JPH09268544A - Simulation device for water conduit system - Google Patents

Simulation device for water conduit system

Info

Publication number
JPH09268544A
JPH09268544A JP8075023A JP7502396A JPH09268544A JP H09268544 A JPH09268544 A JP H09268544A JP 8075023 A JP8075023 A JP 8075023A JP 7502396 A JP7502396 A JP 7502396A JP H09268544 A JPH09268544 A JP H09268544A
Authority
JP
Japan
Prior art keywords
water
waterway system
model formula
valve
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8075023A
Other languages
Japanese (ja)
Other versions
JP3556384B2 (en
Inventor
Yasunori Sannomiya
▲やす▼典 三宮
Kenji Mori
健志 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP07502396A priority Critical patent/JP3556384B2/en
Publication of JPH09268544A publication Critical patent/JPH09268544A/en
Application granted granted Critical
Publication of JP3556384B2 publication Critical patent/JP3556384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Feedback Control In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To alter the fluid model formula change of a piping whole part by employing a fluid model formula derived from a stationary inspection volume in a water conduit system simulation device used in the fluid analyzation of a water conduit system such as a pumped storage hydroelectric plant. SOLUTION: The water conduit system 1 is comprised of an upper cistern 2, a piping 3, valves 4 arranged in a plurality of places, and a discharge channel. The water conduit system information analyzing means 21 of a water conduit system simulation device 20 operates to obtain each information of hydraulic pressure, a flow rate and the like by deriving a fluid model formula from the volume change of a stationary inspection volume caused by impact waves, digitizing it through a node junction, and applying a skyline method on the solution of derived simultaneous equations. Adding a hydraulic turbine formula to the fluid model formula can simulate the pumped storage hydroelectric plant. Thus, in the case of adding a branched pipe 3 to the way of the constructed piping 3, the fluid model formula change is made readily, and the simulation time can be shortened by making calculation efficient.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、例えば揚水発電
プラントの水路系の流動解析に用いられる流動モデル式
の構築および変更を容易に行うことができる水路系模擬
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waterway system simulating device capable of easily constructing and changing a flow model equation used for flow analysis of a waterway system of a pumped storage power plant, for example.

【0002】[0002]

【従来の技術】図10は従来の水路系模擬装置を示す構
成図であり、図において、1は水路系、2は上部貯水
池、3は配管、4は配管3の複数箇所に配置される弁、
6は放水路、10は従来の水路系模擬装置、11は配管
3の流量、および水圧等の初期値を入力する初期値入力
手段、12は弁4の開閉度を入力する弁開度入力手段、
13は弁4の開閉度から弁4内を流れる流量を算出する
弁内流量算出手段、14は初期値入力手段11および弁
内流量算出手段13から入力した各種の情報を流動モデ
ル式に基づいて解析し、配管3における流速、水圧およ
び流量等の各種情報を求める水路系情報解析手段であ
る。
2. Description of the Related Art FIG. 10 is a block diagram showing a conventional waterway system simulating device. In the figure, 1 is a waterway system, 2 is an upper reservoir, 3 is a pipe, 4 is a valve which is arranged at a plurality of positions in a pipe 3. ,
6 is a water discharge channel, 10 is a conventional water channel system simulation device, 11 is an initial value input means for inputting initial values such as the flow rate of the pipe 3 and water pressure, 12 is a valve opening degree input means for inputting the opening / closing degree of the valve 4. ,
Reference numeral 13 is an in-valve flow rate calculating means for calculating a flow rate flowing in the valve 4 from the opening / closing degree of the valve 4, and 14 is various information input from the initial value input means 11 and the in-valve flow rate calculating means 13 based on a flow model formula. It is a waterway system information analysis means that analyzes and obtains various information such as the flow velocity, water pressure and flow rate in the pipe 3.

【0003】各分野において、配管系の管路内の流体の
流速が急激に変化することにより生じる水撃破が、発電
プラントのまわりに及ぼす影響を考慮しなければならな
い課題が多く存在し、管壁の伸縮および水の圧縮、膨張
により、管路内の圧力が変化する水撃波の影響を考慮し
た流動モデル式の導出が必要であった。
In each field, there are many problems in which the influence of water destruction caused by a rapid change in the flow velocity of the fluid in the pipeline of the piping system on the surroundings of the power plant must be taken into consideration. It was necessary to derive the flow model equation considering the influence of the water hammer wave in which the pressure in the pipe changes due to the expansion and contraction of water and the compression and expansion of water.

【0004】図11は従来の揚水発電プラントの水路系
情報解析手段で使用される流動モデル式を導出するため
の管路の検査体積を示す説明図であり、図において、7
は管路、8は管路7中の微小部分、9は微小時間後の微
小部分である。管路7中の微小部分8が微小時間で微小
部分9の位置まで移動し、その端面AおよびBがそれぞ
れCおよびDの位置まで移動したとすると、微小時間で
の検査体積はAC−BDの長さの変化が生じる。この長
さの変化を水撃波に起因する管路7の管壁の伸縮および
水の圧縮、膨張により生じる長さの変化に等しいとして
流動モデル式を導出する。
FIG. 11 is an explanatory diagram showing the inspection volume of a pipeline for deriving a flow model formula used in the conventional channel information analysis means of a pumped storage power plant.
Is a conduit, 8 is a minute portion in the conduit 7, and 9 is a minute portion after a minute time. Assuming that the minute portion 8 in the conduit 7 moves to the position of the minute portion 9 in a minute time and the end faces A and B thereof move to the positions C and D, respectively, the inspection volume in the minute time is AC-BD. A change in length occurs. The flow model equation is derived by regarding the change in length as equal to the change in length caused by the expansion and contraction of the pipe wall of the pipe 7 and the compression and expansion of water caused by the water hammer wave.

【0005】[0005]

【発明が解決しようとする課題】従来の水路系模擬装置
は以上のように構成されているので、すなわち、移動す
る検査体積に基づいて流動モデル式を求めているので、
配管3全体についての流動モデル式を求めなければなら
ず、そのために、すでに構築済みの配管3の途中に分岐
する配管を新たに追加した場合、最初から配管3全体に
ついての流動モデル式を求めなければならず、配管3全
体についての流動モデル式を容易に変更することができ
ないなどの課題があった。
Since the conventional waterway system simulating device is constructed as described above, that is, since the flow model formula is obtained based on the moving inspection volume,
The flow model formula for the entire pipe 3 must be obtained. Therefore, if a pipe that branches in the middle of the already constructed pipe 3 is newly added, the flow model formula for the entire pipe 3 must be obtained from the beginning. However, there is a problem that the flow model formula for the entire pipe 3 cannot be easily changed.

