JPH09266158A - Semiconductor aligner - Google Patents

Semiconductor aligner

Info

Publication number
JPH09266158A
JPH09266158A JP8074996A JP7499696A JPH09266158A JP H09266158 A JPH09266158 A JP H09266158A JP 8074996 A JP8074996 A JP 8074996A JP 7499696 A JP7499696 A JP 7499696A JP H09266158 A JPH09266158 A JP H09266158A
Authority
JP
Japan
Prior art keywords
light
light source
exposure apparatus
arc tube
semiconductor exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8074996A
Other languages
Japanese (ja)
Inventor
Kunio Yuasa
邦夫 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP8074996A priority Critical patent/JPH09266158A/en
Publication of JPH09266158A publication Critical patent/JPH09266158A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To make uniform illumination distribution of illumination light and reduce the attenuation of light intensity for high output and high efficiency, by employing a light source that produces plasma discharge with torus-shaped intensity distribution in a light emitting tube, and taking out light with the assumption of a central axis of the plasma discharge of the torus-shaped light intensity of the light source being used as an optical axis. SOLUTION: When an AC current is applied from an oscillator 14 to a coil of a light source 1, a magnetic field is formed for the light emitting tube 11 over the entire periphery in the direction of winding of the coil, and electric discharge is produced on discharge gas in the light emitting tube 11 such that the discharge wounds around the magnetic field. Thereupon, plasma discharge of torus-shaped intensity distribution is produced in the light emitting tube 11 along the direction of winding of the coil. A diameter of a light emission cross section of the plasma discharge is about 8mm. Light is derived through optical means 2 using as an optical axis the central axis of the plasma distribution of the torus-shaped intensity distribution of the light source 1. A semiconductor wafer material 22 is irradiated with the light. Hereby, illumination distribution of the illumination light is made uniform, and attenuation of the light intensity is reduced for high output power and high efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体デバイスの
製造に用いられる半導体露光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor exposure apparatus used for manufacturing semiconductor devices.

【0002】[0002]

【従来の技術】従来、半導体デバイスの製造におけるリ
ソグラフィ工程においては、半導体露光装置が用いら
れ、波長が約400nm以下の光を半導体表面に照射
し、集積化された回路を形成する。この工程における光
源は、目的とする紫外線の出力値が高いこと、スペクト
ル線幅が十分細いこと、時間的に出力が安定であること
などの機能が必要とされる。
2. Description of the Related Art Conventionally, in a lithography process in manufacturing a semiconductor device, a semiconductor exposure apparatus is used, and a semiconductor surface is irradiated with light having a wavelength of about 400 nm or less to form an integrated circuit. The light source in this step is required to have functions such as a desired output value of ultraviolet rays, a sufficiently narrow spectral line width, and stable output over time.

【0003】こうした光源として、これまでは、例えば
高圧水銀灯が用いられてきた。これは水銀の254n
m、365nmなどのスペクトルを用いて露光させるた
めである。こうした光源においてはその寸法をできるだ
け小さく構成して実用上点光源とし、グレーティング、
ミラーなどの光学系を通じて光を半導体表面に照射する
ようにしている。
As such a light source, for example, a high pressure mercury lamp has been used so far. This is 254n of mercury
This is because exposure is performed using a spectrum of m, 365 nm, or the like. In such a light source, its size is made as small as possible to make it a point light source for practical use, and a grating,
The surface of the semiconductor is irradiated with light through an optical system such as a mirror.

【0004】ところで、点光源からの光を光学系を通じ
て照射すると、照射する光の中心部の照度が高くなると
ともに、周縁部の照度が低くなることが知られている。
このように、照射光の照度分布が不均一であると、半導
体の製造に不具合が生じる。
By the way, it is known that when the light from the point light source is irradiated through the optical system, the illuminance at the central portion of the irradiated light becomes high and the illuminance at the peripheral portion becomes low.
In this way, if the illuminance distribution of the irradiation light is non-uniform, defects will occur in semiconductor manufacturing.

