JPH0926804A - Heat source operation management device - Google Patents

Heat source operation management device

Info

Publication number
JPH0926804A
JPH0926804A JP17503795A JP17503795A JPH0926804A JP H0926804 A JPH0926804 A JP H0926804A JP 17503795 A JP17503795 A JP 17503795A JP 17503795 A JP17503795 A JP 17503795A JP H0926804 A JPH0926804 A JP H0926804A
Authority
JP
Japan
Prior art keywords
heat source
evaluation
heat
steam
fuzzy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17503795A
Other languages
Japanese (ja)
Inventor
Norihito Kashiwagi
法仁 柏木
Toshikazu En
敏和 鳶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Dan Co Ltd
Original Assignee
Dai Dan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Dan Co Ltd filed Critical Dai Dan Co Ltd
Priority to JP17503795A priority Critical patent/JPH0926804A/en
Publication of JPH0926804A publication Critical patent/JPH0926804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat source operation management device which can lead out a multipurpose optimum solution of a heat source operation plan and also can perform a cost effectiveness optimum operation, an energy saving property optimum operation and an environment protection optimum operation respectively. SOLUTION: A heat source device includes the boilers BO1 and BO2 which generate the steam to supply the heat, the absorption refrigerating machines AR1 and AR2 which uses the steam as a drive source to supply the cold, and the turbo refrigerating machines TR1 and TR2 which uses the electric power as a drive source to supply the cold. Then a multipurpose optimization means is added to optimize the evaluation standards of the cost effectiveness, the energy saving properties and the environmental properties via the fuzzy multipurpose mixture 0-1 planning method, together with an extraction means of an evaluation item selection structure that, applies the fuzzy structure modeling for operation of the boilers BO1 and BO2, the machines AR1 and AR2, and the machines TR1 and TR2 respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はボイラ,冷凍機等の
熱源機器の合理的な運転制御を実現する熱源運転管理装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat source operation management device for realizing rational operation control of heat source equipment such as a boiler and a refrigerator.

【0002】[0002]

【従来の技術】大規模熱源や蓄熱システムにおける熱源
機器の合理的な運転制御を実現するためには、二次側の
エネルギー需要を精度良く予測した上で、機器の最適な
運転計画を立案することが必要となる。一般に、最適運
転とは、コストミニマムを意味する場合がほとんどであ
るが、資源枯渇問題や地球環境問題に対する世界的な関
心の高まりにより、最適の意味する範囲は次第に拡大し
つつある。すなわち、熱源システムの運転戦略を決定す
る場面で、経済性以外の評価基準も含めた、多目的最適
化の観点からの意思決定が求められている。
2. Description of the Related Art In order to realize rational operation control of a heat source device in a large-scale heat source or a heat storage system, the energy demand on the secondary side is accurately predicted and then an optimum operation plan of the device is prepared. Will be required. In general, the optimum operation means a cost minimum in most cases, but the range of the optimum meaning is gradually expanding due to the growing global interest in resource depletion problems and global environmental problems. That is, in determining the operation strategy of the heat source system, decision making from the viewpoint of multi-objective optimization including evaluation criteria other than economic efficiency is required.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記の事情に
鑑みてなされたもので、熱源システムの最適運転計画問
題を複数の評価基準からなる多目的意思決定問題と捉
え、意思決定者との対話によって獲得した運転戦略に関
する選好情報を利用して、熱源運転計画の多目的最適解
を導出し得、また、運用段階におけるエネルギーコスト
の最小化を目標とする経済性最適運転、一次エネルギー
消費量の最小化を目標とする省エネルギー性最適運転、
および、二酸化炭素排出量の最小化を目標とする環境保
全性最適運転を行い得る熱源運転管理装置を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and regards the optimal operation planning problem of a heat source system as a multi-objective decision making problem consisting of a plurality of evaluation criteria, and has a dialogue with a decision maker. The multi-objective optimal solution of the heat source operation plan can be derived by using the preference information about the operation strategy obtained by, and the economical optimal operation aiming at the minimization of energy cost in the operation stage, the minimum of primary energy consumption Energy-saving optimal operation with the goal of
Another object of the present invention is to provide a heat source operation management device capable of performing optimum operation of environmental conservation with the goal of minimizing carbon dioxide emissions.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明は、温熱や冷熱を供給する熱源機器の運転を管
理する熱源運転管理装置において、ファジィ多目的混合
0−1計画法を用いて定量化可能な評価基準を最適化す
る多目的最適化手段と、ファジィ構造モデリングを用い
た評価項目の選好構造の抽出手段とを具備することを特
徴とするものである。
In order to achieve the above object, the present invention uses a fuzzy multi-purpose mixed 0-1 planning method in a heat source operation management device for managing the operation of a heat source device that supplies hot heat or cold heat. It is characterized by comprising multi-objective optimization means for optimizing a quantifiable evaluation criterion and means for extracting a preference structure of evaluation items using fuzzy structure modeling.