【0006】この発明は上記のような課題を解決するた
めになされたもので、すでに構築済みの水路系の途中に
分岐する配管を新たに追加した場合でも、水路系全体に
ついての流動モデル式を容易に変更することができる水
路系模擬装置を得ることを目的とする。
The present invention has been made in order to solve the above problems. Even when a branch pipe is newly added in the middle of an already constructed waterway system, a flow model formula for the entire waterway system is obtained. The purpose is to obtain a waterway system simulator that can be easily changed.

【0007】[0007]

【課題を解決するための手段】請求項1記載の発明に係
る水路系模擬装置は、水路系情報解析手段は、水撃波に
よる管壁の伸縮および管路中を流れる水の圧縮、膨張に
より生じる固定の検査体積の体積変化を長さの変化とし
てとらえ、これに断面積および密度を掛け合わせたもの
を検査体積における流入出量の差として導出した流動モ
デル式を使用するようにしたものである。
According to a first aspect of the present invention, there is provided a waterway system information analyzing means for expanding and contracting a pipe wall by a water hammer wave and compressing and expanding water flowing in the pipeway. The change in the fixed test volume that occurs is regarded as a change in length, and the product of the cross-sectional area and the density is used as the flow model formula derived as the difference between the inflow and outflow in the test volume. is there.

【0008】請求項2記載の発明に係る水路系模擬装置
は、流動モデル式の離散化を行うときに、水路系を複数
のノードとしての体積要素に分割し、上記ノード間をジ
ャンクションとしての仮想空間で接続し、上記ノードに
は質量保存則および上記ジャンクションには運動量保存
則を適用し算出するノード・ジャンクション法を使用す
るようにしたものである。
In the waterway system simulating apparatus according to the second aspect of the invention, when the flow model equation is discretized, the waterway system is divided into a plurality of volume elements as nodes, and the nodes are virtual as junctions. The nodes are connected in a space, and the node-junction method is applied to calculate by applying the mass conservation law to the nodes and the momentum conservation law to the junctions.

【0009】請求項3記載の発明に係る水路系模擬装置
は、離散化により導出された連立方程式の解法にスカイ
ライン法を適用するようにしたものである。
In the waterway system simulating device according to the third aspect of the present invention, the skyline method is applied to the solution of simultaneous equations derived by discretization.

【0010】請求項4記載の発明に係る水路系模擬装置
は、流動モデル式に水車モデル式を付加し、発電プラン
トの模擬を可能にしたものである。
According to a fourth aspect of the present invention, there is provided a waterway system simulating device in which a water turbine model formula is added to a flow model formula so that a power plant can be simulated.

【0011】[0011]

【発明の実施の形態】以下、この発明の実施の一形態を
説明する。 実施の形態1.図1はこの発明の実施の形態1による水
路系模擬装置を示す構成図であり、図において、1は水
路系、2は上部貯水池、3は配管、4は配管3の複数箇
所に配置される弁、20は水路系模擬装置、11は水路
系1の配管3の流量および水圧等の初期値を入力する初
期値入力手段、12は各弁4の開閉度を入力する弁開度
入力手段、13は各弁4の開閉度から弁4内を流れる流
量を算出する弁内流量算出手段、21は初期値入力手段
11および弁内流量算出手段13から入力した各種の情
報を水撃波を考慮した流動モデル式に基づいて解析し、
配管3における水圧および流量等の各種情報を求める水
路系情報解析手段である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below. Embodiment 1. FIG. 1 is a configuration diagram showing a waterway system simulating device according to a first embodiment of the present invention. In the figure, 1 is a waterway system, 2 is an upper reservoir, 3 is a pipe, and 4 is arranged at a plurality of positions of a pipe 3. A valve, 20 is a waterway system simulator, 11 is an initial value input means for inputting initial values such as the flow rate and water pressure of the pipe 3 of the waterway system 1, 12 is a valve opening degree input means for inputting the opening / closing degree of each valve 4, Reference numeral 13 is a valve flow rate calculating means for calculating the flow rate flowing in the valve 4 from the opening / closing degree of each valve 4, 21 is a water hammer wave in consideration of various information input from the initial value input means 11 and the valve flow rate calculating means 13. Analysis based on the flow model formula
It is a waterway system information analysis means for obtaining various information such as water pressure and flow rate in the pipe 3.

【0012】次に、水路系情報解析手段21で使用され
る水撃波を考慮した流動モデル式の基礎式の導出手順を
弾性水柱理論に基づいて説明する。まず、図2はこの発
明の実施の形態1による水路系模擬装置の水路系情報解
析手段で使用される流動モデル式を導出するための管路
の検査体積を示す説明図であり、図において、31は管
路、32は管路31中の微小部分、33は微小時間後の
微小部分である。管路31中の微小部分32を固定と
し、微小時間で水撃波による管壁の伸縮および管路31
中を流れる水の圧縮、膨張により微小部分33となった
ときの検査体積の体積変化を長さの変化として捉え、こ
れに断面積および密度を掛け合わせたものを検査体積に
おける流入出量の差として捉えることにより、流動モデ
ル式の質量保存則の式(1)が導出される。
Next, the procedure for deriving the basic equation of the flow model equation in consideration of the water hammer wave used in the waterway system information analyzing means 21 will be explained based on the elastic water column theory. First, FIG. 2 is an explanatory view showing the inspection volume of a pipeline for deriving a flow model formula used in the waterway system information analysis means of the waterway system simulator according to Embodiment 1 of the present invention. Reference numeral 31 is a conduit, 32 is a minute portion in the conduit 31, and 33 is a minute portion after a minute time. The minute portion 32 in the pipe 31 is fixed, and the pipe wall expands and contracts due to a water hammer wave in a short time and the pipe 31
The volume change of the inspection volume when the minute portion 33 is formed by the compression and expansion of the water flowing inside is regarded as the change of the length, and the product of this and the cross-sectional area and the density is the difference between the inflow and outflow in the inspection volume. From the above, the equation (1) of the mass conservation law of the flow model equation is derived.

【0013】[0013]

【数1】 [Equation 1]

【0014】 a:圧力波の伝搬速度 P:圧力 w:流量 V:微小部分の体積A: Propagation velocity of pressure wave P: Pressure w: Flow rate V: Volume of minute portion

【0015】なお、この弾性水柱理論では、配管3の管
内の水の圧縮性を考慮する、管内の圧力により管壁は伸
び縮みする、配管3は常に水で充満され、また管内の最
低圧は水の蒸気圧以上である、水力損失および速度水頭
は圧力変化に比較して省略できる、管軸方向における水
の速度は管断面上一様である、および水圧は管の横断面
上一様であり、その値は管の中心線上における水圧に等
しい、と仮定する。
In this elastic water column theory, the compressibility of water in the pipe 3 is taken into consideration, the pipe wall expands and contracts due to the pressure in the pipe, the pipe 3 is always filled with water, and the minimum pressure in the pipe is Above the vapor pressure of water, hydraulic loss and velocity head can be omitted compared to pressure change, velocity of water in pipe axial direction is uniform in cross section of pipe, and water pressure is uniform in cross section of pipe. Yes, and its value is assumed to be equal to the water pressure on the tube centerline.