【0005】そのため、従来の半導体露光装置において
は、光源からの光を反射鏡によりほぼ平行な光として取
り出した後、光学系の途中でほぼドーナツ形状の光の強
度分布に変換し、このドーナツ形状の光を集光して照射
することにより、照射光の中心部と周縁部との照度差を
少なくし、照射光の照度分布を均一している。
Therefore, in the conventional semiconductor exposure apparatus, after the light from the light source is taken out as almost parallel light by the reflecting mirror, it is converted into an almost donut-shaped light intensity distribution in the middle of the optical system, and this donut shape is obtained. By condensing and irradiating the light, the illuminance difference between the central portion and the peripheral portion of the irradiation light is reduced, and the illuminance distribution of the irradiation light is made uniform.

【0006】[0006]

【発明が解決しようとする課題】ところで、半導体露光
装置においては、時間的な露光の均一性を得るためや、
露光時間を短縮化するために、高出力化が望まれてい
る。
By the way, in the semiconductor exposure apparatus, in order to obtain temporal uniformity of exposure,
In order to shorten the exposure time, higher output is desired.

【0007】しかし、光源の入力電力を単純に増加させ
ただけでは、水銀蒸気が過飽和となってスペクトル線幅
が増加して露光の空間分解能が低下したり、また水銀蒸
気圧を抑えた場合でも出力の飽和が生じるなど、必ずし
も出力増加につながらない。
However, if the input power of the light source is simply increased, the mercury vapor becomes supersaturated, the spectral line width increases, the spatial resolution of exposure decreases, and even when the mercury vapor pressure is suppressed. Output saturation does not always lead to output increase.

【0008】また、一度点光源として取り出した光を光
学系によってドーナツ形状の強度分布の光に変換する過
程で、光強度が減衰してしまうことが確認された。
Further, it was confirmed that the light intensity is attenuated in the process of converting the light once extracted as the point light source into the light having the donut-shaped intensity distribution by the optical system.

【0009】本発明は、照射光の照度分布を均一にでき
るとともに、光学系による光強度の減衰を低減して高出
力化および高効率化を図れる半導体露光装置を提供する
ことを目的とする。
An object of the present invention is to provide a semiconductor exposure apparatus which can make the illuminance distribution of irradiation light uniform and reduce the attenuation of light intensity by an optical system to achieve high output and high efficiency.

【0010】[0010]

【課題を解決するための手段】請求項1記載の半導体露
光装置は、発光管と、発光管内に封入された少なくとも
放電ガスと、発光管内にドーナツ状強度分布のプラズマ
放電を生起させる電極手段とを有する光源と;光源のド
ーナツ状強度分布のプラズマ放電の中心軸を光軸として
光を取り出す光学手段と;を具備しているものである。
A semiconductor exposure apparatus according to claim 1 is provided with an arc tube, at least a discharge gas sealed in the arc tube, and an electrode means for generating a plasma discharge having a donut-shaped intensity distribution in the arc tube. A light source having: and an optical means for extracting light with the central axis of plasma discharge having a donut-shaped intensity distribution of the light source as an optical axis.

【0011】そして、発光管内にドーナツ状強度分布の
プラズマ放電を生起させる光源を用い、この光源のドー
ナツ状強度分布のプラズマ放電の中心軸を光軸として光
を取り出すため、従来のように光学系によりドーナツ状
強度分布の光に変換せずにすみ、照射光の照度分布が均
一なるとともに、光学系による光強度の減衰を低減し
て、高出力化および高効率化が図れる。
Then, a light source for generating a plasma discharge having a donut-shaped intensity distribution is used in the arc tube, and light is extracted with the central axis of the plasma discharge having the donut-shaped intensity distribution of the light source as the optical axis. By doing so, the light does not have to be converted into light having a donut-shaped intensity distribution, the illuminance distribution of the irradiation light becomes uniform, and the attenuation of the light intensity by the optical system is reduced to achieve high output and high efficiency.

【0012】また、発光管内には放電ガスとともに水銀
を封入してもよい。光学手段は、反射鏡やレンズ系で構
成される。
Further, mercury may be enclosed in the arc tube together with the discharge gas. The optical means is composed of a reflecting mirror and a lens system.