【0005】[0005]

【発明の実施の形態】以下図面を参照して本発明の実施
の形態例を詳細に説明する。図1は本発明の実施の形態
例を示す構成説明図である。図1において、AR1は蒸
気を駆動源とし冷熱を供給する吸収式冷凍機(例えば、
冷凍能力600USRt,電動機出力9.2kW,蒸気
消費量2700kg/h)、AR2は蒸気を駆動源とし
冷熱を供給する吸収式冷凍機(例えば、冷凍能力600
USRt,電動機出力9.3kW,蒸気消費量2700
kg/h)、TR1,TR2は電力を駆動源とし冷熱を
供給するターボ冷凍機(例えば、冷凍能力600USR
t,電動機出力400kW)、BO1は重油が駆動源で
蒸気を生成し温熱を供給する重油焚き蒸気ボイラ(例え
ば、蒸発量4800kg/h,電動機出力12kW,燃
料消費量302kg/h)、BO2は都市ガスが駆動源
で蒸気を生成し温熱を供給するガス焚き蒸気ボイラ(例
えば、蒸発量4800kg/h,電動機出力12kW,
燃料消費量310Nm3 /h)、CTAR1,CTAR
2は開放式冷却塔(冷却能力3120Mcal/h,電
動機出力22kW)、CTTR1,CTTR2は開放式
冷却塔(冷却能力2340Mcal/h,電動機出力1
6.5kW)、CPAR1,CPAR2,CPTR1,
CPTR2はそれぞれ冷水ポンプ、CDPAR1,CD
PAR2,CDPTR1,CDPTR2はそれぞれ冷却
水ポンプ、10は温熱需要及び冷熱需要を有する負荷、
11は圧力調整を行う蒸気ヘッダ、12,13は圧力調
整を行う冷水ヘッダ、14は負荷10からの蒸気を凝縮
して蒸気ボイラBO1,BO2に供給するホットウェル
タンク、15は監視制御盤17から運転情報の提供を受
けて熱源システムのファジィ多目的最適運転計画を行う
監視卓、16は監視卓15に設けられたディスプレイ、
17は監視卓15から最適運転の指示を受けて前記吸収
式冷凍機AR1,AR2、ターボ冷凍機TR1,TR
2、蒸気ボイラBO1,BO2、冷却塔CTAR1,C
TAR2,CTTR1,CTTR2、冷水ポンプCPA
R1,CPAR2,CPTR1,CPTR2、冷却水ポ
ンプCDPAR1,CDPAR2,CDPTR1,CD
PTR2を制御する監視制御盤である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a configuration explanatory view showing an embodiment of the present invention. In FIG. 1, AR1 is an absorption chiller (for example,
Refrigerating capacity 600 USRt, electric motor output 9.2 kW, steam consumption 2700 kg / h), AR2 is an absorption type refrigerating machine which supplies cold heat by using steam as a driving source (for example, refrigerating capacity 600
USRt, electric motor output 9.3kW, steam consumption 2700
kg / h), TR1 and TR2 are turbo refrigerators (for example, a refrigerating capacity of 600 USR) that use electric power as a driving source to supply cold heat.
t, electric motor output 400 kW), BO1 is a heavy oil-fired steam boiler in which heavy oil generates steam at a drive source to supply heat (for example, evaporation amount 4800 kg / h, electric motor output 12 kW, fuel consumption amount 302 kg / h), BO2 is city A gas-fired steam boiler that supplies steam by generating heat from a gas (for example, evaporation amount 4800 kg / h, electric motor output 12 kW,
Fuel consumption 310 Nm 3 / h), CTAR1, CTAR
2 is an open type cooling tower (cooling capacity 3120 Mcal / h, electric motor output 22 kW), CTTR1 and CTTR2 are open type cooling tower (cooling capacity 2340 Mcal / h, electric motor output 1
6.5 kW), CPAR1, CPAR2, CPTR1,
CPTR2 is a cold water pump, CDPAR1 and CD respectively
PAR2, CDPTR1 and CDPTR2 are cooling water pumps, 10 is a load having a heat demand and a cold demand, and
Reference numeral 11 is a steam header for pressure adjustment, 12 and 13 are cold water headers for pressure adjustment, 14 is a hot well tank for condensing the steam from the load 10 and supplying it to the steam boilers BO1, BO2, and 15 is a monitoring control panel 17. A monitoring table for performing fuzzy multi-purpose optimal operation planning of the heat source system by receiving operation information, 16 is a display provided on the monitoring table 15,
Reference numeral 17 denotes the absorption refrigerating machines AR1 and AR2 and the turbo refrigerating machines TR1 and TR in response to the instruction of the optimum operation from the monitoring table 15.
2, steam boiler BO1, BO2, cooling tower CTAR1, C
TAR2, CTTR1, CTTR2, cold water pump CPA
R1, CPAR2, CPTR1, CPTR2, cooling water pump CDPAR1, CDPAR2, CDPTR1, CD
It is a supervisory control panel that controls the PTR2.