【0016】まず、管壁の伸縮による管路の微小部分の
長さの変化を考慮すると、図3は管路31中の微小部分
(長さdx1 )の各部の寸法および管壁にかかる縦方向
および円周方向応力を表したものであり、この微小部分
の管壁の縦方向および円周方向の応力変化による管壁の
半径の変化は、
First, considering the change in the length of the minute portion of the conduit due to the expansion and contraction of the pipe wall, FIG. 3 shows the dimensions of each portion of the minute portion (length dx 1 ) in the conduit 31 and the longitudinal length of the pipe wall. Direction and circumferential stress, and the change in the radius of the pipe wall due to the stress change in the longitudinal and circumferential directions of the pipe wall in this minute part is

【0017】[0017]

【数2】 [Equation 2]

【0018】であり、その軸方向長さの変化は、 δX1=dx1 /E(△σ1 −μ△σ2 ) ・・・(3) となる。 R:管路の内半径 e:管壁の厚さ E:管壁材料の縦弾性係数 μ:管壁材料のポアソン比 △σ1 :圧力変化により生じた縦方向の応力変化 △σ2 :圧力変化により生じた円周方向の応力変化The change in the axial length is δ X1 = dx 1 / E (Δσ 1 −μΔσ 2 ) ... (3) R: Inner radius of pipe e: Thickness of pipe wall E: Modulus of longitudinal elasticity of pipe wall material μ: Poisson's ratio of pipe wall material Δσ 1 : Change in longitudinal stress caused by pressure change Δσ 2 : Pressure Change in the circumferential direction caused by the change

【0019】である。この応力のもとにおける微小部分
の体積は、 π(R+△R)2 (δX1+dx1 ) ・・・(4)
## EQU1 ## The volume of the minute portion under this stress is π (R + ΔR) 2X1 + dx 1 ) (4)

【0020】であり、この体積変化に相当する微小部分
の長さの変化は、式(4)を断面積πR2 で割って求め
られる。
The change in the length of the minute portion corresponding to this change in volume is obtained by dividing the equation (4) by the cross-sectional area πR 2 .

【0021】[0021]

【数3】 (Equation 3)

【0022】そして、この長さの変化量はその管が縦方
向にどのように動きうるかによって決まり、ここで管の
移動が制限されている代表的な3つの場合について、ρ
dHなる圧力変化により生じる微小部分の長さの変化量
を求めると下記のようになる。
The amount of change in this length is determined by how the pipe can move in the vertical direction. Here, ρ for three typical cases where the movement of the pipe is restricted.
The amount of change in the length of the minute portion caused by the pressure change of dH is calculated as follows.

【0023】まず、管の上端が固定されており、縦方向
にはその全長に亘って移動が自由で、伸縮継手が設けら
れていない場合、 δX1+(2△R/R)dx1 =dx1 /E[(ρDdH/4e)−(μρDdH/2e)] +2dx1 /E[(ρDdH/2e)−(μρDdH/4e)] =(ρDdH/Ee)(5/4−μ)dx1 ・・・(6)
First, in the case where the upper end of the pipe is fixed and is freely movable in the longitudinal direction over its entire length and no expansion joint is provided, δ X1 + (2ΔR / R) dx 1 = dx 1 / E [(ρDdH / 4e)-(μρDdH / 2e)] + 2dx 1 / E [(ρDdH / 2e)-(μρDdH / 4e)] = (ρDdH / Ee) (5 / 4-μ) dx 1 ·・ ・ (6)

【0024】次に、管が全長に亘って、その縦方向の移
動ができないように固定されている場合、 δX1+(2△R/R)d1 =dx1 /E[(μρDdH/2e)−(μρDdH/2e)] +2dx1 /E[(ρDdH/2e)−(μ2 ρDdH/2e)] =(ρDdH/Ee)(1−μ2 )dx1 ・・・(7)
Next, when the tube is fixed so that it cannot move in the longitudinal direction over the entire length, δ X1 + (2ΔR / R) d 1 = dx 1 / E [(μρDdH / 2e )-(ΜρDdH / 2e)] + 2dx 1 / E [(ρDdH / 2e)-(μ 2 ρDdH / 2e)] = (ρDdH / Ee) (1-μ 2 ) dx 1 (7)

【0025】さらに、管の全長に亘って固定台間に伸縮
継手が設けられている場合、 δX1+(2△R/R)dx1 =dx1 /E[0−(μρDdH/2e)] +2dx1 /E[(ρDdH/2e)−0] =(ρDdH/Ee)(1−μ/2)dx1 ・・・(8)
Further, when an expansion joint is provided between the fixed bases over the entire length of the pipe, δ X1 + (2ΔR / R) dx 1 = dx 1 / E [0- (μρDdH / 2e)] + 2dx 1 / E [(ρDdH / 2e) -0] = (ρDdH / Ee) (1-μ / 2) dx 1 (8)

【0026】以上、式(6)、式(7)、式(8)の3
つの場合において、それぞれ C1 =5/4−μ ・・・(9) C1 =1−μ2 ・・・(10) C1 =1−μ/2 ・・・(11)
As described above, 3 in the equations (6), (7) and (8)
In each case, C 1 = 5 / 4−μ (9) C 1 = 1−μ 2 (10) C 1 = 1−μ / 2 (11)

【0027】とおくことにより、ρdHなる圧力変化に
よる微小部分の長さの変化量は、 δX1+(2△R/R)dx1 =[ρDdHdx1 /Ee]c1 ・・・(12) D:導管の内径 ρ:水の密度 H:圧力水頭 であり、式(12)に示すように、管壁の伸縮による管
路の微小部分の長さの変化量が求められた。
Therefore, the amount of change in the length of the minute portion due to the pressure change of ρdH is δ X1 + (2ΔR / R) dx 1 = [ρDdHdx 1 / Ee] c 1 (12) D: Inner diameter of conduit ρ: Density of water H: Pressure head, and as shown in equation (12), the amount of change in the length of the minute portion of the conduit due to expansion and contraction of the pipe wall was obtained.

