JPH09265985A - Positive electrodeactive material for non-aqueous electrolyte secondary battery, its manufacture and non-aqueous electrolyte secondary battery - Google Patents

Positive electrodeactive material for non-aqueous electrolyte secondary battery, its manufacture and non-aqueous electrolyte secondary battery

Info

Publication number
JPH09265985A
JPH09265985A JP8073872A JP7387296A JPH09265985A JP H09265985 A JPH09265985 A JP H09265985A JP 8073872 A JP8073872 A JP 8073872A JP 7387296 A JP7387296 A JP 7387296A JP H09265985 A JPH09265985 A JP H09265985A
Authority
JP
Japan
Prior art keywords
nickel
secondary battery
electrolyte secondary
aqueous electrolyte
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8073872A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kanai
宏行 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP8073872A priority Critical patent/JPH09265985A/en
Publication of JPH09265985A publication Critical patent/JPH09265985A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the non-aqueous electrolyte secondary battery which is inexpensive, but high in charging/discharging capacity. SOLUTION: The positive electrode active material contains powder particles holding lithium nickel oxides represented by a formula LiNiO2 as an effective constituent, the whole or a part of the powder particles is made out of nickel oxides or nickel hydroxides as raw material, in the production process of which cobalt or manganese is coated over the surfaces of nickel oxide or nickel hydroxide particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池用正極活物質及びその製造方法、並びにそれを用いて
なる非水電解液二次電池に関するものである。
TECHNICAL FIELD The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery using the same.

【0002】[0002]

【従来の技術】リチウムイオン二次電池は、従来の主流
であるNi-Cd 又はNi-MH 二次電池に比較して高いエネル
ギー密度(充電済み電池から電池体積当たりに取り出せ
る仕事量)を有するという特長があり、現今の携帯用電
子機器の小型化、軽量化への要請から、このリチウムイ
オン二次電池の特長は注目され、精力的に開発が進めら
れている。
2. Description of the Related Art Lithium ion secondary batteries are said to have a higher energy density (workload that can be taken out from a charged battery per battery volume) than conventional mainstream Ni-Cd or Ni-MH secondary batteries. Due to the demands for downsizing and weight saving of today's portable electronic devices, the features of this lithium-ion secondary battery are drawing attention and vigorous development.

【0003】現在市販されているいわゆるリチウムイオ
ン二次電池は、正極活物質にLiCoO2で表されるリチウム
コバルト複合酸化物が用いられている。しかし、LiCoO2
は原材料となるコバルト鉱物の資源量が少なく、その結
果として高価なことが欠点である。
In the so-called lithium ion secondary battery which is currently on the market, a lithium cobalt composite oxide represented by LiCoO 2 is used as a positive electrode active material. However, LiCoO 2
Has a drawback in that the raw material of the cobalt mineral is small, and as a result, it is expensive.

【0004】このため、LiCoO2に代替する正極活物質と
して、式LiNiO2で表されるリチウムニッケル複合酸化
物、及び式LiMn2O4 で表されるリチウムマンガン複合酸
化物が検討されている。特にリチウムニッケル複合酸化
物は、充電電位こそLiCoO2に比べてやや低いものの、充
放電容量はむしろLiCoO2よりも大きく、上記目的に最も
適した正極活物質と考えられている。
Therefore, a lithium nickel composite oxide represented by the formula LiNiO 2 and a lithium manganese composite oxide represented by the formula LiMn 2 O 4 have been studied as positive electrode active materials substituting for LiCoO 2 . In particular, the lithium-nickel composite oxide is considered to be the most suitable positive electrode active material for the above purpose because the charge potential is slightly lower than that of LiCoO 2 , but the charge-discharge capacity is rather larger than that of LiCoO 2 .

【0005】[0005]

【発明が解決しようとする課題】しかしながら、充放電
容量の大きなLiNiO2を合成するためには製造時の焼成雰
囲気を空気雰囲気ではなく、酸素雰囲気下で行うことが
好ましく、このため製造設備が特殊なものとなり、製造
コストが大きくなるという欠点があった。
However, in order to synthesize LiNiO 2 having a large charge / discharge capacity, it is preferable that the firing atmosphere during production is not an air atmosphere but an oxygen atmosphere. However, there is a drawback that the manufacturing cost increases.

【0006】リチウムニッケル複合酸化物の合成に空気
雰囲気下での焼成条件を用いる試みは、例えば、ニッケ
ルに対し10モル%のコバルトを添加した系(青木ら、第
35回電池討論会、名古屋(1994)) 、あるいはニッケルに
対して10〜20モル%のマンガンを添加した系(山戸ら、
第35回電池討論会、名古屋(1994)) での合成により、充
分な充放電特性を持った複合酸化物の得られることが報
告されている。これらの系で空気雰囲気中においてもリ
チウムニッケル複合酸化物の合成反応を効率的に進行さ
せることができるのは、添加したコバルト、あるいはマ
ンガンの酸化還元触媒としての作用により、ニッケルの
酸化反応が空気雰囲気中でも速やかに行われる結果と考
えられる。
An attempt to use a firing condition in an air atmosphere for the synthesis of a lithium nickel composite oxide has been conducted, for example, in a system in which 10 mol% of cobalt is added to nickel (Aoki et al.
35th Battery Symposium, Nagoya (1994)), or a system in which 10 to 20 mol% of manganese was added to nickel (Yamato et al.,
It has been reported that a compound oxide having sufficient charge / discharge characteristics can be obtained by the synthesis at the 35th battery discussion meeting, Nagoya (1994). In these systems, the synthesis reaction of the lithium-nickel composite oxide can be efficiently progressed even in the air atmosphere because the added nickel or manganese acts as an oxidation-reduction catalyst, and the nickel oxidation reaction is It is considered that this is the result of being promptly performed even in the atmosphere.

【0007】しかしながら、その一方において、リチウ
ムニッケル酸化物にコバルト又はマンガンを添加するこ
とは、二次電池正極活物質として好ましくない結果を与
える。すなわち、ニッケルに対してコバルトを添加する
と、原材料のコストをかなり増加させることになる。ま
た、コバルトの添加は充放電容量の低下をまねき、リチ
ウムニッケル複合酸化物本来の充放電容量が得られなく
なる。また、一方マンガン被着の場合は原材料のコスト
にはあまり影響を持たないが、それでも充放電容量には
かなり低下を生じることになる。
On the other hand, however, the addition of cobalt or manganese to the lithium nickel oxide gives unfavorable results as a secondary battery positive electrode active material. That is, adding cobalt to nickel would significantly increase the cost of the raw material. Further, addition of cobalt causes a decrease in charge / discharge capacity, and the original charge / discharge capacity of the lithium nickel composite oxide cannot be obtained. On the other hand, in the case of manganese deposition, the cost of the raw material is not so much affected, but the charge / discharge capacity is considerably reduced.

【0008】このように、コバルト又はマンガンの添加
はリチウムニッケル複合酸化物を空気雰囲気中で合成す
るためには有効であるが、その反面コバルト又はマンガ
ンの添加による電極特性上のマイナス面もあり、できる
だけ少ないコバルト又はマンガンの添加量で効果が得ら
れることが望まれている。
As described above, addition of cobalt or manganese is effective for synthesizing the lithium nickel composite oxide in the air atmosphere, but on the other hand, addition of cobalt or manganese has a negative aspect in electrode characteristics. It is desired that the effect be obtained with a minimum addition amount of cobalt or manganese.

【0009】[0009]

【課題を解決する為の手段】本発明者らは、鋭意研究の
結果、水酸化ニッケル又は酸化ニッケル粒子の表面にコ
バルト又はマンガンを被着し、次に空気雰囲気中での反
応でリチウムを添加することにより、リチウムニッケル
酸化物の空気中での生成反応が効率よく進行し、またそ
の結果としてコバルト又はマンガンのニッケルに対する
使用量の低減をも可能であることを見出し、本発明を完
成するに至った。
As a result of earnest research, the inventors of the present invention have deposited cobalt or manganese on the surface of nickel hydroxide or nickel oxide particles, and then added lithium by reaction in an air atmosphere. By doing so, it was found that the production reaction of lithium nickel oxide in air proceeds efficiently, and as a result, it is possible to reduce the amount of cobalt or manganese used with respect to nickel, and to complete the present invention. I arrived.

【0010】すなわち、本発明は、式LiNiO2で表される
リチウムニッケル酸化物を有効成分とする粉体粒子を含
み、その粉体粒子の全部又はその一部が、酸化ニッケル
又は水酸化ニッケルを原料として製造され、かつその製
造過程に該酸化ニッケル又は水酸化ニッケル粒子の表面
にコバルト又はマンガンを被着する工程を含むことを特
徴とする非水電解液二次電池用正極活物質及びその製造
方法に関する。
That is, the present invention includes powder particles containing lithium nickel oxide represented by the formula LiNiO 2 as an active ingredient, and all or part of the powder particles contain nickel oxide or nickel hydroxide. A positive electrode active material for a non-aqueous electrolyte secondary battery, which is manufactured as a raw material, and includes a step of depositing cobalt or manganese on the surface of the nickel oxide or nickel hydroxide particles in the manufacturing process, and manufacturing thereof. Regarding the method.

【0011】また、本発明は、少なくとも正極活物質、
セパレーター及び陰極活物質を含む非水電解液二次電池
において、正極活物質が、上記の非水電解液二次電池用
正極活物質であることを特徴とする非水電解液二次電池
に関する。
The present invention also provides at least a positive electrode active material,
A non-aqueous electrolyte secondary battery comprising a separator and a cathode active material, wherein the positive electrode active material is the above-described positive electrode active material for a non-aqueous electrolyte secondary battery.

【0012】[0012]

【発明の実施の形態】本発明において、リチウムニッケ
ル系複合酸化物正極材料を合成する過程で酸化ニッケル
又は水酸化ニッケルの表面に被着される金属元素はコバ
ルト又はマンガンである。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the metal element deposited on the surface of nickel oxide or nickel hydroxide in the process of synthesizing a lithium nickel based composite oxide positive electrode material is cobalt or manganese.

【0013】本発明で行われる酸化ニッケル又は水酸化
ニッケルへの、コバルト又はマンガン元素の被着は、リ
チウムニッケル系複合酸化物の合成反応のために特に必
要であり、その反応過程において、粒子表面のコバルト
又はマンガン元素が酸化ニッケル又は水酸化ニッケル粒
子内部へ拡散を進めても構わない。さらにいえば、リチ
ウムニッケル系複合酸化物の合成段階ではコバルト又は
マンガン元素は粒子表面付近にあって酸素とニッケルの
酸化還元反応を触媒することが好ましく、また反応が進
んだ段階ではコバルト又はマンガンは、より粒子の内部
へ拡散することが好ましい。これは、コバルト又はマン
ガンがリチウムニッケル系複合酸化物粒子内部に分散す
ることにより、例えば荒井ら(電池技術、7,98-106(199
5))が示したように、リチウムニッケル系複合酸化物の
充放電サイクル耐久性を向上させる効果を持つからであ
る。
The deposition of the elemental cobalt or manganese onto nickel oxide or nickel hydroxide, which is carried out in the present invention, is particularly necessary for the synthesis reaction of the lithium nickel-based composite oxide, and during the reaction process, the particle surface The cobalt or manganese element may be diffused into the nickel oxide or nickel hydroxide particles. Furthermore, it is preferable that the cobalt or manganese element is near the surface of the particle to catalyze the redox reaction of oxygen and nickel at the synthesis stage of the lithium-nickel composite oxide, and at the stage where the reaction proceeds, cobalt or manganese is It is preferable that the particles diffuse into the inside of the particles. This is because cobalt or manganese is dispersed inside the lithium-nickel-based composite oxide particles, for example, Arai et al. (Battery Technology, 7,98-106 (199
This is because 5)) has the effect of improving the charge / discharge cycle durability of the lithium nickel-based composite oxide.

【0014】以下には、本発明について更にコバルト被
着の場合を例に挙げて説明するが、マンガン被着の場合
も同様である。尚、本発明においては、コバルトとマン
ガンを併用することも可能である。
The present invention will be described below by taking the case of cobalt deposition as an example, but the same applies to the case of manganese deposition. In the present invention, cobalt and manganese can be used together.

【0015】本発明に使用されるリチウムニッケル系複
合酸化物の粒径は 0.2〜40μm の広い粒径範囲に適用す
ることができるが、粒体製造条件(合成温度、反応時間
など)及び電池系への適用の容易性という視点からは
0.3〜30μm が好適である。
The particle size of the lithium nickel composite oxide used in the present invention can be applied to a wide particle size range of 0.2 to 40 μm, but the particle production conditions (synthesis temperature, reaction time, etc.) and battery system can be used. From the viewpoint of ease of application to
0.3 to 30 μm is preferable.

【0016】本発明に係るリチウムニッケル系複合酸化
物の製造は、例えば以下のような手順を用いて行われ
る。
The production of the lithium-nickel composite oxide according to the present invention is carried out, for example, by the following procedure.

【0017】炭酸ニッケルを例えば 650℃に加熱して得
られる酸化ニッケル、または、市販のニッケル水素電池
用水酸化ニッケル(例えば粒径5〜20μm のものが例示
される)を塩化コバルト(コバルト被着の場合)水溶液
中に懸濁する。空気又は酸素を吹き込みながら(あるい
は過酸化水素の存在下)、アルカリ水溶液を滴下して中
和に至らせる。そのまま撹拌を続け、酸化ニッケル(又
は水酸化ニッケル)の表面にオキシ水酸化コバルトを被
着させる。得られた沈殿を水洗し、乾燥(例えば 120℃
/12時間)又は仮焼(例えば 400℃/1時間)の後、水
酸化リチウム(又は炭酸リチウムに代表されるリチウム
の塩など)と混合し、空気雰囲気中 500〜1000℃、好ま
しくは 600〜800 ℃の温度に加熱する。24〜72時間の反
応により、本発明の電極活物質が得られる。
Nickel oxide obtained by heating nickel carbonate to, for example, 650 ° C. or commercially available nickel hydroxide for nickel-hydrogen battery (for example, one having a particle size of 5 to 20 μm) is added to cobalt chloride (cobalt-coated). If) Suspend in aqueous solution. While blowing air or oxygen (or in the presence of hydrogen peroxide), an alkaline aqueous solution is dropped to reach neutralization. Stirring is continued as it is to deposit cobalt oxyhydroxide on the surface of nickel oxide (or nickel hydroxide). The precipitate obtained is washed with water and dried (for example 120 ° C).
/ 12 hours) or calcination (for example, 400 ℃ / 1 hour), and then mix with lithium hydroxide (or lithium salt represented by lithium carbonate) in an air atmosphere at 500-1000 ℃, preferably 600- Heat to a temperature of 800 ° C. The electrode active material of the present invention is obtained by the reaction for 24 to 72 hours.

【0018】本発明の製造方法によれば、コバルトはよ
り効果的に触媒作用を示し、その結果、より良好な充放
電特性を有するリチウムニッケル酸化物を得ることがで
きる。また、これは同時にコバルト添加量の削減も可能
にする。
According to the production method of the present invention, cobalt more effectively acts as a catalyst, and as a result, a lithium nickel oxide having better charge / discharge characteristics can be obtained. At the same time, this also makes it possible to reduce the amount of cobalt added.

【0019】青木らによれば、リチウムニッケル酸化物
を空気雰囲気中で合成するためには、コバルトの添加を
例にとれば、ニッケルに対して10モル%の添加量が必要
であるとしている(青木ら、第35回電池討論会、名古屋
(1994))。しかしながら、これはニッケルとコバルトそ
れぞれの粉体原料を単に混合し、合成反応を行った場合
の必要量である。これに対して、本発明の方法によれば
コバルトの添加量はニッケルに対して20モル%以下、好
ましくは10モル%以下で使用することができ、ニッケル
に対して10モル%以下であってもリチウムニッケル酸化
物の合成反応にコバルトは充分な触媒効果を示し、充放
電容量の大きなリチウムニッケル複合酸化物を得る場合
がある(通常、添加量はコバルトの場合10モル%以上、
マンガンの場合20モル%程度)。
According to Aoki et al., In order to synthesize lithium nickel oxide in an air atmosphere, when cobalt is added as an example, it is necessary to add 10 mol% to nickel ( Aoki et al., 35th Battery Symposium, Nagoya
(1994)). However, this is the required amount when the powder raw materials of nickel and cobalt are simply mixed and the synthetic reaction is performed. On the other hand, according to the method of the present invention, the amount of cobalt added can be 20 mol% or less with respect to nickel, preferably 10 mol% or less, and 10 mol% or less with respect to nickel. In addition, cobalt has a sufficient catalytic effect on the synthesis reaction of lithium nickel oxide, and a lithium nickel composite oxide having a large charge / discharge capacity may be obtained (usually, the addition amount is 10 mol% or more in the case of cobalt,
About 20 mol% for manganese).

【0020】[0020]

【実施例】以下に、実施例を用いて本発明をさらに詳し
く説明するが、本発明はこれらの実施例に限定されるも
のではない。尚、以下の実施例において、単に「部」及
び「%」と表記されている場合は、それぞれ「重量部」
及び「重量%」を示す。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. In the following examples, when simply expressed as “part” and “%”, “part by weight” is used.
And "% by weight".

【0021】実施例1 主にニッケル水素電池に用いられる球状水酸化ニッケル
(粒子径約5μm)46重量部を、塩化コバルト6水和物6
部を水 400部に溶解した溶液中に懸濁し、空気を通しな
がら撹拌する。懸濁液を80℃に保ち、ここに2%水酸化
ナトリウム水溶液を滴下し、中和に至らせる。滴下終了
後、そのまま4時間撹拌を続ける。粉体を濾別、水洗
し、 120℃で乾燥させる。これを 400℃で1時間仮焼し
て得た粉体8部(コバルトの被着量はニッケルに対して
5モル%)に対して、水酸化リチウム(LiOH・H2O) 4.5
部を混合し、錠剤に加圧成型した後、空気雰囲気中 750
℃に48時間保持して、リチウムニッケル系複合酸化物を
得る。電極活物質としての特性評価は以下の手順によ
る。活物質15部、グラファイト1部、アセチレンブラッ
ク1部、ポリフッ化ビニリデン 1.5部、N−メチルピロ
リドン35部を混合しボールミルで分散させる。これをア
ルミ箔上に塗布し、乾燥する。得られた塗膜を切り出し
て陽極を作成し、リチウム対極を用いて電圧範囲 3.1〜
4.3Vにおける、その充放電特性を測定した。電極間のセ
パレーターにはポリエチレン多孔膜、電解液にはジメチ
ルカーボネート/エチレンカーボネート(1/1(重量
比))混合液、電解質にはヘキサフルオル燐リチウム(1
モル/リットル)を用いて行った。
Example 1 46 parts by weight of spherical nickel hydroxide (particle diameter of about 5 μm) mainly used in nickel-hydrogen batteries was mixed with 6 parts of cobalt chloride hexahydrate.
Parts are suspended in a solution of 400 parts of water and stirred while passing air through. The suspension is kept at 80 ° C., and a 2% aqueous sodium hydroxide solution is added dropwise thereto to reach neutralization. After the dropping is completed, the stirring is continued for 4 hours. The powder is filtered off, washed with water and dried at 120 ° C. 8 parts of powder obtained by calcination at 400 ° C for 1 hour (cobalt deposition amount is 5 mol% with respect to nickel), lithium hydroxide (LiOH · H 2 O) 4.5
Parts and press-molding into tablets, then in air atmosphere 750
Hold at 48 ° C. for 48 hours to obtain a lithium-nickel-based composite oxide. The characteristic evaluation as an electrode active material is based on the following procedure. 15 parts of active material, 1 part of graphite, 1 part of acetylene black, 1.5 parts of polyvinylidene fluoride and 35 parts of N-methylpyrrolidone are mixed and dispersed by a ball mill. This is applied on aluminum foil and dried. Cut the obtained coating film to make an anode, and use a lithium counter electrode to measure the voltage range 3.1-
The charge / discharge characteristics at 4.3 V were measured. A polyethylene porous film is used as the separator between the electrodes, a dimethyl carbonate / ethylene carbonate (1/1 (weight ratio)) mixture is used as the electrolyte, and hexafluorophosphoric lithium (1 is used as the electrolyte.
Mol / l).

【0022】実施例2 主にニッケル水素電池に用いられる球状水酸化ニッケル
(粒子径約5μm)46重量部を、塩化コバルト6水和物12
部を水 400部に溶解した溶液中に懸濁し、空気を通しな
がら撹拌する。懸濁液を80℃に保ち、ここに2%水酸化
ナトリウム水溶液を滴下し、中和に至らせる。滴下終了
後、そのまま4時間撹拌を続ける。粉体を濾別、水洗
し、 120℃で乾燥させる。これを 400℃で1時間仮焼し
て得た粉体8部(コバルトの被着量はニッケルに対して
10モル%)に対して、水酸化リチウム(LiOH・H2O) 4.5
部を混合し、錠剤に加圧成型した後、空気雰囲気中 750
℃に48時間保持して、リチウムニッケル系複合酸化物を
得る。電極活物質としての特性評価は実施例1と同様に
行った。
Example 2 46 parts by weight of spherical nickel hydroxide (particle size: about 5 μm) mainly used in nickel-hydrogen batteries was mixed with 12 parts of cobalt chloride hexahydrate.
Parts are suspended in a solution of 400 parts of water and stirred while passing air through. The suspension is kept at 80 ° C., and a 2% aqueous sodium hydroxide solution is added dropwise thereto to reach neutralization. After the dropping is completed, the stirring is continued for 4 hours. The powder is filtered off, washed with water and dried at 120 ° C. 8 parts of powder obtained by calcining this at 400 ° C for 1 hour (cobalt deposition amount relative to nickel
Lithium hydroxide (LiOH ・ H 2 O) 4.5 against 10 mol%)
Parts and press-molding into tablets, then in air atmosphere 750
Hold at 48 ° C. for 48 hours to obtain a lithium-nickel-based composite oxide. The characteristic evaluation as the electrode active material was performed in the same manner as in Example 1.

【0023】実施例3 実施例1と同じ球状水酸化ニッケル46重量部を、塩化コ
バルト4水和物10部を水 400部に溶解した溶液中に懸濁
し、空気を通しながら撹拌する。懸濁液を80℃に保ち、
ここに2%水酸化ナトリウム水溶液を滴下し、中和に至
らせる。滴下終了後、そのまま4時間撹拌を続ける。粉
体を濾別、水洗し、 120℃で乾燥させる。これを 400℃
で1時間仮焼して得た粉体8部(マンガンの被着量はニ
ッケルに対して10モル%)に対して、水酸化リチウム
(LiOH・H2O) 4.5部を混合し、錠剤に加圧成型した後、
空気雰囲気中 750℃に48時間保持して、リチウムニッケ
ル系複合酸化物を得る。電極活物質としての特性評価は
実施例1と同様に行った。
Example 3 46 parts by weight of the same spherical nickel hydroxide as in Example 1 was suspended in a solution in which 10 parts of cobalt chloride tetrahydrate was dissolved in 400 parts of water, and the mixture was stirred while passing air. Keep the suspension at 80 ° C,
A 2% aqueous sodium hydroxide solution is added dropwise to reach neutralization. After the dropping is completed, the stirring is continued for 4 hours. The powder is filtered off, washed with water and dried at 120 ° C. 400 ° C
The mixture was mixed with 4.5 parts of lithium hydroxide (LiOH.H 2 O) to 8 parts of powder obtained by calcination for 1 hour (the amount of manganese deposited was 10 mol% with respect to nickel), and tablets were formed. After pressure molding,
Hold at 750 ° C for 48 hours in an air atmosphere to obtain a lithium-nickel-based composite oxide. The characteristic evaluation as the electrode active material was performed in the same manner as in Example 1.

【0024】比較例1 実施例1と同じ水酸化ニッケルを 400℃で1時間仮焼
し、得られた粉体8部に対して、水酸化リチウム(LiOH
・H2O) 4.5部を混合し、錠剤に加圧成型した後、空気雰
囲気中 750℃に48時間保持して、リチウムニッケル系複
合酸化物を得る。電極活物質としての特性評価は実施例
1と同様に行った。
Comparative Example 1 The same nickel hydroxide as in Example 1 was calcined at 400 ° C. for 1 hour, and 8 parts of the obtained powder was mixed with lithium hydroxide (LiOH
-H 2 O) (4.5 parts) is mixed, and the mixture is press-molded into tablets, and then kept at 750 ° C for 48 hours in an air atmosphere to obtain a lithium-nickel-based composite oxide. The characteristic evaluation as the electrode active material was performed in the same manner as in Example 1.

【0025】比較例2 和光純薬(株)製炭酸ニッケル(ニッケル含量47%)8
部、炭酸コバルト0.76部を混合し、 500℃で2時間仮焼
する。これを粉砕し、水酸化リチウム(LiOH・H2O) 3.1
部を混合し、錠剤に加圧成型した後、空気雰囲気中 750
℃に48時間保持して、リチウムニッケル系複合酸化物を
得る。電極活物質としての特性評価は実施例1と同様に
行った。
Comparative Example 2 Wako Pure Chemical Industries, Ltd. nickel carbonate (nickel content 47%) 8
Part and 0.76 part of cobalt carbonate are mixed and calcined at 500 ° C. for 2 hours. This is crushed and lithium hydroxide (LiOH ・ H 2 O) 3.1
Parts and press-molding into tablets, then in air atmosphere 750
Hold at 48 ° C. for 48 hours to obtain a lithium-nickel-based composite oxide. The characteristic evaluation as the electrode active material was performed in the same manner as in Example 1.

【0026】比較例3 和光純薬(株)製炭酸ニッケル(ニッケル含量47%)8
部、炭酸マンガン 1.5部を混合し、 500℃で2時間仮焼
する。これを粉砕し、水酸化リチウム(LiOH・H2O) 3.3
部を混合し、錠剤に加圧成型した後、空気雰囲気中 750
℃に48時間保持して、リチウムニッケル系複合酸化物
(マンガンの添加量はニッケルに対して20モル%)を得
る。電極活物質としての特性評価は実施例1と同様に行
った。
Comparative Example 3 Wako Pure Chemical Industries, Ltd. nickel carbonate 8 (nickel content 47%) 8
Part and 1.5 parts of manganese carbonate are mixed and calcined at 500 ° C. for 2 hours. This is crushed, and lithium hydroxide (LiOH ・ H 2 O) 3.3
Parts and press-molding into tablets, then in air atmosphere 750
The temperature is kept at 48 ° C. for 48 hours to obtain a lithium nickel complex oxide (the amount of manganese added is 20 mol% with respect to nickel). The characteristic evaluation as the electrode active material was performed in the same manner as in Example 1.

【0027】以上の結果について表1に示した。The above results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 式LiNiO2で表されるリチウムニッケル酸
化物を有効成分とする粉体粒子を含み、その粉体粒子の
全部又はその一部が、酸化ニッケル又は水酸化ニッケル
を原料として製造され、かつその製造過程に該酸化ニッ
ケル又は水酸化ニッケル粒子の表面にコバルト又はマン
ガンを被着する工程を含むことを特徴とする非水電解液
二次電池用正極活物質。
1. A powder particle containing lithium nickel oxide represented by the formula LiNiO 2 as an active ingredient, wherein all or part of the powder particle is produced from nickel oxide or nickel hydroxide as a raw material. And a step of depositing cobalt or manganese on the surface of the nickel oxide or nickel hydroxide particles in the manufacturing process thereof, the positive electrode active material for a non-aqueous electrolyte secondary battery.
【請求項2】 リチウムニッケル酸化物中のコバルト又
はマンガンの含有量がニッケルに対して20モル%以下で
あることを特徴とする請求項1記載の非水電解液二次電
池用正極活物質。
2. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the content of cobalt or manganese in the lithium nickel oxide is 20 mol% or less with respect to nickel.
【請求項3】 少なくとも正極活物質、セパレーター及
び陰極活物質を含む非水電解液二次電池において、正極
活物質が請求項1又は2記載の非水電解液二次電池用正
極活物質であることを特徴とする非水電解液二次電池。
3. A non-aqueous electrolyte secondary battery containing at least a positive electrode active material, a separator and a negative electrode active material, wherein the positive electrode active material is the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1. A non-aqueous electrolyte secondary battery characterized by the above.
【請求項4】 酸化ニッケル又は水酸化ニッケルを主た
る成分とする粉体をコバルト塩又はマンガン塩を含む水
溶液中に懸濁し、アルカリを作用させる工程を経て当該
粉体粒子の表面にコバルト又はマンガンの酸化物、水酸
化物又はオキシ水酸化物を被着させて得た粉体と、水酸
化リチウムもしくはリチウムを含む塩とを混合し、 500
〜1000℃の温度に保持することを特徴とする非水電解液
二次電池用正電極活物質の製造方法。
4. A step of suspending a powder containing nickel oxide or nickel hydroxide as a main component in an aqueous solution containing a cobalt salt or a manganese salt, and applying an alkali to the surface of the powder particles A powder obtained by depositing an oxide, a hydroxide or an oxyhydroxide, and lithium hydroxide or a salt containing lithium are mixed,
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which is characterized by holding at a temperature of up to 1000 ° C.
【請求項5】 酸化ニッケル又は水酸化ニッケルを主た
る成分とする粉体をコバルト塩又はマンガン塩を含む水
溶液中に懸濁し、アルカリを作用させる際に、さらに空
気又は酸素あるいは過酸化水素を反応させることを特徴
とする請求項4記載の非水電解液二次電池用正電極活物
質の製造方法。
5. A powder containing nickel oxide or nickel hydroxide as a main component is suspended in an aqueous solution containing a cobalt salt or a manganese salt, and further reacted with air, oxygen or hydrogen peroxide when an alkali acts. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 4, wherein.
JP8073872A 1996-03-28 1996-03-28 Positive electrodeactive material for non-aqueous electrolyte secondary battery, its manufacture and non-aqueous electrolyte secondary battery Pending JPH09265985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8073872A JPH09265985A (en) 1996-03-28 1996-03-28 Positive electrodeactive material for non-aqueous electrolyte secondary battery, its manufacture and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8073872A JPH09265985A (en) 1996-03-28 1996-03-28 Positive electrodeactive material for non-aqueous electrolyte secondary battery, its manufacture and non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09265985A true JPH09265985A (en) 1997-10-07

Family

ID=13530729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8073872A Pending JPH09265985A (en) 1996-03-28 1996-03-28 Positive electrodeactive material for non-aqueous electrolyte secondary battery, its manufacture and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09265985A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103181A (en) * 2006-10-19 2008-05-01 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP2008257894A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Method of manufacturing positive electrode material for lithium ion secondary battery
WO2009063613A1 (en) 2007-11-12 2009-05-22 Toda Kogyo Corporation Li-ni-based composite oxide particle powder for rechargeable battery with nonaqueous elctrolyte, process for producing the powder, and rechargeable battery with nonaqueous electrolyte
JP2010080231A (en) * 2008-09-25 2010-04-08 Sanyo Electric Co Ltd Precursor for positive electrode active material, method of manufacturing the same, positive electrode active material, method of manufacturing positive electrode active material, and nonaqueous electrolyte secondary battery
US7727673B2 (en) 2006-03-24 2010-06-01 Sony Corporation Cathode active material, method of manufacturing the same, and battery
US7906239B2 (en) 2006-03-06 2011-03-15 Sony Corporation Cathode active material, method for producing the same, and nonaqueous electrolyte secondary battery
US8007941B2 (en) 2000-10-09 2011-08-30 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
US8911903B2 (en) 2006-07-03 2014-12-16 Sony Corporation Cathode active material, its manufacturing method, and non-aqueous electrolyte secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8007941B2 (en) 2000-10-09 2011-08-30 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
US8034486B2 (en) 2000-10-09 2011-10-11 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
US7906239B2 (en) 2006-03-06 2011-03-15 Sony Corporation Cathode active material, method for producing the same, and nonaqueous electrolyte secondary battery
US7727673B2 (en) 2006-03-24 2010-06-01 Sony Corporation Cathode active material, method of manufacturing the same, and battery
US8911903B2 (en) 2006-07-03 2014-12-16 Sony Corporation Cathode active material, its manufacturing method, and non-aqueous electrolyte secondary battery
JP2008103181A (en) * 2006-10-19 2008-05-01 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP2008257894A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Method of manufacturing positive electrode material for lithium ion secondary battery
WO2009063613A1 (en) 2007-11-12 2009-05-22 Toda Kogyo Corporation Li-ni-based composite oxide particle powder for rechargeable battery with nonaqueous elctrolyte, process for producing the powder, and rechargeable battery with nonaqueous electrolyte
KR20100093034A (en) 2007-11-12 2010-08-24 도다 고교 가부시끼가이샤 Li-ni-based composite oxide particle powder for rechargeable battery with nonaqueous electrolyte, process for producing the powder, and rechargeable battery with nonaqueous electrolyte
JP2010080231A (en) * 2008-09-25 2010-04-08 Sanyo Electric Co Ltd Precursor for positive electrode active material, method of manufacturing the same, positive electrode active material, method of manufacturing positive electrode active material, and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US6103422A (en) Cathode active material and nonaqueous secondary battery containing the same
US8795896B2 (en) Lithium-containing composite oxide and its production method
KR100725399B1 (en) Core-shell structured cathode active materials with high capacity and safety and their preparing method for lithium secondary batteries
KR100674287B1 (en) Layered core·shell cathode active materials for lithium secondary batteries, Method for preparing thereof And lithium secondary batteries using the same
EP2581343B1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JP5181554B2 (en) The positive electrode active material for nonaqueous electrolyte secondary batteries, the nonaqueous electrolyte secondary battery, and the manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries.
JP2021153058A (en) Nickel-based active material precursor for lithium secondary battery, method of preparing the same, nickel-based active material for lithium secondary battery formed therefrom, and lithium secondary battery including positive electrode including nickel-based active material
EP3965188A1 (en) Composite positive electrode material for lithium ion battery, lithium ion battery, and vehicle
KR100723973B1 (en) Core-shell cathode active materials with high safety and high capacity for lithium secondary batteries, Method of preparing thereof And the product thereby
JPH10236826A (en) Two-layer structure particulate composition and lithium ion secondary cell
JP2013120752A (en) Positive electrode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including the positive electrode active material
KR100280998B1 (en) Cathode Active Material for Lithium Secondary Battery
JP2006253140A (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, its manufacturing method and lithium secondary battery containing the same
JP2022009746A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP2003217572A (en) Positive electrode active material for lithium secondary battery
JP2945377B2 (en) Method for producing positive electrode active material for secondary battery
KR100687672B1 (en) Nonaqueous electrolyte secondary battery
JPH09270253A (en) Manufacture of lithium nickelate positive plate and lithium battery
CN110890525B (en) Positive active material for lithium secondary battery and lithium secondary battery including the same
JP5447577B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery
JP2007149646A (en) Nickel metal hydride storage battery
JP2021048137A (en) Cathode active material for lithium secondary battery
CN106450267B (en) Lithium ion secondary battery
JP4973826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
CA2947003A1 (en) Positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the same, and non-aqueous electrolyte secondary battery