JPH09268014A - Method for treating fine powder surface and surface treated fine powder - Google Patents

Method for treating fine powder surface and surface treated fine powder

Info

Publication number
JPH09268014A
JPH09268014A JP8220896A JP8220896A JPH09268014A JP H09268014 A JPH09268014 A JP H09268014A JP 8220896 A JP8220896 A JP 8220896A JP 8220896 A JP8220896 A JP 8220896A JP H09268014 A JPH09268014 A JP H09268014A
Authority
JP
Japan
Prior art keywords
fine powder
powder
metal compound
high temperature
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8220896A
Other languages
Japanese (ja)
Inventor
Makoto Tsunashima
真 綱島
Hitoshi Hanezawa
均 羽沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHKEM PROD KK
Original Assignee
TOHKEM PROD KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHKEM PROD KK filed Critical TOHKEM PROD KK
Priority to JP8220896A priority Critical patent/JPH09268014A/en
Publication of JPH09268014A publication Critical patent/JPH09268014A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming an inorganic film on fine powder surface, excellent in uniformity, denseness and bondability to particle surface and obtain functional fine powder improved in characteristics such as dispersibility. SOLUTION: This method for treating fine powder surface is to introduce fine powder with a surface treating solution containing a metal compound as a coating source, and form a coated film, which comprises a degradation product or reaction product of the metal compound, on the fine powder surface by dehydrating, thermally decomposing or reacting the metal compound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、微粉末の表面処理
方法、特に微粉末表面に均一で緻密な金属酸化物被膜を
形成する方法、およびこの方法によって表面処理された
微粉末に関する。本発明の方法は、顔料、導電粉、磁性
粉、充填剤等の工業的に用いられる機能微粉末の特性改
善に特に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for surface-treating fine powder, and more particularly to a method for forming a uniform and dense metal oxide film on the surface of fine powder, and fine powder surface-treated by this method. The method of the present invention is particularly useful for improving the properties of industrially used functional fine powders such as pigments, conductive powders, magnetic powders, and fillers.

【0002】[0002]

【従来技術とその問題点】機能微粉末の特性、特に分散
性、耐候性、耐光性あるいは耐酸性等の化学的安定性
は、この微粉末が用いられる製品、例えば、インクや塗
料、プラスチック成形品等の品質に大きく影響する。こ
のため、より優れた特性を有する微粉末が求められてお
り、特性改善のために微粉末調製の最終段階で種々の加
工や仕上げ処理が行なわれている。特に、微粉末を構成
する粒子の表面に無機および/または有機物質からなる
被膜を形成する表面処理法は粉末の特性を改善する上で
有用な方法である。
2. Description of the Related Art The characteristics of functional fine powders, especially the chemical stability such as dispersibility, weather resistance, light resistance, and acid resistance, depend on the product in which the fine powders are used, such as inks, paints, and plastic moldings. It greatly affects the quality of products. Therefore, a fine powder having more excellent characteristics has been demanded, and various processing and finishing treatments have been carried out at the final stage of preparation of the fine powder in order to improve the characteristics. In particular, the surface treatment method of forming a film made of an inorganic and / or organic substance on the surface of particles constituting the fine powder is a useful method for improving the characteristics of the powder.

【0003】粒子表面に無機被膜を形成する方法として
は、処理しようとする微粉末と水および金属の可溶性塩
とを混合し、pH調整により金属酸化物や金属水酸化物
を粒子表面に析出させる湿式処理方法が一般的である。
しかし、このような湿式沈殿法による表面処理法では、
形成される被膜の均一性や緻密性に問題があり、分散性
等の改善効果が期待通りには発揮されない。また被膜と
基体粒子との結合が弱いために被膜の耐久性が悪く経時
的な劣化が起こりやすい。
As a method for forming an inorganic coating on the surface of particles, fine powder to be treated is mixed with water and a soluble salt of metal, and metal oxide or metal hydroxide is deposited on the surface of particles by adjusting pH. Wet processing methods are common.
However, in such a surface treatment method by the wet precipitation method,
There is a problem in the uniformity and denseness of the formed coating film, and the effect of improving dispersibility and the like cannot be exhibited as expected. Also, since the bond between the coating and the base particles is weak, the durability of the coating is poor and deterioration over time is likely to occur.

【0004】[0004]

【解決課題】本発明は、従来技術の上記問題点を解決
し、均一性および緻密性ならびに粒子表面との結合性に
優れた無機被膜を微粒子表面に形成する方法を提供する
ことを目的とする。また、本発明はかかる方法により分
散性等の特性が改善された機能微粉末を提供することを
目的とする。
An object of the present invention is to solve the above problems of the prior art and to provide a method for forming an inorganic coating film on the surface of fine particles, which is excellent in uniformity, denseness and bondability to the particle surface. . Another object of the present invention is to provide a functional fine powder having improved properties such as dispersibility by such a method.

【0005】[0005]

【課題の解決方法】すなわち本発明によれば、以下の構
成からなる表面処理方法が提供される。 (1)微粉末表面を金属化合物によって表面処理するに
際し、被覆原料の金属化合物を含む表面処理液を微粉末
と共に高温ガス中に導入し、微粉末表面において該金属
化合物を脱水、熱分解または反応させることにより、該
金属化合物の分解生成物もしくは反応生成物からなる被
膜を微粉末表面に形成することを特徴とする微粉末の表
面処理方法。
That is, according to the present invention, there is provided a surface treatment method having the following constitution. (1) When surface-treating fine powder with a metal compound, a surface treatment liquid containing a metal compound as a coating raw material is introduced into a high temperature gas together with the fine powder, and the metal compound is dehydrated, thermally decomposed or reacted on the surface of the fine powder. A surface treatment method for fine powder, characterized by forming a coating film composed of a decomposition product or a reaction product of the metal compound on the surface of the fine powder.