【0028】次に、水の圧縮性の効果による長さdx1
の水の微小部分の長さの変化を考えると、長さdx1
水の微小部分がρdHなる圧力変化を受けるとき、水の
弾性による体積の変化量は、 (ρπR2 /k)dHdx1 ・・・(13)
Next, the length dx 1 due to the effect of compressibility of water.
Considering the change in the length of the minute portion of water, when the minute portion of the water of length dx 1 is subjected to a pressure change of ρdH, the amount of change in volume due to the elasticity of water is (ρπR 2 / k) dHdx 1 ... (13)

【0029】より、これに対応する長さの変化量は、式
(13)を断面積πR2 で割って求められる。 [(ρπR2 /k)/πR2 ]dHdx1 =(ρ/k)dHdx1 ・・・(14) 以上、式(14)に示すように水の圧縮性による微小部
分の長さの変化量が求められた。
Therefore, the amount of change in length corresponding to this is obtained by dividing the equation (13) by the cross-sectional area πR 2 . [(ΡπR 2 / k) / πR 2 ] dHdx 1 = (ρ / k) dHdx 1 (14) As described above, the amount of change in the length of the minute portion due to the compressibility of water as shown in Expression (14). Was asked.

【0030】そして、式(12)および式(14)よ
り、ρdHなる圧力変化により水の圧縮性および管壁の
伸縮が原因で生じる水の微小部分の長さの全変化量は、 ρ[(1/k)+(DC1/Ee)]dHdx1 ・・・(15) となる。
From equations (12) and (14), the total change in the length of the minute portion of water caused by the compressibility of water and the expansion and contraction of the pipe wall due to the pressure change of ρdH is ρ [( 1 / k) + (D C1 / Ee)] dHdx 1 (15)

【0031】これに、仮に一定とした管路の断面積およ
び密度を掛け合わせたものが微小な検査体積に入ってく
る量と出ていく量との差として捉えることができる。そ
こで、質量保存則の式は、
A product obtained by multiplying this by a cross-sectional area and density of a fixed pipeline can be grasped as a difference between an amount entering a minute inspection volume and an amount leaving it. Therefore, the formula for the law of conservation of mass is

【0032】[0032]

【数4】 (Equation 4)

【0033】となる。ここで、水頭Hはx1 とtとの関
数であり、ax1 /dt =uであるから、
## EQU1 ## Here, the head H is a function of x 1 and t, and since ax 1 / d t = u,

【0034】[0034]

【数5】 (Equation 5)

【0035】となり、また、And again

【数6】 (Equation 6)

【0036】 V=dx1 A ・・・(19)V = dx 1 A (19)

【0037】と表すと、式(20)は以下のようにな
る。
When expressed as, the equation (20) is as follows.

【数7】 (Equation 7)

【0038】 a:圧力波の伝搬速度 P:圧力 A:微小部分の断面積 w:流量A: Propagation velocity of pressure wave P: Pressure A: Cross-sectional area of minute portion w: Flow rate

【0039】なお、運動量保存則は以下のようになる。 (l/A)(∂w/∂t) ={−(1/A)[▽(w2 /∂A)]}−▽P−ρg△h−(h1 +hV ) ・・・(21) 以上、式(20)および式(21)が水撃波モデルの基
礎式である。
The law of conservation of momentum is as follows. (L / A) (∂w / ∂t) = {- (1 / A) [▽ (w 2 / ∂A)]} - ▽ P-ρg △ h- (h 1 + h V) ··· (21 ) As described above, the equations (20) and (21) are the basic equations of the water hammer wave model.

【0040】次に動作について説明する。図4はこの発
明の実施の形態1による水路系模擬装置の動作手順を示
すフローチャートである。まず、水路系模擬装置20の
初期値入力手段11において、揚水発電プラントの水路
系1の配管3の流速、流量および水圧等の初期値を入力
するとともに(ステップST1)、弁開度入力手段12
において、各弁4の開閉度を入力する(ステップST
2)。次に、弁内流量算出手段13において、各弁4の
開閉度から弁4内を流れる流量を算出し(ステップST
3)、水路系情報解析手段21において、初期値入力手
段11および弁内流量算出手段13から入力した各種の
情報を水撃波を考慮した水撃波モデルの基礎式に基づい
て算出し、配管3における水圧および流量等の各種情報
を解析する(ステップST4)。そして、解析終了時刻
か否かを判断し(ステップST5)、解析終了時刻でな
ければ解析刻み時間毎にステップST2へ戻り、繰り返
し実行する。
Next, the operation will be described. FIG. 4 is a flowchart showing an operation procedure of the waterway system simulating device according to the first embodiment of the present invention. First, in the initial value input means 11 of the waterway system simulating device 20, initial values such as the flow velocity, the flow rate and the water pressure of the pipe 3 of the waterway system 1 of the pumped storage power plant are input (step ST1), and the valve opening degree input means 12 is entered.
In, input the opening / closing degree of each valve 4 (step ST
2). Next, the in-valve flow rate calculating means 13 calculates the flow rate flowing in the valve 4 from the opening / closing degree of each valve 4 (step ST
3) In the waterway system information analysis means 21, various kinds of information input from the initial value input means 11 and the valve flow rate calculation means 13 are calculated based on the basic formula of the water hammer wave model considering the water hammer wave, Various information such as water pressure and flow rate in 3 are analyzed (step ST4). Then, it is judged whether or not it is the analysis end time (step ST5), and if it is not the analysis end time, the process returns to step ST2 for each analysis time interval and is repeatedly executed.

【0041】なお、上記式(20)および式(21)の
水撃波モデルの基礎式を適用して配管3における流速、
水圧および流量等の各種情報を解析した結果、弁4を閉
じ始めた際の水撃波が上流側に伝搬しており、しかもこ
の水撃波の伝搬速度に従って、圧力が下流側から順次上
昇し始めている状態を解析することができた。また、弁
4が全閉後、水撃波の伝搬による上流側圧力の振動が続
き、この周期が弁4から上部貯水池2までの距離の4倍
を水撃波の伝搬速度で割った時間と一致することを確認
した。したがって、上記式(20)および式(21)の
水撃波モデルの基礎式は水撃波の影響を定性的、定量的
に考慮した基礎式と解するものである。
Applying the basic equations of the water hammer wave model of the above equations (20) and (21), the flow velocity in the pipe 3,
As a result of analyzing various information such as the water pressure and the flow rate, the water hammer wave when the valve 4 started to be closed propagated to the upstream side, and the pressure gradually increased from the downstream side according to the propagation speed of the water hammer wave. I was able to analyze the starting state. Also, after the valve 4 is fully closed, the oscillation of the upstream pressure due to the propagation of the water hammer wave continues, and this period is four times the distance from the valve 4 to the upper reservoir 2 divided by the propagation speed of the water hammer wave. I confirmed that they match. Therefore, the basic equations of the water hammer wave model of the above equations (20) and (21) are to be understood as basic equations that qualitatively and quantitatively consider the influence of the water hammer wave.