【0013】請求項2記載の半導体露光装置は、請求項
1記載の半導体露光装置において、電極手段は発光管の
周囲に配設されたコイルであり、このコイルに高周波電
力を供給するものであり、発光管内にドーナツ状強度分
布のプラズマ放電を生起させる。
A semiconductor exposure apparatus according to a second aspect is the semiconductor exposure apparatus according to the first aspect, wherein the electrode means is a coil disposed around the arc tube, and high frequency power is supplied to this coil. , A plasma discharge having a donut-shaped intensity distribution is generated in the arc tube.

【0014】請求項3記載の半導体露光装置は、請求項
1または2記載の半導体露光装置において、発光管は球
形状であり、高効率にできる。
A semiconductor exposure apparatus according to a third aspect is the semiconductor exposure apparatus according to the first or second aspect, wherein the arc tube has a spherical shape, and high efficiency can be achieved.

【0015】請求項4記載の半導体露光装置は、請求項
1または2記載の半導体露光装置において、発光管は偏
平形状であり、小形化できる。
A semiconductor exposure apparatus according to a fourth aspect is the semiconductor exposure apparatus according to the first or second aspect, wherein the arc tube has a flat shape and can be miniaturized.

【0016】請求項5記載の半導体露光装置は、請求項
1または2記載の半導体露光装置において、発光管はド
ーナツ形状の放電路を有するものであり、中央部での紫
外線の共鳴線の自己吸収がなくなり、さらに高効率にで
きる。
A semiconductor exposure apparatus according to a fifth aspect is the semiconductor exposure apparatus according to the first or second aspect, in which the arc tube has a donut-shaped discharge path, and the resonance line of the ultraviolet ray is self-absorbed in the central portion. Can be eliminated, resulting in higher efficiency.

【0017】請求項6記載の半導体露光装置は、請求項
1ないし5いずれか一記載の半導体露光装置において、
光源から光学手段に取り出される光を遮光可能とするシ
ャッタを具備しているものであり、光の照射および遮光
を選択的に行なえる。
A semiconductor exposure apparatus according to claim 6 is the semiconductor exposure apparatus according to any one of claims 1 to 5.
It is provided with a shutter capable of blocking the light extracted from the light source to the optical means, and can selectively irradiate and block the light.

【0018】[0018]

【発明の実施の形態】以下、本発明の一実施の形態を図
面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings.

【0019】図1ないし図3に第1の実施の形態を示
す。図1は半導体露光装置の構成図、図2は光源の説明
図、図3は光源の作用を説明する説明図である。
1 to 3 show a first embodiment. FIG. 1 is a configuration diagram of a semiconductor exposure apparatus, FIG. 2 is an explanatory diagram of a light source, and FIG. 3 is an explanatory diagram illustrating an operation of the light source.

【0020】図1において、半導体露光装置は、光源
1、光学手段2、シャッタ3などを備えている。
In FIG. 1, the semiconductor exposure apparatus comprises a light source 1, optical means 2, shutter 3 and the like.

【0021】光源1は、図2および図3に示すように、
発光管11を有し、この発光管11は透光性を有する石英ガ
ラス製で球形に形成され、内部に放電空間12が形成され
ている。発光管11の内径は約15mmで、蛍光体などは
塗布されていない。発光管11内には、約30mgの水銀
と、100Torrのアルゴンガスなどの放電ガスが封
入されている。
The light source 1 is, as shown in FIGS. 2 and 3,
It has a light emitting tube 11, and this light emitting tube 11 is made of transparent quartz glass and has a spherical shape, and a discharge space 12 is formed therein. The inner diameter of the arc tube 11 is about 15 mm, and no phosphor or the like is applied. The arc tube 11 is filled with about 30 mg of mercury and a discharge gas such as 100 Torr of argon gas.

【0022】発光管11の周囲には、発光管11の外周に対
して約3mmの隙間をあけて電極手段としてのコイル13
が巻回配設されている。コイル13には約400W、周波
数13.56MHzの交流電流が発振器14より加えられ
ている。
A coil 13 as an electrode means is provided around the arc tube 11 with a gap of about 3 mm from the outer circumference of the arc tube 11.
Are wound around. An alternating current of about 400 W and a frequency of 13.56 MHz is applied to the coil 13 from an oscillator 14.