【0006】上記表面処理方法は、以下の具体的な態様
を含む。 (2)微粉末表面に金属酸化物被膜を形成する上記(1)
に記載の処理方法。 (3)高温ガスの温度が100〜400℃である上記
(1)または(2)に記載の処理方法。 (4) 金属酸化物、金属アルコキシドまたは熱分解性
の金属塩を高温ガス中に導入する上記(1)〜(3)のいずれ
かに記載の処理方法。 (5)原料の金属化合物を微粉末に対して、酸化物換算
で0.02〜5重量%用いる上記(1)〜(4)のいずれかに
記載の処理方法。 (6)高温ガスが酸素、窒素、水蒸気またはこれらの混
合気体である上記(1)〜(5)のいずれかに記載の処理方
法。 (7)上記表面処理を繰り返して多層の表面被膜を形成
する上記(1)〜(6)のいずれかに記載の処理方法。
The above surface treatment method includes the following specific embodiments. (2) Forming a metal oxide film on the surface of fine powder (1)
The processing method described in 1. (3) The temperature of the high temperature gas is 100 to 400 ° C.
The processing method described in (1) or (2). (4) The treatment method according to any one of (1) to (3) above, wherein a metal oxide, a metal alkoxide, or a thermally decomposable metal salt is introduced into the high temperature gas. (5) The treatment method according to any one of the above (1) to (4), wherein the raw material metal compound is used in an amount of 0.02 to 5% by weight in terms of oxide, based on the fine powder. (6) The treatment method according to any one of (1) to (5) above, wherein the high temperature gas is oxygen, nitrogen, water vapor or a mixed gas thereof. (7) The treatment method according to any one of (1) to (6), wherein the surface treatment is repeated to form a multi-layer surface coating.

【0007】さらに上記表面処理方法は、2種以上の金
属酸化物からなる被膜を形成する以下の処理方法を含
む。 (8)2種以上の金属化合物原料を用い、これらを含む
表面処理液を高温ガス中に導入して熱分解または反応さ
せることにより、上記金属が共存した酸化物被膜を形成
する上記(1)〜(6)のいずれかに記載の処理方法。 (9)2種以上の金属化合物原料を用い、これらを含む
表面処理液を順次高温ガス中に導入して熱分解または反
応させることにより、上記金属酸化物が積層した被膜を
形成する上記(1)〜(6)のいずれかに記載の処理方法。
Further, the surface treatment method includes the following treatment method of forming a coating film made of two or more kinds of metal oxides. (8) Using two or more metal compound raw materials, and introducing a surface treatment liquid containing them into a high temperature gas to cause thermal decomposition or reaction to form an oxide film in which the above metals coexist (1) ~ The processing method according to any one of (6). (9) By using two or more kinds of metal compound raw materials and sequentially introducing a surface treatment liquid containing them into a high temperature gas to cause thermal decomposition or reaction, a film in which the above metal oxide is laminated is formed. ) -The processing method in any one of (6).

【0008】また、本発明によれば、上記表面処理され
た以下の微粉末が提供される。 (10)上記(1)〜(9)のいずれかの方法によって表面処
理した微粉末。 (11)表面処理を施す微粉末が、平均粒径0.01〜
1μmの有機または無機の顔料、導電粉、充填用粉末、
磁性粉である上記(10)の微粉末。
Further, according to the present invention, the following fine powder having the above surface treatment is provided. (10) A fine powder surface-treated by the method according to any one of (1) to (9) above. (11) The surface-treated fine powder has an average particle size of 0.01 to
1 μm organic or inorganic pigment, conductive powder, filling powder,
The fine powder of (10) above, which is a magnetic powder.

【0009】[0009]

【具体的な説明】本発明の表面処理方法は、微粉末表面
を金属化合物によって表面処理するに際し、被覆原料の
金属化合物を含む表面処理液を上記微粉末と共に高温ガ
ス中に導入し、微粉末表面において該金属化合物を脱
水、熱分解または反応させることにより、その分解生成
物もしくは反応生成物からなる被膜を微粉末表面に形成
する方法である。以下、本発明の処理方法を具体的に分
説する。
[Detailed Description] In the surface treatment method of the present invention, when the surface of a fine powder is treated with a metal compound, a surface treatment liquid containing a metal compound as a coating raw material is introduced into a high temperature gas together with the fine powder to obtain a fine powder. In this method, the metal compound is dehydrated, pyrolyzed or reacted on the surface to form a film of the decomposition product or the reaction product on the surface of the fine powder. Hereinafter, the treatment method of the present invention will be specifically described.

【0010】(I) 表面処理液 表面処理剤である金属化合物は均質な被膜が形成される
ように粉末全体に均一に接触するように供給することが
必要であり、このためには液状で供給することが好まし
い。従って、固体の金属化合物は表面処理液に溶解し、
あるいは不溶性のものは溶液に懸濁したスラリーの状態
で用いられ、液状のものは適当な濃度に希釈するなどし
て用いられる。液状で用いることにより、処理しようと
する微粉末と均一に混合あるいは接触させることが可能
となり、均一な被覆形成が可能となる。
(I) Surface treatment liquid The metal compound as a surface treatment agent needs to be supplied so as to be in uniform contact with the entire powder so that a uniform film is formed. Preferably. Therefore, the solid metal compound dissolves in the surface treatment liquid,
Alternatively, an insoluble substance is used in the form of a slurry suspended in a solution, and a liquid substance is used by diluting it to an appropriate concentration. By using it in a liquid state, it becomes possible to uniformly mix or contact with the fine powder to be treated, and it becomes possible to form a uniform coating.

【0011】処理液中の金属化合物の濃度は化合物の種
類にもよるが、通常は、処理液の0.02〜5重量%、
好ましくは0.05〜2重量%程度である。金属化合物
濃度がこれより低いと被膜の形成が不十分になる虞があ
り、また濃度がこれより高いと、特に懸濁液やスラリー
では処理液の円滑な導入が困難となる場合がある。
Although the concentration of the metal compound in the treatment liquid depends on the kind of the compound, it is usually 0.02 to 5% by weight of the treatment liquid.
It is preferably about 0.05 to 2% by weight. If the concentration of the metal compound is lower than this range, the film formation may be insufficient, and if the concentration is higher than this range, it may be difficult to smoothly introduce the treatment liquid especially in the case of suspension or slurry.

【0012】表面処理液に含まれる金属化合物は、高温
ガス中で微粉末表面に吸着し、該表面上で熱分解ないし
反応する化合物である。一般的には金属酸化物を生成す
る化合物、通常は、金属酸化物または金属アルコキシド
もしくは熱分解性の金属塩が用いられる。すなわち、金
属酸化物は高温ガス中での脱水により、金属アルコキシ
ドは高温ガス中で分解して、また、酸素酸との金属塩は
高温ガス中で分解し、それぞれ金属酸化物被覆を形成す
る。また、金属ハロゲン化物は水蒸気中あるいは酸素存
在下に加熱されてやはり金属酸化物被膜を与える。
The metal compound contained in the surface treatment liquid is a compound which is adsorbed on the surface of the fine powder in a high temperature gas and thermally decomposes or reacts on the surface. In general, a compound that forms a metal oxide, usually a metal oxide or a metal alkoxide or a thermally decomposable metal salt is used. That is, the metal oxide is decomposed in the high temperature gas by dehydration in the high temperature gas, and the metal salt with the oxygen acid is decomposed in the high temperature gas to form a metal oxide coating. The metal halide is also heated in water vapor or in the presence of oxygen to give a metal oxide film.