【0042】以上のように、この実施の形態1によれ
ば、水路系情報解析手段21での解析に使用される水撃
波を考慮した水撃波モデルの基礎式は、微小時間で水撃
波による管壁の伸縮および管路31中を流れる水の圧
縮、膨張により生じる検査体積の体積変化量が、水がこ
の検査体積に流入する量と流出する量との差に等しいと
して求めたため、すでに構築済みの配管3の途中に分岐
する配管3を新たに追加した場合でも、配管3全体につ
いての流動モデル式を容易に変更することができるなど
の効果が得られる。
As described above, according to the first embodiment, the basic equation of the water hammer wave model considering the water hammer wave used for the analysis in the waterway system information analyzing means 21 is the water hammer wave in a short time. Since the volume change amount of the inspection volume caused by the expansion and contraction of the pipe wall due to the wave and the compression and expansion of the water flowing in the pipe line 31 is obtained as the difference between the amount of water flowing into the inspection volume and the amount of water flowing out, Even when a pipe 3 that branches off is already added in the middle of the already constructed pipe 3, the flow model formula for the entire pipe 3 can be easily changed.

【0043】実施の形態2.実施の形態1では、配管3
全体についての流動モデル式を容易に変更することがで
きるものについて示したが、この実施の形態2では、図
5に示すように、ノード41およびジャンクション42
を組み合わせることにより、流動モデル式を構築しても
よい。また、図6に示すように、メインの配管3に新た
な配管3を分岐接続させた場合にも、ノード41とジャ
ンクション42との接続関係を定義したデータを追加、
変更するだけで流動モデル式の追加、変更を容易に行う
ことができる。
Embodiment 2 In the first embodiment, the pipe 3
Although it has been shown that the flow model formula for the whole can be easily changed, in the second embodiment, as shown in FIG.
The flow model formula may be constructed by combining Further, as shown in FIG. 6, when the new pipe 3 is branched and connected to the main pipe 3, data defining the connection relationship between the node 41 and the junction 42 is added,
It is possible to easily add or change the flow model formula only by changing it.

【0044】このノード41およびジャンクション42
は、上記式(20)および式(21)で表される流動モ
デル式を空間的にはスタッガードメッシュ法、時間的に
は半陰解法により離散化することにより導出することが
できる。スタッガードメッシュ法は、図5に示すよう
に、流路をノード41と呼ばれる空間に分割し、各ノー
ド41に対して質量保存則を適用し、ジャンクション4
2と呼ぶノード41間の仮想空間に対して運動量保存則
を適用する。
This node 41 and junction 42
Can be derived by discretizing the flow model equations represented by the above equations (20) and (21) spatially by the staggered mesh method and temporally by the semi-implicit method. In the staggered mesh method, as shown in FIG. 5, the flow path is divided into spaces called nodes 41, the mass conservation law is applied to each node 41, and the junction 4
The momentum conservation law is applied to the virtual space between the nodes 41 called 2.

【0045】図5に示すように、ノード41およびジャ
ンクション42の構成に対して流動モデル式は、以下の
ようになる。
As shown in FIG. 5, the flow model equation for the configuration of the node 41 and the junction 42 is as follows.

【0046】[0046]

【数8】 (Equation 8)

【0047】[0047]

【数9】 [Equation 9]

【0048】ここで、式(23)の右辺第1の移流項は
上流差分近似を表し、以下のようになる。 (1)(wKn ≧0
Here, the first advection term on the right side of the equation (23) represents the upstream difference approximation and is as follows. (1) (w K ) n ≧ 0

【0049】[0049]

【数10】 (Equation 10)

【0050】(2)(wKn <0(2) (w K ) n <0

【0051】[0051]

【数11】 [Equation 11]

【0052】式(22)、式(23)において、(W
Kn+1 、(Pin+1 が未知数である。式(23)を
n+1 について解くと、式(26)が求められる。 (WKn+1 =RK {(Pin+1 −(Pjn+1 }+SK ・・・(26) RK =DK δt(AK /lK ) ・・・(27) DK =f{(WKn ,θ} ・・・(28)
In equations (22) and (23), (W
K ) n + 1 and (P i ) n + 1 are unknowns. By solving the equation (23) for W n + 1 , the equation (26) is obtained. (W K ) n + 1 = R K {(P i ) n + 1 − (P j ) n + 1 } + S K (26) R K = D K δt (A K / l K ) ...・ (27) D K = f {(W K ) n , θ} (28)

【0053】[0053]

【数12】 (Equation 12)

【0054】である。SK で表される変数は移流項、配
管の圧力損失、弁の圧力損失が含まれ、流量wについて
非線形となる。しかし、この項は時間差分において1ス
テップ前の値を用いるため既知となり、結果的には線形
連立方程式となる。式(26)を式(22)に代入する
ことにより、圧力が未知数でその個数がノード41の個
数に等しい連立方程式が得られ、この連立方程式を行列
計算で解けばよい。
Is as follows. The variable represented by S K includes the advection term, the pressure loss of the pipe, and the pressure loss of the valve, and is non-linear with respect to the flow rate w. However, this term is known because it uses the value one step before in the time difference, resulting in a linear simultaneous equation. By substituting equation (26) into equation (22), a simultaneous equation whose pressure is unknown and whose number is equal to the number of nodes 41 can be obtained, and this simultaneous equation can be solved by matrix calculation.

【0055】以上のように、この実施の形態2によれ
ば、流動モデル式をノード41およびジャンクション4
2を組み合わせることにより構築したため、流動モデル
式に対して追加、変更を容易に行うことができるなどの
効果が得られる。
As described above, according to the second embodiment, the flow model equation is set to the node 41 and the junction 4.
Since it is constructed by combining the two, it is possible to obtain an effect that the flow model formula can be easily added or changed.

【0056】実施の形態3.上記実施の形態2では、式
(26)を式(22)に代入することにより、圧力が未
知数でその個数がノード41の個数に等しい連立方程式
が得られ、この連立方程式を行列計算で解いた場合につ
いて示したが、連立方程式の係数行列は零要素が多いた
め、スカイライン法を適用して連立方程式を解いてもよ
い。このスカイライン法とは多元連立一次方程式の未知
数にかかる係数行列が図7に示すような、スカイライン
構造51をしている場合、その内部の成分、正確には対
称性から非零の要素部分52の成分のみを記憶すること
として、記憶に必要な容量の節約を図っている。したが
って、スカイライン構造51の外部に存在する零のため
に費やされる演算の無駄を省き、分解、前進および後退
代入に要する計算時間を短縮し(約1/3となってい
る)、計算の効率化を図ることができるため、この実施
の形態3においては上記実施の形態1および実施の形態
2の効果の他に流動モデル式の模擬時間の短縮化が図れ
るなどの効果がある。
Embodiment 3 In the second embodiment, by substituting equation (26) into equation (22), a simultaneous equation whose pressure is unknown and whose number is equal to the number of nodes 41 is obtained, and this simultaneous equation is solved by matrix calculation. Although the case has been described, since the coefficient matrix of the simultaneous equations has many zero elements, the simultaneous equations may be solved by applying the skyline method. In the skyline method, when the coefficient matrix of unknowns of the multi-dimensional simultaneous linear equations has a skyline structure 51 as shown in FIG. 7, the internal components, to be exact, the non-zero element portion 52 due to symmetry. By storing only the components, the capacity required for storage is saved. Therefore, it is possible to eliminate the waste of the operation spent due to the zero existing outside the skyline structure 51, reduce the calculation time required for the decomposition, forward and backward substitution (about 1/3), and improve the efficiency of the calculation. Therefore, in the third embodiment, in addition to the effects of the first and second embodiments, the simulation time of the flow model equation can be shortened.