【0006】即ち、負荷10が冷房等の冷熱需要の場合
には、吸収式冷凍機AR1,AR2及びターボ冷凍機T
R1,TR2からの冷水が冷水ヘッダ12を介して負荷
10に供給される。一方、負荷10が暖房、給湯等の温
熱需要の場合には、蒸気ボイラBO1,BO2からの蒸
気が蒸気ヘッダ11を介して負荷10に供給される。
尚、蒸気ボイラBO1,BO2からの蒸気の一部は蒸気
ヘッダ11を介して吸収式冷凍機AR1,AR2に供給
される。
That is, when the load 10 is a cold heat demand such as cooling, the absorption refrigerators AR1 and AR2 and the turbo refrigerator T are used.
Cold water from R1 and TR2 is supplied to the load 10 via the cold water header 12. On the other hand, when the load 10 is in the heat demand such as heating and hot water supply, the steam from the steam boilers BO1 and BO2 is supplied to the load 10 via the steam header 11.
A part of the steam from the steam boilers BO1 and BO2 is supplied to the absorption refrigerators AR1 and AR2 via the steam header 11.

【0007】図2は図1の熱源装置の監視卓15におけ
る多目的最適運転計画の立案に至るまでの計算フローチ
ャートを示す。 ステップ[1]:(a) 熱源装置を構成する各種熱源
機器の入出力特性やエネルギーバランス、及び相互間の
接続関係を規定する。(熱源システムのモデル設定) ステップ[1]:(b) エネルギー供給先である建物
内部の冷熱(冷房)、温熱(暖房、給湯)需要を予測す
る。(熱需要曲線の設定) ステップ[2]:(a) 運転計画の最適性を評価する
ための評価基準を具体的な数値として定量化する関数を
定義する。(目的関数の設定) 例えば、 [評価基準] [定量化する対象] 1、経済性 エネルギーコスト 2、省エネルギー性 一次エネルギー消費量 3、環境保全性 CO2 の排出量 等の中から1つだけを設定する。
FIG. 2 shows a calculation flowchart up to the formulation of a multi-purpose optimum operation plan in the monitoring table 15 of the heat source device of FIG. Step [1]: (a) The input / output characteristics and energy balance of various heat source devices constituting the heat source device, and the connection relationship between them are defined. (Model Setting of Heat Source System) Step [1]: (b) Predict the demand for cold heat (cooling) and hot heat (heating, hot water supply) inside the building that is the energy supply destination. (Setting of Heat Demand Curve) Step [2]: (a) Define a function that quantifies the evaluation standard for evaluating the optimality of the operation plan as a specific numerical value. (Setting of objective function) For example, only one of [evaluation criteria] [quantification target] 1, economic energy cost 2, energy saving primary energy consumption 3, environmental conservation CO 2 emission, etc. Set.

【0008】ステップ[3]: 数理計画法を使って、
ステップ[2]で設定した問題を解く。ここで、対象と
する目的関数は1種類のみである。(単一目的計画問題
の解決) ステップ[4]: 用意した全ての評価基準について、
個別に最適化計算を実施したかどうか調べる。未了の時
はステップ[2]に戻り、完了の時はステップ[5]へ
進む。
Step [3]: Using mathematical programming,
Solve the problem set in step [2]. Here, there is only one type of objective function. (Solution of Single Objective Planning Problem) Step [4]: For all prepared evaluation criteria,
Check whether the optimization calculation is performed individually. If not completed, the process returns to step [2], and if completed, the process proceeds to step [5].

【0009】ステップ[5]: 評価基準別に得られた
最適化計算結果は互いに単位が異なるため、最適性を総
合的に判断する手段として、意思決定者の満足度という
評価基準を設ける。ここで、各評価基準の評価値を満足
度にスケール変換できる場合はステップ[8]へ進み、
スケール変換できない場合はステップ[6]へ進む。
(満足度のスケールは[0,1]区間値) ステップ[6]: 各評価基準の評価値は、どの評価基
準を最適化するかによって、とる値が変化する。(例え
ば、経済性について最適化した時のエネルギーコスト
と、環境保全性について最適化した時のエネルギーコス
トは通常値が異なる。)このとり得る値の中で、最良の
値を満足度1,最悪の値を満足度0に対応させ、暫定的
なメンバーシップ関数(基準メンバーシップ関数)を定
める。例えば、図3(a)は経済性評価と満足度を対応
させたメンバーシップ関数であり、図3(b)は省エネ
ルギー性評価と満足度を対応させたメンバーシップ関数
である。
Step [5]: Since the optimization calculation results obtained for each evaluation standard have different units, an evaluation standard of satisfaction of the decision maker is provided as a means for comprehensively judging the optimality. Here, when the evaluation value of each evaluation criterion can be scale-converted into the degree of satisfaction, the process proceeds to step [8],
If the scale cannot be converted, the process proceeds to step [6].
(The scale of satisfaction is [0, 1] interval value) Step [6]: The evaluation value of each evaluation criterion changes depending on which evaluation criterion is optimized. (For example, the energy cost when optimizing for economic efficiency and the energy cost when optimizing for environmental conservation have different normal values.) Of these possible values, the best value is the satisfaction level 1 or the worst value. The provisional membership function (reference membership function) is defined by making the value of 0 correspond to the degree of satisfaction 0. For example, FIG. 3A shows a membership function that associates economic evaluation with satisfaction, and FIG. 3B shows a membership function that associates energy saving evaluation with satisfaction.

【0010】ステップ[7]: ファジィ構造モデリン
グ(FSM)を用いて、意思決定者が潜在的に持ってい
る評価基準間の重み付け(選好構造)を定量化する。 ステップ[8]: 評価基準の評価値と意思決定者の満
足度の間の関係をメンバーシップ関数で規定する。(ス
テップ[5]経由の場合は直接、関数として表現し、ス
テップ[7]経由の場合は基準メンバーシップ関数と重
み付けの値を使って関数を定める。) ステップ[9]: 満足度という評価基準で単一目的化
した多目的計画問題を数理計画法を使って解く。(満足
度をできるだけ大きくするように解く。) 図4は夏期代表日の熱需要曲線の一例を示す。図4にお
いて、冷熱負荷は冷房用であり、温熱負荷は給湯用であ
る。
Step [7]: The fuzzy structure modeling (FSM) is used to quantify the weighting (preference structure) potentially possessed by the decision maker. Step [8]: The relationship between the evaluation value of the evaluation standard and the degree of satisfaction of the decision maker is defined by the membership function. (If it is via step [5], it is directly expressed as a function, and if it is via step [7], the function is determined using the standard membership function and the weighting value.) Step [9]: Satisfaction criterion Solves a single-objective multi-objective programming problem using mathematical programming. (Solution to maximize satisfaction.) Figure 4 shows an example of the heat demand curve on the summer representative day. In FIG. 4, the cooling load is for cooling and the heating load is for hot water supply.

【0011】次に、多目的最適化のための意思決定手法
における多目的意思決定モデルについて説明する。即
ち、複数の評価基準を考慮する最適化問題の解決手段と
して多目的線形計画法がある。多目的計画問題では、一
般に、評価基準がトレードオフ関係にあることが多いた
め、客観的な判断材料がない場合の最適点の決定は意思
決定者の主観的判断に委ねられるが、この作業では、評
価基準の重要度に関する情報を必要とする。従って、熱
源装置の多目的意思決定モデルでは、多目的計画問題と
評価基準の加重問題の両問題を解決できる枠組みが要求
されることになる。
Next, a multi-objective decision-making model in the decision-making method for multi-objective optimization will be described. That is, there is a multi-objective linear programming method as a means for solving an optimization problem that considers a plurality of evaluation criteria. In multi-objective programming problems, evaluation criteria are often in a trade-off relationship, so the decision of the optimum point when there is no objective decision material is left to the subjective judgment of the decision maker. Need information on the importance of the evaluation criteria. Therefore, the multi-objective decision-making model of the heat source device requires a framework that can solve both the multi-objective planning problem and the weighted evaluation criterion problem.

【0012】本モデルでは、多目的線形計画法として、
通約性のない目的関数同士を意思決定者の満足度という
尺度にスケール変換して総合評価を行うことができるフ
ァジィ多目的混合0−1計画法(Fuzzy Mult
iobjective Mixed 0−1 Prog
ramming:FMOP)を適用した。ファジィ目標
のみが存在する場合のFMOP問題は次式で表現され
る。
In this model, as a multi-objective linear programming method,
Fuzzy multi-objective 0-1 programming (Fuzzy Multi) that can perform comprehensive evaluation by converting scales of non-commutative objective functions into a measure of satisfaction of decision makers
iojective Mixed 0-1 Prog
(ramming: FMOP) was applied. The FMOP problem when only fuzzy goals exist is expressed by the following equation.

【0013】[0013]

【数1】 ここでz(x) は目的関数、μ(z(x))は目的関数値に対
する意思決定者の満足度を表すメンバーシップ関数、x
k は0−1変数を表す。
[Equation 1] Where z (x) is the objective function, μ (z (x)) is the membership function representing the satisfaction of the decision maker for the objective function value, x
k represents a 0-1 variable.

【0014】また、評価基準の重要度の同定手段として
は、意思決定者に内在する評価項目の選好構造を対話に
よって有向グラフの形で抽出することができるファジィ
構造モデリング(Fuzzy Structural
Modeling:FSM)を適用した。FSMによっ
て作成される構造グラフは、重要度の高い評価基準ほど
上位に配置されるような階層図となるため、グラフ全体
を階層毎にスコアリングすれば、各評価基準の重要度が
求まることになる。
As a means for identifying the importance of the evaluation criteria, fuzzy structural modeling (Fuzzy Structural) capable of extracting the preference structure of the evaluation items, which is inherent in the decision maker, in the form of a directed graph through dialogue.
Modeling: FSM) was applied. Since the structure graph created by FSM is a hierarchical diagram in which the evaluation criteria with higher importance are arranged higher, the importance of each evaluation criterion can be obtained by scoring the entire graph for each hierarchy. Become.

【0015】次に、対話によるメンバーシップ関数の決
定について説明する。即ち、図5に示すように、上記
(1)式において、メンバーシップ関数μi (zi (x))
は、意思決定者との対話によって満足度1の点zi 1
満足度0の点zi 0 を直接決定すれば容易に定義でき
る。この過程では重要度が同時に織り込まれると考えら
れるので、FSMによる重要度の同定作業は不要であ
る。しかし意思決定者が自身の満足度を定量化すること
ができないときはこれらの点が確定しないため、関数形
状を定めることは不可能となる。そこで、このような意
思決定者が評価基準の重要度を考慮したメンバーシップ
関数を設定することができるように、次の関数を定義し
た。
Next, the determination of the membership function by dialogue will be described. That is, as shown in FIG. 5, in the above equation (1), the membership function μ i (z i (x))
Can be easily defined by directly determining the point z i 1 with satisfaction level 1 and the point z i 0 with satisfaction level 0 through dialogue with the decision maker. In this process, since it is considered that the importance is woven at the same time, the work of identifying the importance by FSM is unnecessary. However, when the decision maker cannot quantify his or her own satisfaction, these points are not fixed and it is impossible to determine the function shape. Therefore, the following function is defined so that such a decision maker can set the membership function in consideration of the importance of the evaluation standard.

【0016】[0016]

【数2】 ここで、ωi は評価基準iの重要度、zi 1 、zi 0
それぞれ、意思決定者の満足度1、満足度0の点を規定
する評価基準iの評価値を表す。σは正のパラメータで
ある。
[Equation 2] Here, ω i represents the importance of the evaluation criterion i, and z i 1 and z i 0 represent evaluation values of the evaluation criterion i that define points of satisfaction 1 and satisfaction 0 of the decision maker, respectively. σ is a positive parameter.

【0017】更に、上式のみでは評価値と重要度の関係
が一意に定まらないので、重要度に関して無差別な評価
基準がn項目あるとしたときの評価基準iの重要度をω
i =1/n、zi 0 を、評価基準jについて最適化した
際に取る評価基準iの値fi, j の集合の中で最悪(最
大)の値と仮定する。
Further, since the relationship between the evaluation value and the importance cannot be uniquely determined only by the above formula, the importance of the evaluation criterion i is ω when there are n items of indiscriminate evaluation criteria regarding the importance.
It is assumed that i = 1 / n, z i 0 is the worst (maximum) value in the set of values f i, j of the evaluation standard i taken when the evaluation standard j is optimized.

【0018】[0018]

【数3】 従って、(2)、(4)式から次式を得る。(Equation 3) Therefore, the following equation is obtained from the equations (2) and (4).

【0019】[0019]

【数4】 (Equation 4)

【0020】次に、数値シミュレーションにおける評価
基準の加重とメンバーシップ関数の設定について説明す
る。即ち、図1の熱源装置に対し、図2の計算フローに
従って最適運転計画のシミュレーションを実施した。表
1に最適性評価基準として選定した評価基準と最適化目
標を示す。
Next, the weighting of the evaluation criteria and the setting of the membership function in the numerical simulation will be described. That is, for the heat source device of FIG. 1, a simulation of the optimum operation plan was performed according to the calculation flow of FIG. Table 1 shows the evaluation criteria selected as the optimality evaluation criteria and the optimization goals.

【0021】[0021]

【表1】 [Table 1]

【0022】次に、仮想の意思決定者に対して「熱源最
適運転の観点から、評価基準iは評価基準jよりもどの
程度重要と考えるか」という質問を提示し、主観評価に
基づいた評価基準間の構造化を実施した。図6は、評価
基準間の一対比較によって得られた従属行列と、それを
基に生成した構造モデルである(閾値:p=0.55、
ファジィ構造パラメータ:λ=−0.32)。この事例
では、構造モデルは3レベル(Level1〜Leve
l3)の階層からなり、経済性(eco)と環境保全性
(env)はレベル1、省エネルギー性(egy)はレ
ベル2、機能保全性(fun)と制御性(ctl)はレ
ベル3に位置している。これらの結果から、経済性に
0.40、省エネルギー性に0.22、環境保全性に
0.38、機能保全性と制御性に0のウェイトを付与
し、機能保全性と制御性については評価対象から除外し
た。従って(5)式より経済性、省エネルギー性、環境
保全性に対する意思決定者の満足度を表すメンバーシッ
プ関数を規定する値は以下のようになる。
Next, the question "how important is the evaluation criterion i to be more important than the evaluation criterion j from the viewpoint of optimum heat source operation" is presented to the virtual decision maker, and the evaluation based on the subjective evaluation is presented. Structuring between standards was carried out. FIG. 6 shows a dependent matrix obtained by a pairwise comparison between evaluation criteria and a structural model generated based on it (threshold value: p = 0.55,
Fuzzy structure parameter: λ = −0.32). In this case, the structural model has three levels (Level1 to Level).
13), the economic efficiency (eco) and the environmental conservation (env) are at level 1, the energy saving (egy) is at level 2, and the functional integrity (fun) and controllability (ctl) are at level 3. ing. From these results, the weight of economy is 0.40, energy saving is 0.22, environmental conservation is 0.38, and functional conservation and controllability are 0, and functional conservation and controllability are evaluated. Excluded from the target. Therefore, the value that defines the membership function that represents the satisfaction of the decision maker regarding the economic efficiency, the energy saving property, and the environmental conservation property from the expression (5) is as follows.

【0023】[0023]

【数5】 ここで、eco、egy、envはそれぞれ、経済性、
省エネルギー性、環境保全性について最適化することを
表す。
(Equation 5) Where eco, egy, and env are economics,
This means optimizing energy conservation and environmental conservation.

【0024】次に、計算条件について説明する。即ち、
多目的計画問題の目的関数として、経済性、省エネルギ
ー性、環境保全性を各々定量的に算出するために用いた
各種ユーティリティの単価、一次エネルギー量およびC
2 排出量に関する原単位を表2に示す。
Next, the calculation conditions will be described. That is,
As the objective function of the multi-objective programming problem, the unit price, primary energy amount and C of various utilities used for quantitatively calculating economic efficiency, energy saving property, and environmental conservation property, respectively.
Table 2 shows the basic unit for O 2 emissions.

【0025】[0025]

【表2】 また、制約条件に関しては、時刻別の熱需要変動曲線、
機器単体の部分負荷特性、機器間の接続関係、ヒートバ
ランスを表す制約式に加えて、熱源機器がエネルギー効
率の良くない低負荷域で運転することを回避するため、
負荷率(定格出力に対する実出力の比)が20%以下と
なるような運転は行わないように設定した。
[Table 2] Regarding the constraint conditions, the heat demand fluctuation curve by time,
In addition to the partial load characteristics of the equipment itself, the connection relationship between the equipment, and the constraint expression expressing the heat balance, in order to avoid operating the heat source equipment in the low load region where energy efficiency is not good,
The load factor (ratio of the actual output to the rated output) was set so as not to operate such that the load ratio was 20% or less.

【0026】次に、計算結果について説明する。即ち、
シミュレーションの結果を図7、図8に示す。図7のグ
ラフは主な熱源機器の最適運転パターンの経時変化を運
転戦略毎に示したものである。縦軸の入力率とは、定格
入力に対する実入力の比を意味する。また、図8は、夏
期代表日における運転コスト、エネルギー消費量、CO
2 排出量の総量を運転戦略別に示したものである。
Next, the calculation result will be described. That is,
The results of the simulation are shown in FIGS. The graph of FIG. 7 shows changes with time of the optimum operation pattern of main heat source devices for each operation strategy. The input rate on the vertical axis means the ratio of the actual input to the rated input. In addition, FIG. 8 shows operating costs, energy consumption, CO
2 Shows the total amount of emissions by operation strategy.

【0027】図より、熱源装置における経済性最適運
転、省エネルギー性最適運転、環境保全性最適運転およ
びファジィ多目的最適運転では、各機器の運転パターン
に違いがあることがわかる。経済性最適運転では、電力
エネルギーは化石燃料に比べて一次エネルギー換算時の
エネルギーコストが割高であることから、電力を駆動源
とするターボ冷凍機TR1,TR2の運用の優先順位は
低くなっている。従って冷房負荷に対して吸収式冷凍機
AR1,AR2が優先的に運用されることになるが、そ
の駆動源となる蒸気の生成手段としては、一次エネルギ
ー換算で最も安価な都市ガスを駆動源とするガス焚き蒸
気ボイラBO2が優先的に運用されている。逆に、省エ
ネルギー性最適運転では、ターボ冷凍機TR1,TR2
と重油焚き蒸気ボイラBO1が優先的に運用されてい
る。環境保全性最適運転は、経済性最適運転が示す運転
パターンに近い運転特性を示す。また、ファジィ多目的
最適運転の場合は、経済性と省エネルギー性と環境保全
性を同時に考慮したことを反映し、ほぼ、三者の中間的
な運転特性を示していることが分かる。
From the figure, it can be seen that there is a difference in the operation pattern of each device between the economical optimal operation, the energy saving optimal operation, the environmental conservation optimal operation and the fuzzy multi-purpose optimal operation in the heat source device. In the economically optimal operation, since the energy cost of electric power energy is higher than that of fossil fuel when converted to primary energy, the operation priority of the turbo chillers TR1 and TR2 driven by electric power is low. . Therefore, the absorption chillers AR1 and AR2 are preferentially operated with respect to the cooling load, but the means for generating steam as the drive source thereof is the cheapest city gas in terms of primary energy as the drive source. The gas-fired steam boiler BO2 that operates is preferentially operated. On the contrary, in the energy-saving optimal operation, the turbo refrigerators TR1, TR2 are
And the heavy oil-fired steam boiler BO1 is operated with priority. The environmental conservation optimal operation shows an operational characteristic close to the operational pattern shown by the economical optimal operation. Also, in the case of fuzzy multi-purpose optimum operation, it is understood that it shows almost the intermediate operating characteristics of the three, reflecting the fact that economic efficiency, energy saving and environmental conservation are taken into consideration at the same time.

【0028】以上の結果より、評価基準の重要度の与え
方によって熱源装置の最適運転パターンに顕著な違いが
現れることから、多目的意思決定環境における意思決定
者の運転戦略の選択の仕方は極めて重要である。
From the above results, a significant difference appears in the optimum operation pattern of the heat source device depending on how the evaluation criteria are given. Therefore, the method of selecting a driving strategy by a decision maker in a multipurpose decision making environment is extremely important. Is.

【0029】尚、熱源機器として、冷温水発生機のよう
に、化石燃料を使って冷水や温水を供給するものや、ヒ
ートポンプのように電力を使って冷水や温水を供給する
ものも、同様に扱うことができる。又、評価基準とし
て、経済性、省エネルギー性、環境保全性以外にも定量
化可能なものは同様に扱うことができる。
As the heat source device, a device for supplying cold water or hot water using fossil fuel, such as a cold / hot water generator, or a device for supplying cold water or hot water by using electric power, such as a heat pump, is similarly used. Can handle. In addition, as evaluation criteria, quantifiable ones other than economic efficiency, energy saving and environmental conservation can be treated in the same manner.

【0030】[0030]

【発明の効果】以上述べたように本発明によれば、熱源
システムの最適運転計画問題を複数の評価基準からなる
多目的意思決定問題と捉え、意思決定者との対話によっ
て獲得した運転戦略に関する選好情報を利用して、熱源
運転計画の多目的最適解を導出でき、また、運用段階に
おけるエネルギーコストの最小化を目標とする経済性最
適運転、一次エネルギー消費量の最小化を目標とする省
エネルギー性最適運転、および、二酸化炭素排出量の最
小化を目標とする環境保全性最適運転を行うことができ
る。
As described above, according to the present invention, the optimal operation planning problem of the heat source system is regarded as a multi-objective decision-making problem consisting of a plurality of evaluation criteria, and the preference regarding the operation strategy acquired through the dialogue with the decision maker. Information can be used to derive multi-objective optimal solutions for heat source operation plans. Also, economically optimal operation that aims at minimizing energy costs in the operation stage, energy-saving optimal operation that aims at minimizing primary energy consumption. It is possible to perform operation and optimum operation for environmental conservation with the goal of minimizing carbon dioxide emissions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態例を示す構成説明図であ
る。
FIG. 1 is a configuration explanatory view showing an embodiment of the present invention.

【図2】図1の熱源運転管理装置の監視卓における多目
的最適運転計画の立案に至るまでの計算フローチャート
を示す。
FIG. 2 shows a calculation flowchart up to the formulation of a multi-purpose optimum operation plan in the monitoring table of the heat source operation management device of FIG.

【図3】図2の基準メンバーシップ関数の設定の一例を
示す特性図である。
FIG. 3 is a characteristic diagram showing an example of setting reference membership functions of FIG.

【図4】本発明に用いる夏期代表日の冷温熱需要特性の
一例を示す特性図である。
FIG. 4 is a characteristic diagram showing an example of cool / heat demand characteristics of a summer representative day used in the present invention.

【図5】本発明に用いるメンバーシップ関数の形状の一
例を示す特性図である。
FIG. 5 is a characteristic diagram showing an example of the shape of a membership function used in the present invention.

【図6】本発明に用いる一対比較行列とファジィ構造モ
デルの一例を示す説明図である。
FIG. 6 is an explanatory diagram showing an example of a paired comparison matrix and a fuzzy structure model used in the present invention.

【図7】本発明を用いたシミュレーションにおける運転
戦略別の熱源機器の最適運転パターンの一例を示す特性
図である。
FIG. 7 is a characteristic diagram showing an example of an optimal operation pattern of a heat source device for each operation strategy in a simulation using the present invention.

【図8】本発明を用いたシミュレーションにおける最適
運転戦略と評価値の関係の一例を示す特性図である。
FIG. 8 is a characteristic diagram showing an example of the relationship between the optimum driving strategy and the evaluation value in the simulation using the present invention.

【符号の説明】[Explanation of symbols]

AR1,AR2…吸収式冷凍機、TR1,TR2…ター
ボ冷凍機、BO1…重油焚き蒸気ボイラ、BO2…ガス
焚き蒸気ボイラ、CTAR1,CTAR2,CTTR
1,CTTR2…開放式冷却塔、CPAR1,CPAR
2,CPTR1,CPTR2…冷水ポンプ、CDPAR
1,CDPAR2,CDPTR1,CDPTR2…冷却
水ポンプ、10…温熱需要及び冷熱需要を有する負荷、
11…蒸気ヘッダ、12,13…冷水ヘッダ、14…ホ
ットウェルタンク、15…監視卓、16…ディスプレ
イ、17…監視制御盤。
AR1, AR2 ... Absorption refrigerator, TR1, TR2 ... Turbo refrigerator, BO1 ... Heavy oil-fired steam boiler, BO2 ... Gas-fired steam boiler, CTAR1, CTAR2, CTTR
1, CTTR2 ... Open type cooling tower, CPAR1, CPAR
2, CPTR1, CPTR2 ... Cold water pump, CDPAR
1, CDPAR2, CDPTR1, CDPTR2 ... Cooling water pump, 10 ... Load having hot heat demand and cold heat demand,
11 ... Steam header, 12, 13 ... Cold water header, 14 ... Hot well tank, 15 ... Monitoring console, 16 ... Display, 17 ... Monitoring control panel.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 温熱や冷熱を供給する熱源機器の運転を
管理する熱源運転管理装置において、 ファジィ多目的混合0−1計画法を用いて定量化可能な
評価基準を最適化する多目的最適化手段と、ファジィ構
造モデリングを用いた評価項目の選好構造の抽出手段と
を具備することを特徴とする熱源運転管理装置。
1. A heat source operation management device for managing the operation of a heat source device for supplying hot or cold heat, comprising: a multi-objective optimizing means for optimizing a quantifiable evaluation criterion using a fuzzy multi-objective mixed 0-1 programming method. And a heat source operation management device, comprising: means for extracting a preference structure of evaluation items using fuzzy structure modeling.
JP17503795A 1995-07-11 1995-07-11 Heat source operation management device Pending JPH0926804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17503795A JPH0926804A (en) 1995-07-11 1995-07-11 Heat source operation management device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17503795A JPH0926804A (en) 1995-07-11 1995-07-11 Heat source operation management device

Publications (1)

Publication Number Publication Date
JPH0926804A true JPH0926804A (en) 1997-01-28

Family

ID=15989120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17503795A Pending JPH0926804A (en) 1995-07-11 1995-07-11 Heat source operation management device

Country Status (1)

Country Link
JP (1) JPH0926804A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6591620B2 (en) 2001-10-16 2003-07-15 Hitachi, Ltd. Air conditioning equipment operation system and air conditioning equipment designing support system
CN100422886C (en) * 2006-11-03 2008-10-01 冯江华 Central optimum control method for cold, heat and electricity three-way energy supply system
JP2009250454A (en) * 2008-04-01 2009-10-29 Dai-Dan Co Ltd Operation program deciding system
JP2010078271A (en) * 2008-09-29 2010-04-08 Dai-Dan Co Ltd Operation plan determining system
WO2015107809A1 (en) * 2014-01-16 2015-07-23 株式会社東芝 Operating plan creation device, control device, operating plan creation method, and program
JP2015169370A (en) * 2014-03-06 2015-09-28 栗田工業株式会社 Method for evaluating stain of cooling water line
WO2017006455A1 (en) * 2015-07-08 2017-01-12 栗田工業株式会社 Method for evaluating cleanliness of coolant line
JP2018113079A (en) * 2018-04-25 2018-07-19 株式会社東芝 Operation plan creation device, operation plan creation method, and program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6591620B2 (en) 2001-10-16 2003-07-15 Hitachi, Ltd. Air conditioning equipment operation system and air conditioning equipment designing support system
CN100422886C (en) * 2006-11-03 2008-10-01 冯江华 Central optimum control method for cold, heat and electricity three-way energy supply system
JP2009250454A (en) * 2008-04-01 2009-10-29 Dai-Dan Co Ltd Operation program deciding system
JP2010078271A (en) * 2008-09-29 2010-04-08 Dai-Dan Co Ltd Operation plan determining system
WO2015107809A1 (en) * 2014-01-16 2015-07-23 株式会社東芝 Operating plan creation device, control device, operating plan creation method, and program
JP2015135571A (en) * 2014-01-16 2015-07-27 株式会社東芝 Operation planning apparatus, control device, operation planning method, and program
JP2015169370A (en) * 2014-03-06 2015-09-28 栗田工業株式会社 Method for evaluating stain of cooling water line
WO2017006455A1 (en) * 2015-07-08 2017-01-12 栗田工業株式会社 Method for evaluating cleanliness of coolant line
JP2018113079A (en) * 2018-04-25 2018-07-19 株式会社東芝 Operation plan creation device, operation plan creation method, and program

Similar Documents

Publication Publication Date Title
Thangavelu et al. Energy optimization methodology of multi-chiller plant in commercial buildings
Ma et al. Recent advances and development in optimal design and control of ground source heat pump systems
CN101667013B (en) Control method of optimized running of combined cooling and power distributed energy supply system of micro gas turbine
CN104534627B (en) Central air conditioning cooling water system comprehensive energy efficiency control method
EP4024295A1 (en) Optimization method and apparatus for integrated energy system and computer readable storage medium
Hamut et al. Analysis and optimization of hybrid electric vehicle thermal management systems
CN102203780B (en) System and related methods for global targeting of process utilities under varying conditions
CN104898422B (en) The hierarchical optimal algorithm of United system
CN111626487B (en) Multi-evaluation index optimization planning technical method and system for comprehensive energy system
Anvari et al. Employing a new optimization strategy based on advanced exergy concept for improvement of a tri-generation system
CN105652665A (en) Coordinated control method of cooling-heating-power cogeneration system of micro gas turbine
CN111429301B (en) Collaborative optimization processing method and device for capacity configuration and operation strategy
Chinese et al. Water-energy and GHG nexus assessment of alternative heat recovery options in industry: A case study on electric steelmaking in Europe
Memon et al. Parametric based economic analysis of a trigeneration system proposed for residential buildings
Ghafurian et al. New approach for estimating the cooling capacity of the absorption and compression chillers in a trigeneration system
Nagota et al. Verification of the energy-saving effect of the district heating and cooling system—Simulation of an electric-driven heat pump system
JPH0926804A (en) Heat source operation management device
Safari et al. A higher performance optimum design for a tri-generation system by taking the advantage of water-energy nexus
Kim et al. Optimization of dynamic poly-generation system and evaluation of system performance in building application
Li et al. Optimal design and analysis of a new CHP-HP integrated system
JP2009250454A (en) Operation program deciding system
Behzadi et al. A hybrid machine learning-assisted optimization and rule-based energy monitoring of a green concept based on low-temperature heating and high-temperature cooling system
Zou et al. A non-dominated sorting genetic approach using elite crossover for the combined cooling, heating, and power system with three energy storages
Jung et al. Development and performance evaluation of intelligent algorithm for optimal control of a hybrid heat pump system during the cooling season
Pieskä et al. Life-cycle assessment of a radiant high-temperature cooling system in the Mediterranean climate