【0013】原料として用いる金属水酸化物の例として
は、水酸化亜鉛、水酸化アルミニウム、水酸化ケイ素、
水酸化ジルコニウム、水酸化チタンなどが挙げられる。
金属アルコキシドの例としては、エチルシリケート、ア
ルミニウム-iso-プロポキシド、ジルコニウム-tert-ブ
トキシド、ジルコニウム-iso-プロポキシド、チタンテ
トラブトキシド、チタンテトラ-iso-プロポキシド等が
挙げられる。また、熱分解性金属塩の例としては、(イ)
塩化亜鉛、塩化アルミニウム、塩化ケイ素、塩化ジルコ
ニウム、塩化チタン等の塩化物、(ロ)硫酸亜鉛、硫酸ア
ルミニウム、硫酸ケイ素、硫酸ジルコニウム、硫酸チタ
ン等の硫酸化物、(ハ)オキシ塩化亜鉛、オキシ塩化アル
ミニウム、オキシ塩化ケイ素、オキシ塩化ジルコニウ
ム、オキシ塩化チタン等のオキシ塩化物、(ニ)オキシ硫
酸亜鉛、オキシ硫酸アルミニウム、オキシ硫酸ケイ素、
オキシ硫酸ジルコニウム、オキシ硫酸チタン等のオキシ
硫酸化物および(ホ)ケイ酸ソーダ、アルミン酸ソーダ類
が挙げられる。上記表面処理液の液相成分としては水等
が用いられる。これら金属化合物を原料として、粒子表
面にチタニア、アルミナ、シリカ、ジルコニア、酸化亜
鉛などの無機酸化物被膜が形成される。
Examples of metal hydroxides used as raw materials include zinc hydroxide, aluminum hydroxide, silicon hydroxide,
Examples thereof include zirconium hydroxide and titanium hydroxide.
Examples of metal alkoxides include ethyl silicate, aluminum-iso-propoxide, zirconium-tert-butoxide, zirconium-iso-propoxide, titanium tetrabutoxide, titanium tetra-iso-propoxide and the like. Further, as an example of the thermally decomposable metal salt, (a)
Chlorides such as zinc chloride, aluminum chloride, silicon chloride, zirconium chloride and titanium chloride, (b) zinc sulfate, aluminum sulfate, silicon sulfate, zirconium sulfate, sulfates such as titanium sulfate, (c) zinc oxychloride, oxychloride Oxychlorides such as aluminum, silicon oxychloride, zirconium oxychloride, titanium oxychloride, (d) zinc oxysulfate, aluminum oxysulfate, silicon oxysulfate,
Examples thereof include oxysulfates such as zirconium oxysulfate and titanium oxysulfate, and sodium (e) silicate and sodium aluminate. Water or the like is used as the liquid phase component of the surface treatment liquid. An inorganic oxide coating film of titania, alumina, silica, zirconia, zinc oxide or the like is formed on the surface of particles using these metal compounds as raw materials.

【0014】(II)微粉末 微粉末は、平均粒径が0.01〜1μm程度の無機ないし
有機の粒子であり、処理条件下において分解あるいは変
質しない化合物からなるものであれば処理可能である。
具体的には、例えば、銅アゾメチンイエロー、ベンズイ
ミダゾロンイエロー、グリンーンゴールド、ベンズイミ
ダゾロンオレンジ、フタロシアニンブルー、フタロシア
ニングリーン、キナクリドンレッド、キナクリドンマゼ
ンダ、ジオキサジンバイオレッド、イソインドリノンイ
エロー、チオインジゴボルドー、ペリレンスカーレット
等の有機顔料、チタニア、シリカ、アルミナ、亜鉛華、
ジルコニア、黄鉛等の無機顔料、マンガン、クロム、セ
リウム、パラジウム、チタン、オスミウム、白金等の磁
性粉、金、銀、銅等の導電粉、炭酸カルシウム、タル
ク、カオリン等の充填剤粉が挙げられる。
(II) Fine Powder Fine powder is an inorganic or organic particle having an average particle size of about 0.01 to 1 μm, and can be processed as long as it is a compound that does not decompose or deteriorate under the processing conditions. .
Specifically, for example, copper azomethine yellow, benzimidazolone yellow, green gold, benzimidazolone orange, phthalocyanine blue, phthalocyanine green, quinacridone red, quinacridone magenta, dioxazine violet, isoindolinone yellow, thioindigo. Bordeaux, organic pigments such as perylene scarlet, titania, silica, alumina, zinc white,
Inorganic pigments such as zirconia and yellow lead, magnetic powders such as manganese, chromium, cerium, palladium, titanium, osmium and platinum, conductive powders such as gold, silver and copper, filler powders such as calcium carbonate, talc and kaolin. To be

【0015】(III) 表面処理 表面処理は、高温ガス中に微粉末と原料の金属化合物を
含む表面処理液を導入し、これらがガス中に分散した状
態で短時間に加熱することにより行なわれる。例えば、
エアーミルやスチームミル等のように内部に強い気流が
存在する状態で該気流中に表面処理液と微粉末との混合
スラリーを供給するか、あるいは微粉末と共に処理液を
供給する。これらは高温ガスによって容器内に噴霧して
も良く、あるいは、これらの混合スラリーを、例えば、
スプレードライヤー等を用いノズルから高温ガス中に噴
射してもよい。
(III) Surface Treatment Surface treatment is carried out by introducing a surface treatment liquid containing fine powder and a metal compound as a raw material into a high temperature gas, and heating them in a state of being dispersed in the gas for a short time. . For example,
A mixed slurry of the surface treatment liquid and the fine powder is supplied to the air flow in the presence of a strong air flow such as an air mill or a steam mill, or the treatment liquid is supplied together with the fine powder. These may be sprayed into the container with a hot gas, or a mixed slurry of these, for example,
You may inject into a high temperature gas from a nozzle using a spray dryer etc.

【0016】以上のように高温ガス中に、金属化合物を
含む表面処理液を微粉末と共に導入することにより、、
微粉末の粒子表面が処理液によって均一に覆われ、この
状態で処理液から揮発成分(水分などの液成分および金
属化合物の分解・反応により生じた揮発成分)が速やか
に除かれる。このため、粒子が凝集して固結することが
なく、従って、被覆ムラが生ぜず、均質で緻密な被膜が
形成される。
As described above, by introducing the surface treatment liquid containing the metal compound into the high temperature gas together with the fine powder,
The surface of the fine powder particles is uniformly covered with the treatment liquid, and in this state, volatile components (liquid components such as water and volatile components generated by decomposition / reaction of the metal compound) are quickly removed. For this reason, the particles do not aggregate and solidify, and therefore, coating unevenness does not occur and a uniform and dense coating film is formed.

【0017】表面処理液は、好ましくは、微粉末の重量
に対して、処理液中の金属化合物が酸化物換算で0.0
2〜5重量%になるように供給される。表面処理剤であ
る金属化合物の供給量が0.02重量%未満では被膜の
形成が不十分になる虞がある。十分な被膜を得るために
は0.05重量%以上が望ましい。一方、供給量が5重
量%を上回ると表面被覆が必要以上に厚くなり、被覆効
果が飽和する上に被膜が離脱し易くなり、機能微粉末の
特性低下の原因となる。工程管理の安定性の点からは2
重量%以下が適当である。
The surface treatment liquid is preferably such that the metal compound in the treatment liquid is 0.0 in terms of oxide based on the weight of the fine powder.
It is supplied so as to be 2 to 5% by weight. If the amount of the metal compound as the surface treatment agent supplied is less than 0.02% by weight, the film formation may be insufficient. In order to obtain a sufficient coating, 0.05% by weight or more is desirable. On the other hand, when the supply amount exceeds 5% by weight, the surface coating becomes unnecessarily thick, the coating effect is saturated, and the coating easily separates, which causes deterioration of the characteristics of the functional fine powder. 2 from the viewpoint of process control stability
% By weight or less is appropriate.

【0018】ガスの温度は100〜400℃が好まし
い。100℃未満では溶媒等の液成分の蒸発除去や金属
化合物の分解等が十分に進行せず、被膜の緻密性等に問
題が残る上、残存する液成分、特に水分が粉末の特性劣
化の原因となるので好ましくない。表面処理液と微粉末
とを混合してから導入する場合には、100℃以上の高
温で、かつ微粉末の変質を招かない限り400℃以上の
高温でも良いが、設備の安全性やエネルギーコストの点
からは400℃以下が好ましい。また、表面処理液と微
粉末とを別々に高温ガス中に導入する場合には、ガスの
温度が高すぎると両者が十分に接触する前に処理液中の
金属化合物が析出し、あるいは分解してしまう。この点
からも、基体粒子表面への結合性を十分な程度とするた
めにはガス温度を400℃以下に抑えることが望まし
い。製品品質の安定、設備および工程管理の便宜からは
150〜300℃がより好ましい。
The temperature of the gas is preferably 100 to 400 ° C. If the temperature is less than 100 ° C, the evaporation and removal of liquid components such as solvents and the decomposition of metal compounds do not proceed sufficiently, and the problem remains in the denseness of the coating film, and the remaining liquid components, especially water, cause the deterioration of the powder characteristics. Is not preferable. When the surface treatment liquid and the fine powder are mixed and then introduced, the temperature may be a high temperature of 100 ° C. or higher and a high temperature of 400 ° C. or higher as long as the alteration of the fine powder is not caused, but safety of equipment and energy cost From this point of view, 400 ° C. or lower is preferable. Further, when the surface treatment liquid and the fine powder are separately introduced into the high temperature gas, if the temperature of the gas is too high, the metal compound in the treatment liquid precipitates or decomposes before the two sufficiently contact each other. Will end up. From this point as well, it is desirable to suppress the gas temperature to 400 ° C. or lower in order to obtain a sufficient degree of bonding to the surface of the base particles. From the viewpoint of stable product quality, convenience of equipment and process control, 150 to 300 ° C is more preferable.

【0019】高温ガスは、生成しようとする金属被覆の
種類にもよるが、通常は、酸素、窒素、水蒸気等または
これらの2種類以上の混合物(例えば、空気)などが用
いられる。
As the high temperature gas, oxygen, nitrogen, water vapor or the like or a mixture of two or more kinds thereof (for example, air) is usually used, though it depends on the kind of metal coating to be produced.

【0020】上記表面処理を繰り返すことにより、多層
構造の表面被膜が形成される。また、2種以上の金属化
合物原料を用い、これらの混合原料を含む表面処理液を
高温ガス中に導入して熱分解または反応させることによ
り、これらの金属が共存した状態の酸化物被膜を形成す
ることができる。さらに、2種以上の金属化合物原料を
含む表面処理液を順次高温ガス中に導入して熱分解また
は反応させることにより、これらの金属酸化物が積層し
た状態の被膜を形成することができる。このように、2
種以上の金属酸化物からなる被膜を設けることにより、
機能性を高めた表面処理粉末を得ることができる。
By repeating the above surface treatment, a surface coating having a multilayer structure is formed. Further, by using two or more kinds of metal compound raw materials and introducing a surface treatment liquid containing these mixed raw materials into a high temperature gas to cause thermal decomposition or reaction, an oxide film in a state where these metals coexist is formed. can do. Further, a surface treatment liquid containing two or more kinds of metal compound raw materials is sequentially introduced into a high temperature gas to cause thermal decomposition or reaction, whereby a coating film in which these metal oxides are laminated can be formed. Thus, 2
By providing a coating composed of at least one kind of metal oxide,
A surface-treated powder with enhanced functionality can be obtained.

【0021】[0021]

【発明の実施形態】以下、本発明の実施例を比較例と共
に示す。なお、以下の各例において、分散性および化学
的安定性は下記の試験法に従い測定、評価した。また、
成分組成を表わす%および部はそれぞれ重量%および重
量部である。(1) 耐候性試験 試料40gをメラニン−アルキド樹脂60gに混練し、カ
ーボンウェザーメータ(スカ゛試験機社製)を用いて光沢度
が半減するまでの期間を測定した。(2) 耐酸性試験(酸化チタン溶出試験) 試料の酸化チタン顔料1.0gを98%濃度の硫酸100
mlに加え、180℃に1時間維持し、溶出した酸化チタン
の量を測定した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below together with comparative examples. In addition, in each of the following examples, dispersibility and chemical stability were measured and evaluated according to the following test methods. Also,
The percentages and parts representing the component compositions are% by weight and parts by weight, respectively. (1) 40 g of a weather resistance test sample was kneaded with 60 g of melanin-alkyd resin, and a period until the glossiness was reduced to half was measured using a carbon weather meter (manufactured by Ska Testing Machine Co., Ltd.). (2) Acid resistance test (titanium oxide elution test) 1.0 g of titanium oxide pigment as a sample was added to 100% sulfuric acid of 98% concentration.
The amount of titanium oxide eluted was measured by adding it to the solution and maintaining it at 180 ° C. for 1 hour.

【0022】実施例1 酸化チタン微粉末(平均粒経0.27μ)300gを水70
0gと混合し、ガラスビーズミル(ヒ゛ース゛径:3φ)で1
0分間解砕した後、硫酸アルミニウム47.5g(酸化
チタン粉末に対しAl2O3換算で0.5%)を加え十分に混合
した。得られた混合スラリーをスプレードライヤー(入
口温度:200℃)中に噴霧して表面処理と乾燥を行い、
表面がアルミナで被覆された酸化チタン粉末顔料を得
た。この表面処理された酸化チタン粉末は水や溶媒での
分散性および隠蔽力に優れるものであった。また、この
粉末について表面被覆の耐候性を調べところ、表面光沢
の半減する期間は15ケ月であり、従来の湿式処理した
粉末に比べて大幅に半減期間が長く、耐候性に優れるこ
とが確認された。
Example 1 300 g of titanium oxide fine powder (average particle size 0.27 μ) was added to 70 parts of water.
Mix with 0 g and use a glass bead mill (Bise diameter: 3φ) to make 1
After crushing for 0 minutes, 47.5 g of aluminum sulfate (0.5% in terms of Al 2 O 3 with respect to titanium oxide powder) was added and mixed sufficiently. The obtained mixed slurry is sprayed into a spray dryer (inlet temperature: 200 ° C.) for surface treatment and drying,
A titanium oxide powder pigment whose surface was coated with alumina was obtained. This surface-treated titanium oxide powder was excellent in dispersibility in water and a solvent and hiding power. In addition, when the weather resistance of the surface coating of this powder was examined, it was confirmed that the half-life period of the surface gloss was 15 months, which was significantly longer than the conventional wet-processed powder, and was excellent in weather resistance. It was

【0023】比較例1(湿式沈澱法) 実施例1と同じ酸化チタン微粉末を用い、該粉末300
g、硫酸アルミニウム47.5gおよび水700gから
なるスラリーを調整し、撹拌しながら、pH7を終点と
して10%濃度の水酸化ナトリウムを添加し、含水水酸
化アルミニウムを粒子表面に析出させた。次いで、70
℃に加熱して、表面がアルミナで被覆された酸化チタン
粉末を得た。このアルミナ被覆酸化チタン粉末につい
て、実施例1と同様の耐候性試験を行ったところ、表面
光沢の半減する期間は10ケ月であった。
Comparative Example 1 (Wet Precipitation Method) The same titanium oxide fine powder as in Example 1 was used, and the powder 300
g, aluminum sulfate 47.5 g and water 700 g were prepared, and 10% sodium hydroxide having a pH of 7 as the end point was added while stirring to deposit hydrous aluminum hydroxide on the particle surface. Then 70
By heating to ℃, to obtain a titanium oxide powder whose surface is coated with alumina. When this alumina-coated titanium oxide powder was subjected to the same weather resistance test as in Example 1, the half-life period of the surface gloss was 10 months.

【0024】実施例2 スチームミルの入口蒸気温度を230℃、圧力を10kg
/cm2に設定し、これに酸化チタン微粉末を10kg/分の
割合で投入した。同時に、蒸気の吹き出し口に取り付け
た別のノズルから、20%濃度のケイ酸ナトリウム水溶
液を酸化チタン重量に対してシリカ換算で3%となるよ
うに定量供給した。これにより表面がシリカで被覆され
た酸化チタン粉末顔料を得た。この粉末について表面被
覆の耐候性と化学的安定性を調べところ、表面光沢の半
減する期間は14ケ月、酸化チタンの溶出量は13%で
あり、従来の湿式沈澱法よりも表面光沢の半減期間がか
なり長く、しかも酸化チタンの溶出量は大幅に少なく、
被膜が非常に緻密かつ強固であることが確認された。
Example 2 Steam steam inlet steam temperature was 230 ° C. and pressure was 10 kg
/ cm 2 and titanium oxide fine powder was added thereto at a rate of 10 kg / min. At the same time, a 20% concentration sodium silicate aqueous solution was quantitatively supplied from another nozzle attached to the steam outlet so that the concentration was 3% in terms of silica based on the weight of titanium oxide. As a result, a titanium oxide powder pigment whose surface was coated with silica was obtained. When the weather resistance and chemical stability of the surface coating of this powder were investigated, the surface gloss half life was 14 months, and the amount of titanium oxide elution was 13%, indicating that the surface gloss half life was longer than that of the conventional wet precipitation method. Is quite long, and the elution amount of titanium oxide is significantly small,
It was confirmed that the coating was very dense and strong.

【0025】比較例2 実施例2と同じ酸化チタン粉末を用い、該粉末300g
と20%濃度のケイ酸ナトリウム水溶液91.5gとを
混合してスラリーを調整し、撹拌しながら、pH7を終
点として10%濃度の硫酸を徐々に加え、粉末表面に含
水シリカを析出させた。次いで、これを80℃に加熱し
て、表面にシリカ被膜を有する酸化チタン粉末を得た。
この粉末について実施例2と同様に、表面被覆の耐候性
および化学的安定性を調べところ、表面光沢の半減する
期間は8ケ月であり、酸化チタンの溶出量は35%であ
った。
Comparative Example 2 The same titanium oxide powder as in Example 2 was used, and the powder was 300 g.
Was mixed with 91.5 g of a 20% aqueous sodium silicate solution to prepare a slurry, and 10% sulfuric acid having a pH of 7 was gradually added with stirring to precipitate hydrous silica on the powder surface. Then, this was heated to 80 ° C. to obtain a titanium oxide powder having a silica coating on the surface.
This powder was examined for weather resistance and chemical stability of the surface coating in the same manner as in Example 2. As a result, the half life of the surface gloss was 8 months, and the elution amount of titanium oxide was 35%.

【0026】実施例3 150℃、15kg/cm2の気流を維持した高温エアミル
(衝撃粉砕機)に酸化チタン微粉末を15kg/分の割合で
投入した。これと並行して、50%濃度のエチルシリケ
ート水溶液を酸化チタンに対してシリカ換算で0.4%
に相当する割合でノズルから噴霧し、酸化チタンの表面
処理と粉砕を行なった。これにより表面がシリカで被覆
された酸化チタン粉末顔料を得た。この粉末について表
面被覆の化学的安定性を調べところ、酸化チタンの溶出
量は15%であり、従来の湿式沈澱法よりも大幅に少な
かった。
Example 3 A high-temperature air mill which maintained an air flow of 15 kg / cm 2 at 150 ° C.
Titanium oxide fine powder was charged into the (shock crusher) at a rate of 15 kg / min. In parallel with this, a 50% ethyl silicate aqueous solution was added to the titanium oxide in an amount of 0.4% in terms of silica.
Was sprayed from the nozzle at a rate corresponding to, to perform surface treatment and pulverization of titanium oxide. As a result, a titanium oxide powder pigment whose surface was coated with silica was obtained. When the chemical stability of the surface coating of this powder was examined, the elution amount of titanium oxide was 15%, which was significantly smaller than that of the conventional wet precipitation method.

【0027】比較例3 実施例3と同じ酸化チタン粉末を用い、該粉末300g
と酸化チタンに対してシリカ換算で0.4%に相当する
50%濃度エチルシリケート水溶液8.48gを混合し
てスラリーを調整し、撹拌しながらpH7を終点として
10%の塩酸を加え、含水シリカをゲル化して酸化チタ
ン表面に被膜を形成した。次いで、これを80℃に加熱
し、表面がシリカで被覆された酸化チタン粉末を得た。
この粉末について表面被覆の化学的安定性を調べとこ
ろ、酸化チタンの溶出量は33%であった。
Comparative Example 3 Using the same titanium oxide powder as in Example 3, 300 g of the powder was used.
And 48% of a 50% concentration ethyl silicate aqueous solution corresponding to 0.4% in terms of silica relative to titanium oxide are mixed to prepare a slurry, and 10% hydrochloric acid is added with pH 7 as the end point while stirring to obtain hydrous silica. Was gelled to form a film on the surface of titanium oxide. Then, this was heated to 80 ° C. to obtain a titanium oxide powder whose surface was coated with silica.
When the chemical stability of the surface coating of this powder was examined, the elution amount of titanium oxide was 33%.

【0028】実施例4 スチームミルの入口蒸気温度を260℃、圧力を12kg
/cm2に設定し、これに酸化チタン微粉末を10kg/分の
割合で投入した。同時に、蒸気の吹き出し口に取り付け
た別のノズルから、20%濃度の硫酸アルミニウム水溶
液を酸化チタン重量に対してアルミナ換算で1%となる
量、およびエチルシリケートを酸化チタン重量に対して
シリカ換算で2%となる量をおのおの定量供給した。こ
れによりシリカとアルミナの均一組成からなる被膜が表
面に形成された酸化チタン粉末顔料を得た。この粉末に
ついて表面被覆の耐候性と化学的安定性を調べところ、
表面光沢の半減する期間は24ケ月、酸化チタンの溶出
量は20%であり、従来の湿式沈澱法よる類似品よりも
表面光沢の半減期間が格段に長く、しかも酸化チタンの
溶出量が大幅に少なく、被膜が非常に緻密かつ強固であ
ることが確認された。
Example 4 Steam steam inlet steam temperature was 260 ° C. and pressure was 12 kg.
/ cm 2 and titanium oxide fine powder was added thereto at a rate of 10 kg / min. At the same time, from another nozzle attached to the steam outlet, an aluminum sulfate aqueous solution having a concentration of 20% becomes 1% in terms of alumina to the weight of titanium oxide, and ethyl silicate in terms of silica to the weight of titanium oxide. An amount of 2% was supplied in a fixed amount. As a result, a titanium oxide powder pigment having a film having a uniform composition of silica and alumina formed on its surface was obtained. When we examined the weather resistance and chemical stability of the surface coating for this powder,
The half life of surface gloss is 24 months, the elution amount of titanium oxide is 20%, the half life of surface gloss is much longer than that of similar products by the conventional wet precipitation method, and the elution amount of titanium oxide is significantly large. It was confirmed that the film was very small and very dense and strong.

【0029】比較例4 実施例4と同じ酸化チタン粉末300gについて、比較
例1と同様にして表面にアルミナ被覆を形成した後に、
さらにこの粉末について、比較例3と同様にしてシリカ
被覆をアルミナ被覆の表面に形成した。この粉末につい
て表面被覆の耐候性と化学的安定性を調べところ、表面
光沢の半減する期間は15ケ月、酸化チタンの溶出量は
41%であった。なお、比較例1または3において、硫
酸アルミニウムとエチルシリケートとを同時に用いてシ
リカとアルミナの均一組成からなる被膜の形成を試みた
が、従来の沈殿法では、酸性域で析出するアルミナとア
ルカリ性域で析出するシリカを同時に沈澱させた酸化被
膜を得ることは困難であり、目的の表面処理酸化チタン
粉末を得ることは出来なかった。
Comparative Example 4 300 g of the same titanium oxide powder as in Example 4 was coated with alumina on the surface in the same manner as in Comparative Example 1,
Further, for this powder, a silica coating was formed on the surface of the alumina coating in the same manner as in Comparative Example 3. When the weather resistance and chemical stability of the surface coating of this powder were examined, the period of half reduction of surface gloss was 15 months, and the elution amount of titanium oxide was 41%. In Comparative Example 1 or 3, an attempt was made to form a film having a uniform composition of silica and alumina by using aluminum sulfate and ethyl silicate at the same time. It was difficult to obtain an oxide film in which silica that had been precipitated in step 1 was simultaneously precipitated, and the target surface-treated titanium oxide powder could not be obtained.

【0030】実施例5 酸化チタン粉体300 gを水700 gと混合し、これを
ガラスビーズミルを用いて10分間解砕しスラリーとし
た。一方、錫アルコキドとアンチモンアルコキシドの混
合溶液を準備した。次に、酸化チタン粉末に対して、酸
化錫換算で10重量%の錫アルコキシドと、酸化アンチ
モン換算で1重量%のアンチモンアルコキシドとが供給
されるように、上記スラリーと混合溶液とを、200℃
の入口条件で直接スプレードライヤーに導入して表面処
理と乾燥を行ない、アンチモンドープ酸化錫からなる表
面被膜を有する導電性酸化チタン粉末を得た。この粉末
を軟質塩化ビニル樹脂に50%重量となるように混練
し、厚さ1mmのシートとした。このシートの表面抵抗を
測定した結果、1×108Ωであり、従来の湿式処理の
導電粉体と同等の導電性が確認できた。すなわち、本発
明の処理方法によって得た導電粉を用いれば、従来より
も低コストで同程度の導電性を有する導電シートを製造
することができる。
Example 5 300 g of titanium oxide powder was mixed with 700 g of water, and this was crushed for 10 minutes using a glass bead mill to obtain a slurry. Meanwhile, a mixed solution of tin alkoxide and antimony alkoxide was prepared. Next, the slurry and the mixed solution were mixed at 200 ° C. so that 10% by weight of tin alkoxide in terms of tin oxide and 1% by weight of antimony oxide in terms of antimony oxide were supplied to the titanium oxide powder.
Was directly introduced into a spray drier under the conditions described above to perform surface treatment and drying to obtain a conductive titanium oxide powder having a surface coating made of antimony-doped tin oxide. This powder was kneaded with a soft vinyl chloride resin so as to have a weight of 50% to obtain a sheet having a thickness of 1 mm. As a result of measuring the surface resistance of this sheet, it was 1 × 10 8 Ω, and it was possible to confirm the conductivity equivalent to that of the conventional wet-processed conductive powder. That is, by using the conductive powder obtained by the treatment method of the present invention, it is possible to manufacture a conductive sheet having a similar level of conductivity at a lower cost than conventional ones.

【0031】ちなみに、従来の沈殿法による表面処理で
は、アンチモンをドープした酸化錫被膜を形成するに
は、錫とアンチモンそれぞれのアルコキシド混合溶液か
らこれらを同時に沈殿させているが、被膜が不均一であ
り、しかもコスト高である。
By the way, in the conventional surface treatment by the precipitation method, in order to form a tin oxide film doped with antimony, these are simultaneously precipitated from a mixed solution of tin and antimony alkoxide, but the film is not uniform. Yes, and costly.

【0032】実施例6 酸化チタン粉体300 gを水700g と混合し、これを
ガラスビーズミルを用いて10分問解砕しスラリーとし
た。これに、酸化チタン粉末に対してシリカ換算で0.
5重量%となる量の水ガラスを加えた。この調合スラリ
ーを200℃の入口条件でスプレードライヤーに導入
し、表面処理と乾燥を行ない、表面がシリカで被覆され
た酸化チタン粉末を得た。この表面処理酸化チタン粉末
をパルプおよび各種填料に混合し、この混合物を抄紙試
験の重要項目である80メッシュ篩の歩留り試験器を用いた
歩留り量を測定した。この結果、歩留り量は76%であ
った。一方、比較例2で得たシリカ被膜を有する酸化チ
タン粉末について同様の歩留り量を測定したところ51
%であり、本実施例より大幅に少なく、本発明の表面処
理を施したものは、従来の処理方法に係るものより分散
性に優れることが確認された。
Example 6 300 g of titanium oxide powder was mixed with 700 g of water, and this was crushed for 10 minutes using a glass bead mill to obtain a slurry. In addition, the titanium oxide powder was converted to silica in an amount of 0.
Water glass in an amount of 5% by weight was added. This prepared slurry was introduced into a spray dryer at an inlet condition of 200 ° C., surface treatment and drying were performed, and a titanium oxide powder having a surface coated with silica was obtained. The surface-treated titanium oxide powder was mixed with pulp and various fillers, and the yield of the mixture was measured using an 80 mesh sieve yield tester, which is an important item in the papermaking test. As a result, the yield amount was 76%. On the other hand, the same yield amount was measured for the titanium oxide powder having the silica coating obtained in Comparative Example 51.
%, Which is significantly smaller than that of the present example, and that the product subjected to the surface treatment of the present invention was confirmed to be superior in dispersibility to that of the conventional treatment method.

【0033】実施例7 硫酸カドミウム溶液(Cd:150g/l)と硫化ソーダ水溶液
(Na2S:22g/l)を当量混合反応させ、これを洗浄、濾
過、乾燥した後、560℃、5時間焼成した。これを粉
砕して、硫化カドミウム黄色顔料とした。次に、スチー
ムミルの入口蒸気を220℃、圧力10kg/cm2の条件に
設定し、上記硫化カドミウム顔料を10kg/分の割合で
投入した。これと並行して蒸気の吹き出し口に取り付け
た別のノズルから、エチルシリケー卜を硫化カドミウム
に対してシリカ換算で0.1重量%となる量の混合溶液
を定量供給し、表面処理した後に乾燥させた。この結
果、粉末表面にシリカが均一かつ緻密に被覆し、分散性
の非常に優れた硫化カドミウム粉末を得た。
Example 7 A cadmium sulfate solution (Cd: 150 g / l) and an aqueous sodium sulfide solution (Na 2 S: 22 g / l) were mixed and reacted in equivalent amounts, washed, filtered and dried, and then at 560 ° C. for 5 hours. Baked. This was ground to give a cadmium sulfide yellow pigment. Next, the steam at the inlet of the steam mill was set to 220 ° C. and the pressure was set to 10 kg / cm 2 , and the above cadmium sulfide pigment was added at a rate of 10 kg / min. In parallel with this, from another nozzle attached to the steam outlet, ethyl silicate was supplied in a fixed amount in a mixed solution of 0.1% by weight in terms of silica to cadmium sulfide, and after surface treatment, it was dried. It was As a result, silica was uniformly and densely coated on the powder surface to obtain cadmium sulfide powder having excellent dispersibility.

【0034】上記表面処理を施した硫化カドミウム黄色
顔料(本発明品)と、表面処理を施していない顔料(対
照例)をそれぞれ0.1部と酸化チタン1.0部とをポ
リエチレン樹脂に混練し、同一条件で分散性を比較し
た。この結果、本発明品は無処理品に対して、着色力は
120%であつた。
The surface-treated yellow cadmium sulfide pigment (product of the present invention) and the surface-untreated pigment (control example) were kneaded in a polyethylene resin with 0.1 parts and 1.0 part of titanium oxide, respectively. Then, the dispersibility was compared under the same conditions. As a result, the product of the present invention had a coloring power of 120% with respect to the untreated product.

【0035】[0035]

【発明の効果】本発明の表面処理法によれば、微粒子表
面に均一かつ緻密な無機化合物被膜を形成することがで
きるので、微粉末の分散性や化学的安定性を効果的に改
善することができる。また、本発明の処理方法は、基体
粒子の種類に制限されず低コストで実施することができ
るので、各種機能微粉末の特性改善に特に有効である。
According to the surface treatment method of the present invention, a uniform and dense inorganic compound film can be formed on the surface of fine particles, so that the dispersibility and chemical stability of fine powder can be effectively improved. You can Further, the treatment method of the present invention can be carried out at low cost regardless of the type of the base particles, and is therefore particularly effective for improving the characteristics of various functional fine powders.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 微粉末表面を金属化合物によって表面処
理するに際し、被覆原料の金属化合物を含む表面処理液
を微粉末と共に高温ガス中に導入し、微粉末表面におい
て該金属化合物を脱水、熱分解または反応させることに
より、該金属化合物の分解生成物もしくは反応生成物か
らなる被膜を微粉末表面に形成することを特徴とする微
粉末の表面処理方法。
1. When surface-treating a fine powder surface with a metal compound, a surface treatment liquid containing a metal compound as a coating raw material is introduced into a high temperature gas together with the fine powder, and the metal compound is dehydrated and thermally decomposed on the surface of the fine powder. Alternatively, a fine powder surface treatment method is characterized in that a film made of a decomposition product or a reaction product of the metal compound is formed on the fine powder surface by reacting.
【請求項2】 微粉末表面に金属酸化物被膜を形成する
請求項1に記載の処理方法。
2. The processing method according to claim 1, wherein a metal oxide film is formed on the surface of the fine powder.
【請求項3】 高温ガスの温度が100〜400℃であ
る請求項1または2に記載の処理方法。
3. The processing method according to claim 1, wherein the temperature of the high temperature gas is 100 to 400 ° C.
【請求項4】 金属酸化物、金属アルコキシドまたは熱
分解性の金属塩を高温ガス中に導入する請求項1〜3の
いずれかに記載の処理方法。
4. The treatment method according to claim 1, wherein a metal oxide, a metal alkoxide or a thermally decomposable metal salt is introduced into the high temperature gas.
【請求項5】 原料の金属化合物を微粉末に対して、酸
化物換算で0.02〜5重量%用いる請求項1〜4のい
ずれかに記載の処理方法。
5. The treatment method according to claim 1, wherein the raw material metal compound is used in an amount of 0.02 to 5% by weight in terms of oxide based on the fine powder.
【請求項6】 高温ガスが酸素、窒素、水蒸気またはこ
れらの混合気体である請求項1〜5のいずれかに記載の
処理方法。
6. The processing method according to claim 1, wherein the high temperature gas is oxygen, nitrogen, steam or a mixed gas thereof.
【請求項7】 上記表面処理を繰り返して多層の表面被
膜を形成する請求項1〜6のいずれかに記載の処理方
法。
7. The treatment method according to claim 1, wherein the surface treatment is repeated to form a multilayer surface coating.
【請求項8】 2種以上の金属化合物原料を用い、これ
らを含む表面処理液を高温ガス中に導入して熱分解また
は反応させることにより、上記金属が共存した酸化物被
膜を形成する請求項1〜6のいずれかに記載の処理方
法。
8. An oxide film coexisting with the above-mentioned metals is formed by using two or more kinds of metal compound raw materials and introducing a surface treatment liquid containing them into a high temperature gas to cause thermal decomposition or reaction. The processing method according to any one of 1 to 6.
【請求項9】 2種以上の金属化合物原料を用い、これ
らを含む表面処理液を順次高温ガス中に導入して熱分解
または反応させることにより、上記金属酸化物が積層し
た被膜を形成する請求項1〜6のいずれかに記載の処理
方法。
9. A coating film in which the above-mentioned metal oxide is laminated is formed by using two or more kinds of metal compound raw materials and sequentially introducing a surface treatment liquid containing them into a high temperature gas to cause thermal decomposition or reaction. Item 7. The processing method according to any one of Items 1 to 6.
【請求項10】 請求項1〜9のいずれかの方法によっ
て表面処理した微粉末。
10. A fine powder surface-treated by the method according to claim 1.
【請求項11】 表面処理を施す微粉末が、平均粒径
0.01〜1μmの有機または無機の顔料、導電粉、充
填用粉末、磁性粉である請求項10の微粉末。
11. The fine powder according to claim 10, wherein the fine powder to be surface-treated is an organic or inorganic pigment having an average particle diameter of 0.01 to 1 μm, a conductive powder, a filling powder, and a magnetic powder.
JP8220896A 1996-04-04 1996-04-04 Method for treating fine powder surface and surface treated fine powder Pending JPH09268014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8220896A JPH09268014A (en) 1996-04-04 1996-04-04 Method for treating fine powder surface and surface treated fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8220896A JPH09268014A (en) 1996-04-04 1996-04-04 Method for treating fine powder surface and surface treated fine powder

Publications (1)

Publication Number Publication Date
JPH09268014A true JPH09268014A (en) 1997-10-14

Family

ID=13768015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8220896A Pending JPH09268014A (en) 1996-04-04 1996-04-04 Method for treating fine powder surface and surface treated fine powder

Country Status (1)

Country Link
JP (1) JPH09268014A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512621A (en) * 2005-11-12 2009-03-26 エボニック デグサ ゲーエムベーハー Method for producing doped metal oxide particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512621A (en) * 2005-11-12 2009-03-26 エボニック デグサ ゲーエムベーハー Method for producing doped metal oxide particles
US8535633B2 (en) 2005-11-12 2013-09-17 Evonik Degussa Gmbh Process for the production of doped metal oxide particles

Similar Documents

Publication Publication Date Title
CN1969019B (en) Weather-stable titanium dioxide pigment and method for the production thereof
USRE27818E (en) Titanium dioxide pigment coated with silica and alumina
TWI405823B (en) Making co-precipitated mixed oxide-treated titanium dioxide pigments
ES2357990T3 (en) IMPROVED PROCESS FOR THE MANUFACTURE OF TITANIUM DIOXIDE PIGMENTS TREATED WITH CIRCONIA.
US4737194A (en) Titanium dioxide pigment coated with cerium cations, selected acid anions, and alumina
EP2178798B1 (en) Method of preparing a well-dispersable microcrystalline titanium dioxide product
CN106810912A (en) The method for preparing titanium dioxide
JP6286207B2 (en) Titanium dioxide pigment and production method
WO2008125904A2 (en) Improved titanium dioxide pigment composite and method of making same
JPH0388877A (en) Colored fine particle inorganic pigment
JPH032914B2 (en)
MX2007001146A (en) Method for post-treating titanium dioxide pigments.
EP0406194A1 (en) Process for coating titanium dioxide pigments
JP2001527597A (en) Method for producing a lightfast titanium dioxide pigment aqueous slurry
CN103635542B (en) Treated inorganic particle
CN104411779A (en) Titanium dioxide-containing and carbonate-containing composite pigments and method for producing same
BRPI0720060A2 (en) PROCESS FOR SURFACE TREATMENT OF SOLID BODY PARTICULES, ESPECIALLY TITANIUM DIOXIDE PIGMENT PARTICLES
US6616747B2 (en) Process for producing granular hematite particles
US9573108B2 (en) Treated inorganic core particles having improved dispersability
JPS6321709B2 (en)
CN104619787B (en) Use the method for ultrasonically treated manufacture TiO 2 pigment
JP2002510351A (en) Method for producing light-fast aqueous titanium dioxide pigment slurry
JPH0611873B2 (en) Alumina-coated TiO2 pigment particles and method for producing the same
EP0576159A2 (en) Composite pigmentary material
JPH09268014A (en) Method for treating fine powder surface and surface treated fine powder