【0057】実施の形態4.上記実施の形態1から実施
の形態3では、水路系1のみの模擬にかかわるものを示
したが、図8に示すように、水車発電機5を設け、発電
プラントの模擬も可能とすることができる。図8はこの
発明の実施の形態4による揚水発電プラントを示す構成
図であり、図において、上記実施の形態1から実施の形
態3のものと同一符号は同一または相当部分を示すので
説明を省略する。5は水車軸を介して直結された発電機
であり、ガイドベーン開度をある程度変化させた場合
に、水の流速が急激に減少し水撃波が生じる。61はサ
ージタンク、62は水車である。
Embodiment 4 FIG. In the above-described first to third embodiments, only the water channel system 1 is simulated, but as shown in FIG. 8, a water turbine generator 5 may be provided to enable simulation of a power plant. it can. FIG. 8 is a configuration diagram showing a pumped storage power generation plant according to Embodiment 4 of the present invention. In the figure, the same reference numerals as those in Embodiments 1 to 3 indicate the same or corresponding portions, and therefore the description thereof will be omitted. To do. Reference numeral 5 is a generator directly connected via a water wheel shaft, and when the guide vane opening degree is changed to some extent, the flow velocity of water sharply decreases and a water hammer wave is generated. 61 is a surge tank and 62 is a water turbine.

【0058】次に、水車モデル式を導出する手順を説明
する。ガイドベーン開度、回転数、有効水頭が与えら
れ、流量および発生トルクを計算する。与えられる有効
水頭hWWおよび回転数ωより、周速度係数Kv1は式(3
0)で求められる。
Next, the procedure for deriving the water wheel model formula will be described. Given the guide vane opening, rotation speed, and effective head, calculate the flow rate and generated torque. From the given effective head h WW and the rotational speed ω, the peripheral velocity coefficient K v1 is given by the formula (3
0).

【0059】[0059]

【数13】 (Equation 13)

【0060】周速度係数Kv1および与えられるガイドベ
ーン開度βより完全特性曲線と呼ばれるデータから流量
係数Q11およびトルク係数M11が求められ、式(31)
および式(32)で流量wおよび発生トルクMT が求め
られる。
From the circumferential velocity coefficient K v1 and the given guide vane opening β, the flow coefficient Q 11 and torque coefficient M 11 are obtained from the data called the complete characteristic curve, and the equation (31) is obtained.
Then, the flow rate w and the generated torque M T are obtained by the equation (32).

【0061】[0061]

【数14】 [Equation 14]

【0062】 MT =M113WW ・・・(32) D:ランナー直径M T = M 11 D 3 H WW (32) D: Runner diameter

【0063】次に動作について説明する。図9はこの発
明の実施の形態4による水路系模擬装置の動作を示すフ
ローチャートである。まず、配管3の流量、圧力等の初
期値、水車62の回転数、トルク等の初期値および、発
電機5の初期値を読み込む(ステップST11〜ST1
3)。次に、発電機5の特性を計算し(ステップST1
4)、ガイドベーン開度を読み込み(ステップST1
5)、上記の水車モデル式に基づいて水車62の特性を
計算する(ステップST16)。この水車62の特性を
考慮して配管3の圧力、流量等を解析刻み時間ごとに計
算し、解析終了になった時点で終了する(ステップST
17)。
Next, the operation will be described. FIG. 9 is a flow chart showing the operation of the waterway system simulating device according to the fourth embodiment of the present invention. First, the initial values of the flow rate and pressure of the pipe 3, the rotational speed of the water turbine 62, the initial values of the torque, and the initial value of the generator 5 are read (steps ST11 to ST1).
3). Next, the characteristics of the generator 5 are calculated (step ST1
4) Read the guide vane opening (step ST1
5) The characteristics of the water turbine 62 are calculated based on the above water wheel model formula (step ST16). In consideration of the characteristics of the water turbine 62, the pressure, the flow rate, etc. of the pipe 3 are calculated for each analysis time interval, and the process ends when the analysis ends (step ST.
17).

【0064】以上の手順に従って解析した結果、水車6
2のガイドベーンを閉じ始めた時の水撃波により生じる
圧力波が上流側に伝搬しており、しかも圧力波の伝搬速
度に従って下流側から順次圧力が上昇を始めていること
を解析することができた。また、水車62のガイドベー
ンが全閉後、圧力波の伝搬による上流側圧力の振動が続
き、この周期が水車62から上部貯水池2までの距離の
4倍を圧力波の伝搬速度で割った時間と一致したので、
この水車モデル式を付加した発電プラントは定性的、定
量的に解析できる。
As a result of analysis according to the above procedure, the water turbine 6
It can be analyzed that the pressure wave generated by the water hammer wave when the guide vanes of No. 2 start to be closed is propagating to the upstream side, and the pressure is gradually increasing from the downstream side according to the propagation speed of the pressure wave. It was Further, after the guide vanes of the water turbine 62 are fully closed, the oscillation of the upstream pressure due to the propagation of the pressure wave continues, and this period is four times the distance from the water turbine 62 to the upper reservoir 2 divided by the propagation speed of the pressure wave. Since it matched
The power plant to which this turbine model formula is added can be analyzed qualitatively and quantitatively.

【0065】以上のように、この実施の形態4によれ
ば、水路系情報解析手段21において水車モデル式を考
慮した流動モデル式を使用しているため、水車62およ
び発電機5を有する発電プラントの解析を行うことがで
きるなどの効果が得られる。
As described above, according to the fourth embodiment, since the flow channel system information analyzing means 21 uses the flow model equation in consideration of the turbine model equation, the power plant having the turbine 62 and the generator 5 is used. It is possible to obtain the effect that the analysis can be performed.

