った凹形の冷却
部とを備えたことを特徴とする飛しょう体の電源装置。
3. A convex heating portion provided at a front edge portion of a twin wedge-shaped rear wing and insulated from the surroundings, and an outside air contact area which is insulated from the front edge portion and is the same as the front edge portion. The flying body is characterized in that it is provided at the trailing edge of the rear blade and has a concave cooling section facing the heating section and having a gap filled with a vacuum or low-pressure gas. Power supply.
【請求項4】 双くさび形状の後翼の前縁部に設けら
れ、周囲と絶縁された複数の凸形の加熱部と、前記前縁
部と絶縁され、かつ前記前縁部と同じ外気接触面積を持
つ前記後翼の後縁部に設けられて、前記加熱部と対向
し、真空もしくは低圧なガスを封入した間隙を持つ複数
の凹形の冷却部とを備えたことを特徴とする飛しょう体
の電源装置。
4. A plurality of convex heating portions provided on the front edge of a twin wedge-shaped rear wing and insulated from the surroundings, and the same outside air contact with the front edge and the same with the front edge. An air-conditioning device provided with a plurality of concave cooling portions which are provided at a trailing edge portion of the rear blade having an area and which face the heating portion and have a gap filled with a vacuum or low-pressure gas. The power supply for the body.
【請求項5】 双くさび形状の後翼の前縁部に設けた平
行部にあって、周囲と絶縁された凸形の加熱部と、前記
平行部と絶縁され、かつ前記前縁部と同じ外気接触面積
を持つ前記後翼の後縁部に設けられて、前記加熱部と対
向し、真空もしくは低圧なガスを封入した間隙を持つ凹
形の冷却部とを備えたことを特徴とする飛しょう体の電
源装置。
5. A convex heating part, which is provided in a front edge portion of a twin wedge-shaped rear wing, is insulated from the surroundings, and is the same as the front edge portion and is insulated from the parallel portion. An air-cooling unit provided at the trailing edge of the rear blade having an outside air contact area, facing the heating unit, and having a concave cooling unit having a gap filled with vacuum or low-pressure gas. The power supply for the body.
【請求項6】 双くさび形状の後翼の前縁部に設けた平
行部にあって、周囲と絶縁された複数の凸形の加熱部
と、前記平行部と絶縁され、かつ前記前縁部と同じ外気
接触面積を持つ前記後翼の後縁部に設けられて、前記加
熱部と対向し、真空もしくは低圧なガスを封入した間隙
を持つ複数の凹形の冷却部とを備えたことを特徴とする
飛しょう体の電源装置。
6. A plurality of convex heating portions in a parallel portion provided on a front edge portion of a twin wedge-shaped rear wing, and a plurality of convex heating portions insulated from the surroundings, and the front edge portion insulated from the parallel portions. And a plurality of concave cooling sections provided at the trailing edge of the rear blade having the same outside air contact area, facing the heating section, and having a gap filled with vacuum or low-pressure gas. Characteristic flying power supply unit.
JP8281696A 1996-04-04 1996-04-04 Power source for flying body Pending JPH09272496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8281696A JPH09272496A (en) 1996-04-04 1996-04-04 Power source for flying body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8281696A JPH09272496A (en) 1996-04-04 1996-04-04 Power source for flying body

Publications (1)

Publication Number Publication Date
JPH09272496A true JPH09272496A (en) 1997-10-21

Family

ID=13784940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8281696A Pending JPH09272496A (en) 1996-04-04 1996-04-04 Power source for flying body

Country Status (1)

Country Link
JP (1) JPH09272496A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111141183A (en) * 2020-01-10 2020-05-12 蓝箭航天空间科技股份有限公司 Power tail cabin and rocket

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111141183A (en) * 2020-01-10 2020-05-12 蓝箭航天空间科技股份有限公司 Power tail cabin and rocket

Similar Documents

Publication Publication Date Title
US5440193A (en) Method and apparatus for structural, actuation and sensing in a desired direction
US9388740B2 (en) Thermoelectric generator in turbine engine nozzles
US5114104A (en) Articulated control surface
US20070077044A1 (en) Increased aperture homing cavitator
EP2050672A2 (en) System, method, and apparatus for pulsed-jet-enhanced heat exchanger
US20040011917A1 (en) Shock wave modification via shock induced ion doping
US10494080B2 (en) Thermal insulation for aircraft components
JPH09272496A (en) Power source for flying body
CN113782940A (en) High-speed airflow through type air-cooling heat dissipation airborne antenna
JP7092547B2 (en) Insulation structure of aircraft parts, and how to assemble and use it
JP2023512860A (en) Augmented aerospike nozzle, engine including augmented aerospike nozzle, and vehicle including engine
KR101200803B1 (en) Flush-type Pitot Tube
CN109835466A (en) Aircraft and its housing assembly
EP4261123A1 (en) Flying body
EP3778400A1 (en) Aircraft air conditioning pack assembly and method of assembling
US3763928A (en) Electrostatically controlled heat shutter
Fomichev et al. Experimental investigation of the magnetohydrodynamic parachute effect in a hypersonic air flow
JPH08278099A (en) Air-to-air guided missile
KR101750513B1 (en) Auxiliary propulsion apparatus for aircraft and aircraft having the same
RU2583511C1 (en) Thermionic method for thermal protection of aircraft
WO2023159397A1 (en) Battery cable-type connector protection device, battery, and electrical device
US20220041303A1 (en) Thrust with the minimum ejection of propellant
EP4386303A1 (en) Elliptical ultrasound vibration based cooling
US11665963B1 (en) Waste heat capture using tail cone of a gas turbine engine
US20230225210A1 (en) Powering sensor packages in moving platforms