【0023】また、光学手段2は、図1に示すように、
光源1の後述するドーナツ状強度分布のプラズマ放電の
中心軸を光軸として光を取り出すものであり、光源1の
発光管11の周囲に配設されたコイル13の巻回方向と直交
する下方に反射鏡15が斜めに配設され、この反射鏡15で
反射される光軸に対して、受けた光を一旦集束してその
後広げるインテグレータ16、反射鏡17が斜めに配設され
ている。さらに、反射鏡17で反射される光軸に対して、
フィルタ18、光を集束するコンデンサレンズ19、光を所
望のパターンに形成するフォトマスク20、光を縮小する
縮小レンズ21が配設されている。縮小レンズ21の下方に
は半導体ウエハ材料22が配置され、縮小レンズ21を通過
した紫外線が半導体ウエハ材料22を露光する。
The optical means 2 is, as shown in FIG.
Light is taken out with the central axis of plasma discharge having a donut-shaped intensity distribution, which will be described later, of the light source 1 as the optical axis, and is located below the coil 13 disposed around the arc tube 11 of the light source 1 in a direction orthogonal to the winding direction. A reflecting mirror 15 is obliquely arranged, and an integrator 16 and a reflecting mirror 17 are arranged obliquely with respect to an optical axis reflected by the reflecting mirror 15 so that the received light is once focused and then spread. Furthermore, with respect to the optical axis reflected by the reflecting mirror 17,
A filter 18, a condenser lens 19 that focuses light, a photomask 20 that forms the light into a desired pattern, and a reduction lens 21 that reduces the light are provided. A semiconductor wafer material 22 is arranged below the reduction lens 21, and the ultraviolet light passing through the reduction lens 21 exposes the semiconductor wafer material 22.

【0024】また、シャッタ3は、光源1と光学手段2
の反射鏡15との間に進退可能に配設され、退避時に光源
1から光学手段2に光を透過させ、進入時にその光を遮
光する。
The shutter 3 comprises a light source 1 and an optical means 2.
It is arranged so as to be able to move forward and backward between the reflection mirror 15 and the reflection mirror 15, and transmits light from the light source 1 to the optical means 2 when retracted, and blocks the light when entering.

【0025】次に、第1の実施の形態の作用を説明す
る。
Next, the operation of the first embodiment will be described.

【0026】図3において、発振器14より交流電流が光
源1のコイル13に加えると、発光管11に対して破線に示
すような磁界aがコイル13の巻回方向に沿った全周に形
成され、この磁界aに巻き付くように発光管11内の放電
ガスに放電が生じる。すると、コイル13の巻回方向に沿
って、発光管11内にドーナツ状強度分布のプラズマ放電
pが生じる。このプラズマ放電pの発光断面の直径は約
8mm程度になる。
In FIG. 3, when an alternating current is applied from the oscillator 14 to the coil 13 of the light source 1, a magnetic field a as shown by a broken line is formed on the arc tube 11 along the winding direction of the coil 13. Discharge occurs in the discharge gas in the arc tube 11 so as to be wrapped around this magnetic field a. Then, a plasma discharge p having a donut-shaped intensity distribution is generated in the arc tube 11 along the winding direction of the coil 13. The diameter of the emission cross section of this plasma discharge p is about 8 mm.

【0027】そして、光学手段2により、光源1のドー
ナツ状強度分布のプラズマ放電pの中心軸を光軸として
光を取り出し、半導体ウエハ材料22に照射する。
Then, the optical means 2 extracts light with the central axis of the plasma discharge p of the doughnut-shaped intensity distribution of the light source 1 as the optical axis, and irradiates the semiconductor wafer material 22.

【0028】このように、発光管11内にドーナツ状強度
分布のプラズマ放電pを生起させる光源1を用い、この
光源1のドーナツ状強度分布のプラズマ放電pの中心軸
を光軸として光を取り出すことにより、従来のように光
学系によりドーナツ状強度分布の光に変換せずにすみ、
照射光の照度分布を均一にできるとともに、光学系によ
る光強度の減衰を低減して、高出力化および高効率化が
図れる。
As described above, the light source 1 for generating the plasma discharge p having the donut-shaped intensity distribution is used in the arc tube 11, and light is extracted with the central axis of the plasma discharge p having the donut-shaped intensity distribution of the light source 1 as the optical axis. As a result, the optical system does not have to convert the light into a donut-shaped intensity distribution as in the conventional case,
The illuminance distribution of the irradiation light can be made uniform, and the attenuation of the light intensity by the optical system can be reduced to achieve high output and high efficiency.

【0029】そして、光源1によりドーナツ状強度分布
のプラズマ放電pを作る場合には、光学系によりドーナ
ツ状強度分布の光を作る場合の損失分約23%を低減す
ることができた。
When the plasma discharge p having the donut-shaped intensity distribution is produced by the light source 1, the loss amount of about 23% when the light having the donut-shaped intensity distribution is produced by the optical system can be reduced.

【0030】次に、図4に第2の実施の形態を示す。図
4は光源の斜視図である。
Next, FIG. 4 shows a second embodiment. FIG. 4 is a perspective view of the light source.

【0031】この実施の形態では、光源1の発光管11を
ドーナツ形状に形成し、発光管11内にドーナツ形状の放
電路31を形成している。そして、この発光管11の周囲に
第1の実施の形態と同様にコイルを配設して通電すれ
ば、発光管11の内部に、その発光管11のドーナツ形状に
沿ってプラズマ放電pが生じる。
In this embodiment, the light emitting tube 11 of the light source 1 is formed in a donut shape, and the doughnut-shaped discharge path 31 is formed in the light emitting tube 11. Then, if a coil is arranged around this arc tube 11 and electricity is applied, as in the first embodiment, plasma discharge p is generated inside the arc tube 11 along the donut shape of the arc tube 11. .

【0032】このように、発光管11がドーナツ形状であ
れば、中央部での紫外線の共鳴線の自己吸収がなくな
る。そして、約5mmの孔を有する直径15mmの発光
管11では、孔のないものに比べ、その効率は約12%向
上することが実験により確認された。
As described above, when the arc tube 11 has a donut shape, the self-absorption of the resonance line of the ultraviolet ray disappears in the central portion. It has been confirmed by experiments that the efficiency of the arc tube 11 having a diameter of 15 mm having a hole of about 5 mm is improved by about 12% as compared with that of a tube having no hole.

【0033】次に、図5に第3の実施の形態を示す。図
5は光源の斜視図である。
Next, FIG. 5 shows a third embodiment. FIG. 5 is a perspective view of the light source.

【0034】この実施の形態では、光源1の発光管11を
周囲が円形でかつ偏平形状に形成し、発光管11内に偏平
形状の放電空間12を形成している。そして、この発光管
11の周囲に第1の実施の形態と同様にコイルを配設して
通電すれば、発光管11の内部に、その発光管11のドーナ
ツ形状に沿ってプラズマ放電pが生じる。
In this embodiment, the arc tube 11 of the light source 1 is formed in a circular shape and has a flat peripheral shape, and a flat discharge space 12 is formed in the arc tube 11. And this arc tube
When a coil is arranged around 11 to energize in the same manner as in the first embodiment, plasma discharge p is generated inside arc tube 11 along the donut shape of arc tube 11.

【0035】このうよに、発光管11が偏平形状であれ
ば、高効率化できるとともに小形化できる。
Thus, if the arc tube 11 has a flat shape, the efficiency can be improved and the size can be reduced.

【0036】[0036]

【発明の効果】請求項1記載の半導体露光装置によれ
ば、発光管内にドーナツ状強度分布のプラズマ放電を生
起させる光源を用い、この光源のドーナツ状強度分布の
プラズマの中心軸を光軸として光を取り出すため、従来
のように光学系によりドーナツ状強度分布の光に変換せ
ずにすみ、照射光の照度分布を均一にできるとともに、
光学系による光強度の減衰を低減して、高出力化および
高効率化を図ることができる。
According to the semiconductor exposure apparatus of the first aspect, a light source for causing plasma discharge having a donut-shaped intensity distribution is used in the arc tube, and the central axis of the plasma having the donut-shaped intensity distribution of the light source is used as an optical axis. Since the light is taken out, it does not have to be converted into light having a donut-shaped intensity distribution by an optical system as in the past, and the illuminance distribution of the irradiation light can be made uniform, and
It is possible to reduce the attenuation of the light intensity due to the optical system to achieve high output and high efficiency.

【0037】請求項2記載の半導体露光装置によれば、
請求項1記載の半導体露光装置の効果に加えて、発光管
の周囲に配設されたコイルに高周波電力を供給すること
により、発光管内にドーナツ形状の強度分布のプラズマ
放電を生起させることができる。
According to the semiconductor exposure apparatus of the second aspect,
In addition to the effect of the semiconductor exposure apparatus according to claim 1, by supplying high-frequency power to a coil arranged around the arc tube, a plasma discharge having a donut-shaped intensity distribution can be generated in the arc tube. .

【0038】請求項3記載の半導体露光装置によれば、
請求項1または2記載の半導体露光装置の効果に加え
て、発光管は球形状であり、高効率にできる。
According to the semiconductor exposure apparatus of the third aspect,
In addition to the effects of the semiconductor exposure apparatus according to the first or second aspect, the arc tube has a spherical shape, and can be highly efficient.

【0039】請求項4記載の半導体露光装置によれば、
請求項1または2記載の半導体露光装置の効果に加え
て、発光管は偏平形状であり、小形化できる。
According to the semiconductor exposure apparatus of the fourth aspect,
In addition to the effects of the semiconductor exposure apparatus according to the first or second aspect, the arc tube has a flat shape and can be miniaturized.

【0040】請求項5記載の半導体露光装置によれば、
請求項1または2記載の半導体露光装置の効果に加え
て、発光管はドーナツ形状の放電路を有するため、中央
部での紫外線の共鳴線の自己吸収がなくなり、さらに高
効率にできる。
According to the semiconductor exposure apparatus of the fifth aspect,
In addition to the effects of the semiconductor exposure apparatus according to the first or second aspect, since the arc tube has a donut-shaped discharge path, self-absorption of the resonance line of the ultraviolet ray at the central portion is eliminated, and the efficiency can be further increased.

【0041】請求項6記載の半導体露光装置によれば、
請求項1ないし5いずれか一記載の半導体露光装置の効
果に加えて、光源から光学手段に取り出される光を遮光
可能とするシャッタを具備するため、光の照射および遮
光を選択的に行なえる。
According to the semiconductor exposure apparatus of the sixth aspect,
In addition to the effects of the semiconductor exposure apparatus according to any one of claims 1 to 5, since the shutter that can shield the light extracted from the light source to the optical means is provided, the irradiation and the shielding of the light can be selectively performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態を示す半導体露光装
置の構成図である。
FIG. 1 is a configuration diagram of a semiconductor exposure apparatus showing a first embodiment of the present invention.

【図2】同上実施の形態の光源の説明図である。FIG. 2 is an explanatory diagram of a light source according to the same embodiment.

【図3】同上実施の形態の光源の作用を説明する説明図
である。
FIG. 3 is an explanatory diagram illustrating an operation of the light source according to the above embodiment.

【図4】本発明の第2の実施の形態を示す光源の斜視図
である。
FIG. 4 is a perspective view of a light source showing a second embodiment of the present invention.

【図5】本発明の第3の実施の形態を示す光源の斜視図
である。
FIG. 5 is a perspective view of a light source showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 光源 2 光学手段 3 シャッタ 11 発光管 13 電極手段としてのコイル 31 放電路 1 light source 2 optical means 3 shutter 11 arc tube 13 coil as electrode means 31 discharge path

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 発光管と、発光管内に封入された少なく
とも放電ガスと、発光管内にドーナツ状強度分布のプラ
ズマ放電を生起させる電極手段とを有する光源と;光源
のドーナツ状強度分布のプラズマ放電の中心軸を光軸と
して光を取り出す光学手段と;を具備していることを特
徴とする半導体露光装置。
1. A light source having a light emitting tube, at least a discharge gas sealed in the light emitting tube, and an electrode means for generating a plasma discharge having a donut-shaped intensity distribution in the light emitting tube; a plasma discharge having a donut-shaped intensity distribution of the light source. An optical means for extracting light with the central axis of the optical axis as an optical axis; and a semiconductor exposure apparatus.
【請求項2】 電極手段は発光管の周囲に配設されたコ
イルであり、このコイルに高周波電力を供給することを
特徴とする請求項1記載の半導体露光装置。
2. The semiconductor exposure apparatus according to claim 1, wherein the electrode means is a coil arranged around the arc tube, and high-frequency power is supplied to this coil.
【請求項3】 発光管は球形状であることを特徴とする
請求項1または2記載の半導体露光装置。
3. The semiconductor exposure apparatus according to claim 1, wherein the arc tube has a spherical shape.
【請求項4】 発光管は偏平形状であることを特徴とす
る請求項1または2記載の半導体露光装置。
4. The semiconductor exposure apparatus according to claim 1, wherein the arc tube has a flat shape.
【請求項5】 発光管はドーナツ形状の放電路を有する
ことを特徴とする請求項1または2記載の半導体露光装
置。
5. The semiconductor exposure apparatus according to claim 1, wherein the arc tube has a donut-shaped discharge path.
【請求項6】 光源から光学手段に取り出される光を遮
光可能とするシャッタを具備していることを特徴とする
請求項1ないし5いずれか一記載の半導体露光装置。
6. The semiconductor exposure apparatus according to claim 1, further comprising a shutter capable of blocking the light extracted from the light source to the optical means.
JP8074996A 1996-03-28 1996-03-28 Semiconductor aligner Pending JPH09266158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8074996A JPH09266158A (en) 1996-03-28 1996-03-28 Semiconductor aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8074996A JPH09266158A (en) 1996-03-28 1996-03-28 Semiconductor aligner

Publications (1)

Publication Number Publication Date
JPH09266158A true JPH09266158A (en) 1997-10-07

Family

ID=13563402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8074996A Pending JPH09266158A (en) 1996-03-28 1996-03-28 Semiconductor aligner

Country Status (1)

Country Link
JP (1) JPH09266158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108140538A (en) * 2015-10-04 2018-06-08 科磊股份有限公司 The system and method lighted in laser-sustained plasma light source for electrodeless plasma

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108140538A (en) * 2015-10-04 2018-06-08 科磊股份有限公司 The system and method lighted in laser-sustained plasma light source for electrodeless plasma

Similar Documents

Publication Publication Date Title
US4532427A (en) Method and apparatus for performing deep UV photolithography
US8143790B2 (en) Method for inductively-driven plasma light source
JP4799748B2 (en) Microwave plasma process apparatus, plasma ignition method, plasma formation method, and plasma process method
JP2007535103A (en) Light source by electron cyclotron resonance
US6157141A (en) Blue light electrodeless high intensity discharge lamp system
JPH0317213B2 (en)
JP2018508936A (en) System and method for inhibiting radiated radiation of laser-sustained plasma light source
JP2014526119A (en) Optical pumping for plasma maintenance
US10006865B1 (en) Confined illumination for small spot size metrology
US5471278A (en) Cadmium/rare gas discharge lamp of the short arc type, as well as projection exposure device using the same
JPH0423378B2 (en)
JPH09266158A (en) Semiconductor aligner
JP2006210249A (en) Electrodeless discharge lamp, electrodeless discharge lamp device, and illumination apparatus
KR102555241B1 (en) EUV generation device
JP2011086383A (en) Light source device and projection display device
JPS622443A (en) Photolithography
JPH06231735A (en) Ashing device formed by using dielectric barrier discharge lamp
JP2975159B2 (en) Photolithography
US7183717B2 (en) Inductively-driven light source for microscopy
US7199384B2 (en) Inductively-driven light source for lithography
JP2732457B2 (en) Short arc type mercury vapor discharge lamp
JPH087835A (en) Discharge lamp for semiconductor exposure
JP2008204666A (en) Light source device and projection type display device equipped with this
JP2008204776A (en) Light source device, and projection type display device equipped with the same
JPS63292562A (en) Electrodeless discharge lamp apparatus