【0066】[0066]

【発明の効果】以上のように、請求項1記載の発明によ
れば、水路系情報解析手段は、水撃波による管壁の伸縮
および管路中を流れる水の圧縮、膨張により生じる検査
体積の体積変化を長さの変化として捉え、これに断面積
および密度を掛け合わせたものを検査体積における流入
出量の差として導出した流動モデル式を使用するように
構成したので、すでに構築済みの水路系の途中に分岐す
る配管を新たに追加した場合でも、水路系全体について
の流動モデル式を容易に変更することができる効果があ
る。
As described above, according to the first aspect of the present invention, the waterway system information analyzing means includes the inspection volume generated by the expansion and contraction of the pipe wall by the water hammer wave and the compression and expansion of the water flowing in the pipe. Since it is configured to use the flow model equation that the volume change of is regarded as the change of length and the product of the cross-sectional area and the density is derived as the difference of the inflow and outflow in the inspection volume, it is already constructed. Even if a pipe that branches in the middle of the waterway system is newly added, the flow model formula for the entire waterway system can be easily changed.

【0067】請求項2記載の発明によれば、流動モデル
式の離散化を行うときに、水路系を複数のノードとして
の体積要素に分割し、上記ノード間をジャンクションと
しての仮想空間で接続し、上記ノードには質量保存則お
よび上記ジャンクションには運動量保存則を適用し算出
するノード・ジャンクション法を使用するように構成し
たので、すでに構築済みの水路系の途中に分岐する配管
を新たに追加した場合でも、水路系全体についての流動
モデル式を容易に変更することができる効果がある。
According to the invention described in claim 2, when the flow model equation is discretized, the water channel system is divided into volume elements as a plurality of nodes, and the nodes are connected by a virtual space as a junction. , It is configured to use the node-junction method in which the conservation of mass rule is applied to the above nodes and the conservation of momentum is applied to the above junctions.Therefore, a new branch pipe is added in the middle of the already constructed waterway system. Even in this case, there is an effect that the flow model formula for the entire waterway system can be easily changed.

【0068】請求項3記載の発明によれば、離散化によ
り導出された連立方程式の解法に、スカイライン法を適
用するように構成したので、解析時間を短縮できる効果
がある。
According to the third aspect of the invention, the skyline method is applied to the solution of the simultaneous equations derived by the discretization, so that the analysis time can be shortened.

【0069】請求項4記載の発明によれば、流動モデル
式に水車モデル式を付加するように構成したので、発電
プラントの解析を行うことができる効果がある。
According to the fourth aspect of the invention, since the water wheel model equation is added to the flow model equation, there is an effect that the power plant can be analyzed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施の形態1による水路系模擬装
置を示す構成図である。
FIG. 1 is a configuration diagram showing a waterway system simulating device according to a first embodiment of the present invention.

【図2】 この発明の実施の形態1による揚水発電プラ
ントの水路系情報解析手段で使用される流動モデル式を
導出するための管路の検査体積を示す説明図である。
FIG. 2 is an explanatory diagram showing an inspection volume of a pipeline for deriving a flow model formula used in a channel information analysis means of a pumped storage power plant according to Embodiment 1 of the present invention.

【図3】 管路中の微小部分の各部の寸法および管壁に
かかる縦方向および円周方向応力を示す説明図である。
FIG. 3 is an explanatory diagram showing dimensions of respective portions of a minute portion in a pipe line and longitudinal and circumferential stresses applied to a pipe wall.

【図4】 この発明の実施の形態1による水路系模擬装
置の動作手順を示すフローチャートである。
FIG. 4 is a flowchart showing an operation procedure of the waterway system simulating device according to the first embodiment of the present invention.

【図5】 この発明の実施の形態2によるノードおよび
ジャンクションの構成を示す構成図である。
FIG. 5 is a configuration diagram showing configurations of a node and a junction according to a second embodiment of the present invention.

【図6】 メインの水路系に新たな水路系を分岐接続さ
せた水路系モデルを示す構成図である。
FIG. 6 is a configuration diagram showing a waterway system model in which a new waterway system is branched and connected to a main waterway system.

【図7】 この発明の実施の形態3によるスカイライン
構造を示す説明図である。
FIG. 7 is an explanatory diagram showing a skyline structure according to a third embodiment of the present invention.

【図8】 この発明の実施の形態4による発電プラント
を示す構成図である。
FIG. 8 is a configuration diagram showing a power plant according to a fourth embodiment of the present invention.

【図9】 この発明の実施の形態4による水路系模擬装
置の動作を示すフローチャートである。
FIG. 9 is a flowchart showing an operation of the waterway system simulating device according to the fourth embodiment of the present invention.

【図10】 従来の水路系模擬装置を示す構成図であ
る。
FIG. 10 is a configuration diagram showing a conventional waterway system simulating device.

【図11】 従来の発電プラントの水路系情報解析手段
で使用される流動モデル式を導出するための管路の検査
体積を示す説明図である。
FIG. 11 is an explanatory diagram showing an inspection volume of a pipeline for deriving a flow model formula used in a conventional waterway system information analyzing means of a power plant.

【符号の説明】[Explanation of symbols]

1 水路系、4 弁、11 初期値入力手段、12 弁
開度入力手段、13弁内流量算出手段、20 水路系模
擬装置、21 水路系情報解析手段、41ノード、42
ジャンクション。
1 channel system, 4 valves, 11 initial value input means, 12 valve opening input means, 13 valve internal flow rate calculation means, 20 channel system simulation device, 21 channel information analysis means, 41 node, 42
Junction.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 揚水発電プラントの水路系の流量、およ
び水圧等の初期値を入力する初期値入力手段と、上記水
路系に設けられた各弁の開閉度を入力する弁開度入力手
段と、上記各弁の開閉度から弁内を流れる流量を算出す
る弁内流量算出手段と、上記初期値入力手段および上記
弁内流量算出手段とから入力した上記各種の情報を水撃
波を考慮した流動モデル式に基づいて解析し、上記水路
系における水圧および流量等の各種情報を求める水路系
情報解析手段とを備えた水路系模擬装置において、上記
水路系情報解析手段は、上記水撃波による管壁の伸縮お
よび管路中を流れる水の圧縮、膨張により生じる微小部
分である検査体積の体積変化を長さの変化としてとら
え、これに断面積および密度を掛け合わせたものを検査
体積における流入出量の差として導出した流動モデル式
を使用することを特徴とする水路系模擬装置。
1. Initial value input means for inputting initial values such as flow rate and water pressure of a water channel system of a pumped storage power generation plant, and valve opening degree input means for inputting an opening / closing degree of each valve provided in the water channel system. , Considering the water hammer wave, the various information input from the valve flow rate calculation means for calculating the flow rate flowing in the valve from the opening / closing degree of each valve, the initial value input means and the valve flow rate calculation means. In a waterway system simulating device including a waterway system information analyzing means for obtaining various information such as water pressure and flow rate in the waterway system by analyzing based on the flow model equation, the waterway system information analyzing means is based on the water hammer wave. The volume change of the inspection volume, which is a minute portion caused by the expansion and contraction of the pipe wall and the compression and expansion of the water flowing in the pipe, is regarded as the change in length, and the product of the cross-sectional area and the density is inflowed into the inspection volume. Output A waterway system simulator characterized by using a flow model formula derived as the difference between
【請求項2】 流動モデル式の離散化を行うときに、水
路系を複数のノードとしての体積要素に分割し、上記ノ
ード間をジャンクションとしての仮想空間で接続し、上
記ノードには質量保存の保存則および上記ジャンクショ
ンには運動量保存則を適用し算出するノード・ジャンク
ション法を使用することを特徴とする請求項1記載の水
路系模擬装置。
2. When discretizing a flow model equation, the water channel system is divided into volume elements as a plurality of nodes, and the nodes are connected by a virtual space as a junction, and the nodes are connected with a mass conservation function. The waterway system simulating device according to claim 1, wherein a node-junction method for applying a momentum conservation law is applied to the conservation law and the junction.
【請求項3】 離散化により導出された連立方程式の解
法にスカイライン法を適用することを特徴とする請求項
2記載の水路系模擬装置。
3. The waterway system simulating device according to claim 2, wherein the skyline method is applied to a solution of simultaneous equations derived by discretization.
【請求項4】 流動モデル式に水車モデル式を付加し、
発電プラントの模擬を可能とすることを特徴とする請求
項2記載の水路系模擬装置。
4. A water turbine model formula is added to the flow model formula,
The waterway system simulating device according to claim 2, wherein the power generation plant can be simulated.
JP07502396A 1996-03-28 1996-03-28 Waterway simulator Expired - Fee Related JP3556384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07502396A JP3556384B2 (en) 1996-03-28 1996-03-28 Waterway simulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07502396A JP3556384B2 (en) 1996-03-28 1996-03-28 Waterway simulator

Publications (2)

Publication Number Publication Date
JPH09268544A true JPH09268544A (en) 1997-10-14
JP3556384B2 JP3556384B2 (en) 2004-08-18

Family

ID=13564179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07502396A Expired - Fee Related JP3556384B2 (en) 1996-03-28 1996-03-28 Waterway simulator

Country Status (1)

Country Link
JP (1) JP3556384B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155539A1 (en) * 2010-06-09 2011-12-15 三菱重工業株式会社 Numerical analysis device, element generation program, and numerical analysis method
CN104199309A (en) * 2014-09-03 2014-12-10 长江三峡能事达电气股份有限公司 Analog channel calibrating method of simulating and testing instrument of hydro turbine governor
CN106597871A (en) * 2015-10-20 2017-04-26 上海交通大学 Semi-physical simulation model of seawater pumped storage power station
CN108956314A (en) * 2018-07-02 2018-12-07 中国矿业大学(北京) A kind of long-distance oil & gas pipeline damaged or destroyed by flood imitative experimental appliance and experimental method
JP2021033535A (en) * 2019-08-21 2021-03-01 株式会社東芝 Water hammer analysis device and water hammer analysis method
CN118130263A (en) * 2024-04-30 2024-06-04 中铁七局集团第三工程有限公司 Water pressure testing method and system for large-diameter pressure steel pipe

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155539A1 (en) * 2010-06-09 2011-12-15 三菱重工業株式会社 Numerical analysis device, element generation program, and numerical analysis method
JP2011257999A (en) * 2010-06-09 2011-12-22 Mitsubishi Heavy Ind Ltd Numerical analysis device and element generation program
US9372944B2 (en) 2010-06-09 2016-06-21 Mitsubishi Heavy Industries, Ltd. Numerical analysis device, element generation program, and numerical analysis method
CN104199309A (en) * 2014-09-03 2014-12-10 长江三峡能事达电气股份有限公司 Analog channel calibrating method of simulating and testing instrument of hydro turbine governor
CN104199309B (en) * 2014-09-03 2016-08-31 长江三峡能事达电气股份有限公司 Hydrogovernor simulating and testing instrument analog channel calibration steps
CN106597871A (en) * 2015-10-20 2017-04-26 上海交通大学 Semi-physical simulation model of seawater pumped storage power station
CN108956314A (en) * 2018-07-02 2018-12-07 中国矿业大学(北京) A kind of long-distance oil & gas pipeline damaged or destroyed by flood imitative experimental appliance and experimental method
JP2021033535A (en) * 2019-08-21 2021-03-01 株式会社東芝 Water hammer analysis device and water hammer analysis method
CN118130263A (en) * 2024-04-30 2024-06-04 中铁七局集团第三工程有限公司 Water pressure testing method and system for large-diameter pressure steel pipe

Also Published As

Publication number Publication date
JP3556384B2 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
Dumbser et al. An efficient semi-implicit finite volume method for axially symmetric compressible flows in compliant tubes
Elnady et al. Flow and pressure drop calculation using two-ports
Chaiko et al. Models for analysis of water hammer in piping with entrapped air
Kirkpatrick et al. Experimental evaluation of 1-D computer codes for the simulation of unsteady gas flow through engines-a first phase
JPH09268544A (en) Simulation device for water conduit system
Kalateh et al. Simulation of cavitating fluid–Structure interaction using SPH–FE method
Adamkowski Analysis of transient flow in pipes with expanding or contracting sections
Adamkowski et al. A new method for numerical prediction of liquid column separation accompanying hydraulic transients in pipelines
Izuno et al. Kinematic wave model for surge irrigation research in furrows
Payri et al. Analysis and modeling of the fluid-dynamic effects in branched exhaust junctions of ICE
Saxer-Felici et al. Numerical and experimental study of rotating stall in an axial compressor stage
Hadj-Taı¨ eb et al. Validation of hyperbolic model for water-hammer in deformable pipes
Chaiko A finite-volume approach for simulation of liquid-column separation in pipelines
Svingen Fluid structure interaction in piping systems
El Idrissi Exact Riemann solver for a nonlinear hyperbolic system of equations modeling a compressible two-phase flow in pipes
Sayma et al. Turbine forced response prediction using an integrated non-linear analysis
Sielemann High-speed compressible flow and gas dynamics
Rachford Jr et al. Some applications of transient flow simulation to promote understanding the performance of gas pipeline systems
Asli et al. Advances in control and automation of water systems
Shih et al. Using a characteristic-based particle tracking method to solve one-dimensional fully dynamic wave flow
Zanganeh et al. The first half-period of pressure heads for frequency response extraction and analysis of waterhammer with fluid–structure interaction
Neuhaus Best-estimate water hammer simulations to avoid the calculation of unrealistically high loads or unphysical pressure and force peaks
Ruben et al. Mathematical Simulation of Cavitation with Column Separation in Pressurized Pump Pipeline Systems
Al-Falahi et al. Numerical simulation of inviscid transient flows in shock tube and its validations
KR100593822B1 (en) One-Dimensional Numerical Analysis of Fluid Flows by the Upstream McCorem Method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees