JPH09265077A - Anti-ferroelectric liquid crystal element drive method - Google Patents

Anti-ferroelectric liquid crystal element drive method

Info

Publication number
JPH09265077A
JPH09265077A JP7548896A JP7548896A JPH09265077A JP H09265077 A JPH09265077 A JP H09265077A JP 7548896 A JP7548896 A JP 7548896A JP 7548896 A JP7548896 A JP 7548896A JP H09265077 A JPH09265077 A JP H09265077A
Authority
JP
Japan
Prior art keywords
liquid crystal
selection period
period
voltage
antiferroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7548896A
Other languages
Japanese (ja)
Inventor
Satoru Kimura
哲 木村
Hisanori Yamaguchi
久典 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7548896A priority Critical patent/JPH09265077A/en
Publication of JPH09265077A publication Critical patent/JPH09265077A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To fix power consumption in a liquid crystal panel, to reduce a load for a power source circuit and to stably perform multiplex drive by fixing a frame frequency to any value of a specified value or above regardless of a temp. SOLUTION: Scan electrode waveforms a1 -an applied corresponding to (n) pieces of respective scan electrodes apply respectively a scan voltage Vr according to a polar signal inverted at every frame period in a selection period, and thereafter, apply a hold voltage Vb of the same polarity as the scan voltage Vr until the next selection period, and then, apply a reset voltage. For fixing the selection period, a pulse showing a rest phase is provided in one selection period, and the frame frequency is fixed. By fixing the frame frequency to any value of 30Hz or above, preferably 60Hz or above regardless of the temp., the change of the power consumption in the liquid crystal panel caused by a high temp. is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電界で強誘電性液
晶へ相転移する反強誘電性液晶の3状態スイッチングを
利用した反強誘電性液晶素子の駆動方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of driving an antiferroelectric liquid crystal device utilizing three-state switching of an antiferroelectric liquid crystal that undergoes a phase transition to a ferroelectric liquid crystal by an electric field.

【0002】[0002]

【従来の技術】反強誘電性液晶の3状態間スイッチング
は、従来の表面安定化強誘電性液晶(SSFLC)に見
られるいくつかの本質的問題点を解消する方法の一つと
して期待され、活発に研究が進められている。(A.D.L.
Chandani et. al. :Jpn. J. Appl. Phys., 27, L729(19
88) 、A.D.L.Chandani et. al. :Jpn. J. Appl. Phys.,
28, L1265(1988)またはN. Yamamoto et. al. : 日本学
術振興会情報科学用有機材料第142委員会第58回合
同研究会資料,P7-12,(1993) 等参照。)この3状態間ス
イッチングには以下に挙げるような特徴を有している。
2. Description of the Related Art Switching between three states of an antiferroelectric liquid crystal is expected as one of the methods for solving some of the essential problems found in the conventional surface-stabilized ferroelectric liquid crystal (SSFLC). Active research is underway. (ADL
Chandani et. Al.: Jpn. J. Appl. Phys., 27, L729 (19
88), ADLChandani et. Al.: Jpn. J. Appl. Phys.,
28, L1265 (1988) or N. Yamamoto et. Al .: Japan Society for the Promotion of Science, Organic Materials for Information Science, 142th Committee, 58th Joint Study Group, P7-12, (1993), etc. ) The switching between the three states has the following features.

【0003】(1)電圧印加による反強誘電−強誘電相
転移には、図8に示すように、直流電圧に対する急峻な
閾値特性がある。 (2)図8に示すように、反強誘電性−強誘電性相転移
は幅の広い光学的ヒステリシスをともなうため、反強誘
電相あるいは強誘電相を選択した後にバイアス電圧を印
加保持しておけば、選択された状態を保持することがで
きる。
(1) The antiferroelectric-ferroelectric phase transition caused by voltage application has a steep threshold characteristic with respect to a DC voltage, as shown in FIG. (2) As shown in FIG. 8, since the antiferroelectric-ferroelectric phase transition has a wide optical hysteresis, the bias voltage is applied and held after selecting the antiferroelectric phase or the ferroelectric phase. This allows the selected state to be retained.

【0004】(3)電場誘起強誘電性相における二つの
配向状態を光学的に等価にすることができる。 (4)液晶層内電荷の偏りを防ぐことができるため、S
SFLCのような電気光学特性の経時変化が無い。
(3) Two orientation states in an electric field induced ferroelectric phase can be made optically equivalent. (4) Since the bias of the charges in the liquid crystal layer can be prevented, S
There is no change over time in electro-optical characteristics like SFLC.

【0005】これらの特性を用いれば、単純マトリック
スにおいてデューティー比の制限なく時分割駆動ができ
るというものである。現在までに知られている駆動方法
の例としては、図4に示すような各波形の駆動信号を用
いて走査電極および信号電極を駆動する、M.Yamawaki e
t. al.:Digest of Japan Display '89, p26(1989) 等が
ある。
By using these characteristics, it is possible to perform time division driving in the simple matrix without limitation of the duty ratio. As an example of the driving method known to date, M. Yamawaki e, which drives the scanning electrodes and the signal electrodes by using the driving signals having the respective waveforms shown in FIG.
t. al .: Digest of Japan Display '89, p26 (1989).

【0006】図4(a)および図4(b)において、a
1 、a2 、・・・、an およびb1、b2 、・・・、bn
は、それぞれ走差電極および信号電極に印加される電
圧波形であり、これらの差から求められる液晶層に印加
される電圧波形を図9に示す。この駆動方法では、正極
性の電圧が印加されるフレームF(+)とそれに続く負
極性フレームF(−)が対になっている。
In FIGS. 4A and 4B, a
1, a 2, ···, a n and b 1, b 2, ···, b n
Are the voltage waveforms applied to the runoff electrode and the signal electrode, respectively, and FIG. 9 shows the voltage waveform applied to the liquid crystal layer obtained from the difference between them. In this driving method, a frame F (+) to which a positive voltage is applied and a subsequent negative frame F (−) are paired.

【0007】この駆動方法による表示原理を図6を用い
て説明する。図6において、反強誘電相での光軸OAは
スメックチク層と直交している。図7のごとく透明電極
4、5と液晶配向膜9、10を設けた2枚のガラス基板
1、2間に液晶層6を挟持してなるセルを、互いに偏光
軸の直交する偏光板11、12間において光軸OAがい
ずれかの偏光軸に平行となるように設置すると、素子は
暗状態(仮にOFF状態と表現する)となる。
The display principle of this driving method will be described with reference to FIG. In FIG. 6, the optical axis OA in the antiferroelectric phase is orthogonal to the smectic layer. A cell having a liquid crystal layer 6 sandwiched between two glass substrates 1 and 2 provided with transparent electrodes 4 and 5 and liquid crystal alignment films 9 and 10 as shown in FIG. When installed so that the optical axis OA is parallel to any of the polarization axes between 12, the element is in a dark state (provisionally referred to as an OFF state).

【0008】この状態において、図9に示すフレーム
F’(+)、またはF’(−)における電圧波形を印加
しても、図8に示すように、|Vw2|<|V(A−F)
t |であれば光透過率の変化は僅かであり、OFF状態
を保持することができる。一方、図4に示すフレームF
(+)、またはF(−)における電圧波形を印加した場
合、図8に示すように、|Vw1|>|V(A−F)s
であれば液晶は応答して、それぞれの光軸OF(+)お
よびOF(−)、自発分極Ps (+)およびPs(−)
を有する強誘電相(+)と強誘電相(−)へ転移する。
光軸が偏光軸と角度θ(+)またはθ(−)をなすため
明状態(仮にON状態と表現する)となる。
In this state, even if the voltage waveform in the frame F '(+) or F' (-) shown in FIG. 9 is applied, as shown in FIG. 8, | V w2 | <| V (A- F)
If t |, the change in light transmittance is slight and the OFF state can be maintained. On the other hand, the frame F shown in FIG.
When a voltage waveform at (+) or F (-) is applied, as shown in FIG. 8, | V w1 |> | V (A−F) s |
If the liquid crystal response, each of the optical axes OF (+) and OF (-), the spontaneous polarization P s (+) and P s (-)
With a ferroelectric phase (+) and a ferroelectric phase (-).
Since the optical axis forms an angle θ (+) or θ (−) with the polarization axis, a bright state (provisionally referred to as an ON state) is obtained.

【0009】ここで、角度θ(+)とθ(−)が等しい
ので両者は光学的に等価として扱うことができる。
Here, since the angles θ (+) and θ (−) are equal, they can be treated as optically equivalent.

【0010】[0010]

【発明が解決しようとする課題】しかしながら上記のよ
うな従来の反強誘電性液晶素子の駆動方法では、以下に
述べるような問題点を有していた。
However, the conventional method of driving an antiferroelectric liquid crystal element as described above has the following problems.

【0011】それは、従来の反強誘電性液晶素子の駆動
方法では、温度が変化したとき、反強誘電性液晶の最適
パルス幅が変化するに従って、選択期間を変化させフレ
ーム周波数も変化し、そのため、高温度になると、駆動
パルス幅が小さくなった時にはフレーム周波数が高くな
り、液晶パネルの消費電力が増大してしまうという問題
点である。
According to the conventional method for driving an antiferroelectric liquid crystal element, when the temperature changes, the selection period is changed and the frame frequency is changed as the optimum pulse width of the antiferroelectric liquid crystal is changed. At high temperatures, the frame frequency becomes high when the drive pulse width becomes small, and the power consumption of the liquid crystal panel increases.

【0012】これは、液晶パネルの消費電力をW、デュ
ーティー比をDuty、フレーム周波数をf、駆動する
画素の容量をC、駆動電圧をV、比例定数をkとして、
だいたい、W=k×f×C×V×Dutyで表されるた
めである。すなわち、この式は、フレーム周波数fが高
くなると液晶パネルの消費電力Wが増大してしまうこと
を表している。
The power consumption of the liquid crystal panel is W, the duty ratio is Duty, the frame frequency is f, the capacity of the pixel to be driven is C, the drive voltage is V, and the proportional constant is k.
This is because it is represented by W = k × f × C × V × Duty. That is, this equation represents that the power consumption W of the liquid crystal panel increases as the frame frequency f increases.

【0013】また、液晶パネルが反強誘電性液晶パネル
の場合には、STN液晶パネルに比べて、通常、ギャッ
プが狭いため画素の容量Cが大きく、液晶パネルの消費
電力Wの増大が著しい。
Further, when the liquid crystal panel is an antiferroelectric liquid crystal panel, the gap C is usually narrower than that of the STN liquid crystal panel, so that the pixel capacitance C is large and the power consumption W of the liquid crystal panel is significantly increased.

【0014】これらのため、電源回路に対する負荷が増
大することになり、3状態スイッチングの特徴を生かし
たマルチプレックス駆動が安定して行うことができない
という問題点も生じてくる。
As a result, the load on the power supply circuit increases, and there is a problem in that the multiplex drive utilizing the characteristics of the three-state switching cannot be stably performed.

【0015】本発明は、上記の問題点を解決するもの
で、液晶パネルの消費電力を一定にして電源回路に対す
る負荷を軽減することができ、3状態スイッチングの特
徴を充分に生かしたマルチプレックス駆動を安定して行
うことができる反強誘電性液晶素子の駆動方法を提供す
る。
The present invention solves the above-mentioned problems, and makes it possible to reduce the load on the power supply circuit by keeping the power consumption of the liquid crystal panel constant, and to make full use of the characteristics of three-state switching. Provided is a method for driving an antiferroelectric liquid crystal element capable of stably performing the above.

【0016】[0016]

【課題を解決するための手段】上記課題を解決するため
に、本発明の請求項1に記載の反強誘電性液晶素子の駆
動方法は、走査電極を有する基板と信号電極を有する基
板の電極面を対向させた基板間に、電圧の極性により2
つの配向状態を示す強誘電性液晶へ相転移する1つの配
向状態を示す反強誘電性液晶を挟持してなる液晶パネル
を有する反強誘電性液晶素子において、前記液晶パネル
におけるあるアドレスの走査電極上の画素に対し、ある
フレームの選択期間には、最終的に液晶の状態を決定す
る電圧パルスの極正が正である電圧パルスを印加し、前
記選択期間から続く次のフレームの選択期間までの間
は、少なくとも非選択期間と消去期間からなり、前記非
選択期間において、平均電位が正であり、前記選択期間
で得た液晶状態を保持する電圧パルス群を印加し、前記
消去期間には、平均電位が零または負であり、液晶の状
態が反強誘電相となる電圧パルス群を印加し、前記非選
択期間および消去期間に続く選択期間には、最終的に液
晶の状態を決定する電圧パルスの極正が負である電圧パ
ルスを印加し、この選択期間から続く次のフレームの選
択期間までの間は、少なくとも非選択期間と消去期間か
らなり、この非選択期間において、平均電位が負であ
り、前記選択期間で得た液晶状態を保持する電圧パルス
群を印加し、この消去期間には平均電位が零または正
で、液晶の状態が反強誘電相となる電圧パルス群を印加
し、前記フレームの周波数を、温度に関係なく、30H
z以上のいづれかの値で一定にした方法とする。
In order to solve the above-mentioned problems, a method for driving an antiferroelectric liquid crystal device according to claim 1 of the present invention is directed to a substrate having a scanning electrode and an electrode of a substrate having a signal electrode. Depending on the polarity of the voltage between the two substrates facing each other, 2
An anti-ferroelectric liquid crystal device having a liquid crystal panel sandwiching anti-ferroelectric liquid crystal exhibiting one orientation state that undergoes a phase transition to a ferroelectric liquid crystal exhibiting one orientation state, wherein a scanning electrode at a certain address in the liquid crystal panel During the selection period of a certain frame, a voltage pulse having a positive polarity of the voltage pulse that finally determines the state of the liquid crystal is applied to the upper pixel, and the selection period of the next frame is continued from the selection period. During the non-selection period, the average potential is positive in the non-selection period, a voltage pulse group holding the liquid crystal state obtained in the selection period is applied, , The average potential is zero or negative, and a voltage pulse group in which the liquid crystal state is an antiferroelectric phase is applied, and finally the liquid crystal state is determined in the selection period following the non-selection period and the erase period. A voltage pulse in which the positive polarity of the pressure pulse is negative is applied, and at least a non-selection period and an erasing period are provided from this selection period to the selection period of the subsequent frame, and in this non-selection period, the average potential is A voltage pulse group that is negative and holds the liquid crystal state obtained in the selection period is applied, and during this erasing period, a voltage pulse group in which the average potential is zero or positive and the liquid crystal state is in the antiferroelectric phase is applied. However, the frequency of the frame is set to 30H regardless of the temperature.
The method is set to be constant at any value of z or more.

【0017】請求項2に記載の反強誘電性液晶素子の駆
動方法は、請求項1のフレーム周波数を、望ましくは6
0HZ以上のいづれかの値で一定にした方法とする。こ
れらの方法によると、フレーム周波数を、温度とは関係
なく、30Hz以上望ましくは60Hz以上のいづれか
の値で一定にすることにより、高温度になることによっ
て発生する液晶パネルの消費電力の変化を抑える。
According to a second aspect of the present invention, there is provided a method of driving an antiferroelectric liquid crystal device, wherein the frame frequency of the first aspect is preferably 6
The method is made constant with any value of 0HZ or more. According to these methods, the frame frequency is kept constant at any value of 30 Hz or higher, preferably 60 Hz or higher irrespective of temperature, thereby suppressing a change in power consumption of the liquid crystal panel caused by a high temperature. .

【0018】請求項3に記載の反強誘電性液晶素子の駆
動方法は、請求項1または請求項2の液晶パネルの温度
を検出し、温度により選択期間のパルス数を切り換え、
その選択期間が、選択期間をt、デューティ比をDut
y、フレーム周波数をfとして、t=Duty/fで表
される値で一定となるようにして表示を行う方法とす
る。
A method of driving an antiferroelectric liquid crystal device according to a third aspect of the present invention detects the temperature of the liquid crystal panel according to the first or second aspect, and switches the number of pulses in the selection period according to the temperature.
The selection period is t for the selection period and Dut for the duty ratio.
It is assumed that y and the frame frequency are f, and the display is performed so as to be constant at a value represented by t = Duty / f.

【0019】この方法によると、選択期間tを一定幅に
する。請求項4に記載の反強誘電性液晶素子の駆動方法
は、請求項3において、温度により選択期間のパルスの
内表示の明暗に従う信号に同期したパルスのパルス幅
を、反強誘電性液晶のその温度での最適パルス幅と同じ
になるようにし、残りの時間を表示の明暗に関係の無い
信号の休止期間とした方法とする。
According to this method, the selection period t has a constant width. According to a fourth aspect of the present invention, in the driving method of the antiferroelectric liquid crystal device according to the third aspect, the pulse width of the pulse synchronized with the signal according to the brightness of the display in the pulse of the selection period depending on the temperature is set to The optimum pulse width at that temperature is set to be the same, and the remaining time is set as a pause period of a signal irrelevant to the brightness of the display.

【0020】この方法によると、選択期間tを一定幅に
することができるとともに、フレーム周波数を一定にし
て高温度になることによって発生する液晶パネルの消費
電力の増加を抑える。
According to this method, the selection period t can be set to a constant width, and an increase in power consumption of the liquid crystal panel caused by a constant frame frequency and high temperature can be suppressed.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態を示す
反強誘電性液晶素子の駆動方法について、図面を参照し
ながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method of driving an antiferroelectric liquid crystal device showing an embodiment of the present invention will be described with reference to the drawings.

【0022】ここでは、試料としては、透明電極上に絶
縁膜、その上にポリイミド膜を形成してラビング処理を
行い一軸性配向処理を施して配向膜とした。そして、素
子の構造としては、図7に示すように、向かい合う基板
でラビング方向が平行または半平行となるように液晶パ
ネルを形成し、ギャップを1.7μmとした。その液晶
パネルにチッソ(株)製の反強誘電性液晶材料CS−4
000を加熱封入し環境温度を反強誘電性カイラルスメ
クチックC相(SmCA*相)の温度範囲に保持したもの
を用いている。
Here, as the sample, an insulating film was formed on the transparent electrode, and a polyimide film was formed on the transparent film, followed by rubbing treatment and uniaxial orientation treatment to obtain an orientation film. As for the structure of the device, as shown in FIG. 7, a liquid crystal panel was formed so that the rubbing directions were parallel or semi-parallel with the substrates facing each other, and the gap was 1.7 μm. The anti-ferroelectric liquid crystal material CS-4 manufactured by Chisso Corporation is used for the liquid crystal panel.
000 is heat-sealed and the ambient temperature is kept within the temperature range of the antiferroelectric chiral smectic C phase (SmCA * phase).

【0023】図1に本実施の形態の反強誘電性液晶素子
の駆動方法における各駆動波形を示す。ここで、図1
(a)は走査電極波形を表し、図1(b)は信号電極波
形を表す。
FIG. 1 shows each drive waveform in the method of driving the antiferroelectric liquid crystal element of this embodiment. Here, FIG.
1A shows a scanning electrode waveform, and FIG. 1B shows a signal electrode waveform.

【0024】図1(a)において、n個の各走査電極に
対応して印加される走査電極波形a 1 、a2 、・・・、
n は、それぞれ、選択期間にフレーム周期毎に反転す
る極性信号に従って走査電圧Vr を印加し、その後、次
の選択期間まで、走査電圧V r と同極性の保持電圧Vb
を印加し、そしてリセット電圧を印加する。そうするこ
とにより、選択波形の極性を選択時毎に極性を反転する
ことができる。
In FIG. 1A, each of the n scanning electrodes is
Correspondingly applied scan electrode waveform a 1 , ATwo , ...,
an Are inverted every frame period during the selection period.
Scanning voltage V according to the polarity signalr And then
Scan voltage V until the selection period of r Holding voltage V of the same polarity asb 
And a reset voltage is applied. To do so
By, the polarity of the selected waveform is inverted every time it is selected.
be able to.

【0025】また図1(b)において、n個の各信号電
極に対応して印加される信号電極波形b1 、b2 、・・
・、bn は、表示パターンの信号データの選択電圧・非
選択電圧Vs の極性を上記極性信号に従って反転させて
印加する。
Further, in FIG. 1B, signal electrode waveforms b 1 , b 2 , ... Applied corresponding to each of the n signal electrodes.
, B n are applied by inverting the polarities of the selection voltage / non-selection voltage V s of the signal data of the display pattern according to the polarity signal.

【0026】図2に、極性信号と走査電圧Vr 、選択電
圧・非選択電圧Vs の各電圧を有する各信号との関係を
示す。以上の各駆動信号において、素子の温度を20℃
に保持し、パルス幅τpは75μ秒、休止位相のパルス
幅τrは6μ秒としてデューティー比1/200として
駆動したところ、コントラスト比は1:30、消費電力
は1.1ワットを得た。また、40℃ではパルス幅τp
は30μ秒すなわち休止位相期間τrは96μ秒で駆動
したとき、コントラスト比は1:30、消費電力は1.
3ワットを得た。この時のフレーム周波数はフリッカー
を考慮に入れて30Hz以上の32Hzで一定にし、1
ライン選択期間は156μ秒とした。
FIG. 2 shows the relationship between the polarity signal and each signal having the scanning voltage V r and the selection voltage / non-selection voltage V s . In each of the above drive signals, the element temperature is set to 20 ° C
The pulse width τp was 75 μsec, the pulse width τr of the rest phase was 6 μsec, and the duty ratio was 1/200. The contrast ratio was 1:30 and the power consumption was 1.1 watts. At 40 ° C, the pulse width τp
Is 30 μs, that is, the resting phase period τr is 96 μs, the contrast ratio is 1:30 and the power consumption is 1.
Got 3 watts. The frame frequency at this time is fixed at 32 Hz, which is 30 Hz or higher, taking flicker into consideration.
The line selection period was 156 μsec.

【0027】次に、図3に示すような各駆動信号に基づ
く本実施の形態の駆動方法と従来技術による駆動方法と
を比較する。つまり、温度上昇して高温になっても、本
実施の形態では、従来技術と違って選択期間を一定にす
るため休止位相を示すパルスを1選択期間内に設け、そ
の時間を温度によって変化させることによりフレーム周
波数を一定にしている。それに比べて従来技術では、温
度が変化すると、駆動パルスに従ってフレーム周波数が
変化している。以上の各駆動方法の比較の結果を図5に
示す。
Next, the driving method of the present embodiment based on each driving signal as shown in FIG. 3 and the driving method of the prior art will be compared. That is, even if the temperature rises to a high temperature, in the present embodiment, a pulse indicating a pause phase is provided within one selection period in order to keep the selection period constant unlike the prior art, and the time is changed depending on the temperature. This keeps the frame frequency constant. On the other hand, in the related art, when the temperature changes, the frame frequency changes according to the drive pulse. FIG. 5 shows the result of comparison of the above driving methods.

【0028】図5に示すように、温度によって駆動パル
ス幅を、20℃で75μ秒とし40℃で30μ秒とし
て、従来の駆動方法を用いた場合には、本実施の形態の
駆動方法と同様の条件で駆動すると、それぞれの温度
で、フレーム周波数はそれぞれ33.3Hzと83.4
Hzとなり、消費電力はそれぞれ1.1ワットと2.5
ワットとなり、本実施の形態の駆動方法による場合よ
り、温度上昇に対する消費電力の増加が著しい。
As shown in FIG. 5, when the driving pulse width is set to 75 μs at 20 ° C. and 30 μs at 40 ° C. according to the temperature and the conventional driving method is used, the same driving method as in the present embodiment is used. When driven under the conditions described above, the frame frequencies at the respective temperatures are 33.3 Hz and 83.4, respectively.
Hz, and the power consumption is 1.1 watts and 2.5, respectively.
Since the power consumption is watts, the power consumption increases remarkably with respect to the temperature rise as compared with the case of the driving method according to the present embodiment.

【0029】図5に示した比較結果からも分かるよう
に、本実施の形態の駆動方法を用いることにより、高温
での液晶パネルの消費電力の増加を簡単に抑えることが
でき、液晶パネルの消費電力を一定にして電源回路に対
する負荷を軽減することができ、3状態スイッチングの
特徴を充分に生かしたマルチプレックス駆動を安定して
行うことができる。
As can be seen from the comparison result shown in FIG. 5, by using the driving method according to the present embodiment, it is possible to easily suppress an increase in power consumption of the liquid crystal panel at a high temperature and to reduce the consumption of the liquid crystal panel. It is possible to reduce the load on the power supply circuit by keeping the electric power constant, and it is possible to stably perform the multiplex drive making full use of the characteristics of the three-state switching.

【0030】上記に示した本実施の形態の駆動方法にお
いては、その駆動波形は、表示の明暗のデーターに従っ
て印加されるパルス数は1選択期間内で2であるが、こ
れに限るものでなく、1パルスでも、3パルスでもよ
く、これらの各パルス数によっても、高温で消費電力を
抑える効果は変わらなかった。
In the driving method of the present embodiment described above, the number of pulses applied according to the light and dark data of the display is 2 within one selection period, but the driving waveform is not limited to this. One pulse or three pulses may be used, and the effect of suppressing power consumption at high temperature did not change even with the number of each of these pulses.

【0031】また、上記に示した本実施の形態の駆動方
法において、完全にフリッカーを消すためには、望まし
くは60Hz以上のフレーム周波数が必要であり、この
場合でも、高温での消費電力の増加を抑える効果には変
化がなかった。
Further, in the driving method of the present embodiment described above, a frame frequency of 60 Hz or more is desirable in order to completely eliminate the flicker, and even in this case, the power consumption at high temperature increases. There was no change in the effect of suppressing.

【0032】[0032]

【発明の効果】以上のように本発明によれば、フレーム
周波数を、温度とは関係なく、30Hz以上望ましくは
60Hz以上のいづれかの値で一定にすることにより、
高温度になることによって発生する液晶パネルの消費電
力の変化を抑えることができる。
As described above, according to the present invention, the frame frequency is kept constant at any value of 30 Hz or more, preferably 60 Hz or more, regardless of the temperature.
It is possible to suppress a change in power consumption of the liquid crystal panel caused by a high temperature.

【0033】また、選択期間tを一定幅にすることがで
きる。また、選択期間tを一定幅にすることができると
ともに、フレーム周波数を一定にして高温度になること
によって発生する液晶パネルの消費電力の増加を抑える
ことができる。
Further, the selection period t can be made to have a constant width. In addition, the selection period t can be set to a constant width, and an increase in power consumption of the liquid crystal panel caused by a constant frame frequency and high temperature can be suppressed.

【0034】以上により、液晶パネルの消費電力を一定
にして電源回路に対する負荷を軽減することができ、3
状態スイッチングの特徴を充分に生かしたマルチプレッ
クス駆動を安定して行うことができる。
As described above, the power consumption of the liquid crystal panel can be kept constant and the load on the power supply circuit can be reduced.
It is possible to stably perform multiplex drive that makes full use of the characteristics of state switching.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の反強誘電性液晶素子の駆
動方法による駆動波形図
FIG. 1 is a drive waveform diagram according to a driving method of an antiferroelectric liquid crystal element according to an embodiment of the present invention.

【図2】同実施の形態の各駆動信号の波形の比較図FIG. 2 is a comparison diagram of waveforms of drive signals of the same embodiment.

【図3】同実施の形態の駆動波形における従来の駆動波
形との比較図
FIG. 3 is a comparison diagram of the drive waveform of the embodiment with a conventional drive waveform.

【図4】従来の駆動方法による駆動波形図FIG. 4 is a drive waveform diagram according to a conventional drive method.

【図5】本発明の実施の形態の駆動方法における従来の
駆動方法との比較図
FIG. 5 is a comparison diagram of a driving method according to an embodiment of the present invention with a conventional driving method.

【図6】同実施の形態に用いた素子の概念図FIG. 6 is a conceptual diagram of an element used in the same embodiment.

【図7】同実施の形態に用いた液晶パネルの断面図FIG. 7 is a sectional view of a liquid crystal panel used in the same embodiment.

【図8】同実施の形態に用いた素子の電気光学特性の説
明図
FIG. 8 is an explanatory diagram of electro-optical characteristics of the element used in the same embodiment.

【図9】従来の駆動方法により液晶層に印加される電圧
波形
FIG. 9 is a voltage waveform applied to a liquid crystal layer by a conventional driving method.

【符号の説明】 a1 、a2 、…、an 走査電極波形 b1 、b2 、…、bn 信号電極波形 Vb 保持電圧 Vr 走査電圧 Vs 選択電圧・非選択電圧[Explanation of reference symbols] a 1 , a 2 , ..., A n scan electrode waveform b 1 , b 2 , ..., b n signal electrode waveform V b holding voltage V r scan voltage V s selection voltage / non-selection voltage

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 走査電極を有する基板と信号電極を有す
る基板の電極面を対向させた基板間に、電圧の極性によ
り2つの配向状態を示す強誘電性液晶へ相転移する1つ
の配向状態を示す反強誘電性液晶を挟持してなる液晶パ
ネルを有する反強誘電性液晶素子において、前記液晶パ
ネルにおけるあるアドレスの走査電極上の画素に対し、
あるフレームの選択期間には、最終的に液晶の状態を決
定する電圧パルスの極正が正である電圧パルスを印加
し、前記選択期間から続く次のフレームの選択期間まで
の間は、少なくとも非選択期間と消去期間からなり、前
記非選択期間において、平均電位が正であり、前記選択
期間で得た液晶状態を保持する電圧パルス群を印加し、
前記消去期間には、平均電位が零または負であり、液晶
の状態が反強誘電相となる電圧パルス群を印加し、前記
非選択期間および消去期間に続く選択期間には、最終的
に液晶の状態を決定する電圧パルスの極正が負である電
圧パルスを印加し、この選択期間から続く次のフレーム
の選択期間までの間は、少なくとも非選択期間と消去期
間からなり、この非選択期間において、平均電位が負で
あり、前記選択期間で得た液晶状態を保持する電圧パル
ス群を印加し、この消去期間には平均電位が零または正
で、液晶の状態が反強誘電相となる電圧パルス群を印加
し、前記フレームの周波数を、温度に関係なく、30H
z以上のいづれかの値で一定にしたことを特徴とする反
強誘電性液晶素子の駆動方法。
1. An alignment state that undergoes a phase transition to a ferroelectric liquid crystal exhibiting two alignment states depending on the polarity of voltage is provided between the substrates having the scanning electrodes and the substrate having the signal electrodes facing each other. In an antiferroelectric liquid crystal element having a liquid crystal panel sandwiching an antiferroelectric liquid crystal shown, for a pixel on a scanning electrode of a certain address in the liquid crystal panel,
During the selection period of a certain frame, a voltage pulse having a positive polarity of a voltage pulse that finally determines the state of the liquid crystal is applied, and at least a non-voltage pulse is applied from the selection period to the selection period of the next frame. Consisting of a selection period and an erasing period, the average potential is positive in the non-selection period, a voltage pulse group for holding the liquid crystal state obtained in the selection period is applied,
During the erasing period, a voltage pulse group in which the average potential is zero or negative and the liquid crystal state is an antiferroelectric phase is applied. The voltage pulse that determines the state of the voltage pulse is applied with a positive polarity is negative, and at least the non-selection period and the erase period are provided from this selection period to the selection period of the next frame. In, the average potential is negative, and a voltage pulse group that holds the liquid crystal state obtained in the selection period is applied. During this erasing period, the average potential is zero or positive, and the liquid crystal state becomes the antiferroelectric phase. A voltage pulse group is applied to change the frequency of the frame to 30 H regardless of temperature.
A method for driving an antiferroelectric liquid crystal element, characterized in that it is kept constant at any value of z or more.
【請求項2】 フレーム周波数を、望ましくは60HZ
以上のいづれかの値で一定にしたことを特徴とする請求
項1に記載の反強誘電性液晶素子の駆動方法。
2. The frame frequency is preferably 60 HZ
2. The method for driving an antiferroelectric liquid crystal element according to claim 1, wherein the value is made constant by any one of the above values.
【請求項3】 液晶パネルの温度を検出し、温度により
選択期間のパルス数を切り換え、その選択期間が、選択
期間をt、デューティ比をDuty、フレーム周波数を
fとして、t=Duty/fで表される値で一定となる
ようにして表示を行うことを特徴とする請求項1または
請求項2に記載の反強誘電性液晶素子の駆動方法。
3. The liquid crystal panel temperature is detected, and the number of pulses in the selection period is switched according to the temperature. The selection period is t = Duty / f, where t is the selection period, Duty ratio is Duty, and the frame frequency is f. The method for driving an antiferroelectric liquid crystal element according to claim 1 or 2, wherein the display is performed so that the value represented is constant.
【請求項4】 温度により選択期間のパルスの内表示の
明暗に従う信号に同期したパルスのパルス幅を、反強誘
電性液晶のその温度での最適パルス幅と同じになるよう
にし、残りの時間を表示の明暗に関係の無い信号の休止
期間としたことを特徴とする請求項3に記載の反強誘電
性液晶素子の駆動方法。
4. The pulse width of the pulse synchronized with the signal according to the brightness of the display in the pulse of the selection period depending on the temperature is made to be the same as the optimum pulse width of the antiferroelectric liquid crystal at that temperature, and the remaining time is set. 4. The method for driving an antiferroelectric liquid crystal element according to claim 3, wherein is set as a pause period of a signal irrelevant to the brightness of the display.
JP7548896A 1996-03-29 1996-03-29 Anti-ferroelectric liquid crystal element drive method Pending JPH09265077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7548896A JPH09265077A (en) 1996-03-29 1996-03-29 Anti-ferroelectric liquid crystal element drive method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7548896A JPH09265077A (en) 1996-03-29 1996-03-29 Anti-ferroelectric liquid crystal element drive method

Publications (1)

Publication Number Publication Date
JPH09265077A true JPH09265077A (en) 1997-10-07

Family

ID=13577734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7548896A Pending JPH09265077A (en) 1996-03-29 1996-03-29 Anti-ferroelectric liquid crystal element drive method

Country Status (1)

Country Link
JP (1) JPH09265077A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029546A1 (en) * 2006-09-05 2008-03-13 Sharp Kabushiki Kaisha Display controller, display device, display system and method for controlling display device
JP2008517302A (en) * 2004-09-27 2008-05-22 アイディーシー、エルエルシー Measuring and modeling power consumption in the display

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517302A (en) * 2004-09-27 2008-05-22 アイディーシー、エルエルシー Measuring and modeling power consumption in the display
WO2008029546A1 (en) * 2006-09-05 2008-03-13 Sharp Kabushiki Kaisha Display controller, display device, display system and method for controlling display device
US8896590B2 (en) 2006-09-05 2014-11-25 Sharp Kabushiki Kaisha Display controller, display device, and control method for controlling display system and display device
US9336738B2 (en) 2006-09-05 2016-05-10 Sharp Kabushiki Kaisha Display controller configured to maintain a stable pixel writing period and a gate slope period when a refresh rate is changed, display device, and control method for controlling display system and display device

Similar Documents

Publication Publication Date Title
US5631752A (en) Antiferroelectric liquid crystal display element exhibiting a precursor tilt phenomenon
JPH04362990A (en) Method for driving liquid crystal electrooptic element
JPH04249290A (en) Driving method for liquid crystal electrooptic element
JPH09265077A (en) Anti-ferroelectric liquid crystal element drive method
JP3530767B2 (en) Driving method of liquid crystal element
JP2519420B2 (en) Ferroelectric liquid crystal electro-optical device
JP3149451B2 (en) Driving method of liquid crystal electro-optical element
JPH04311920A (en) Method of driving liquid crystal display element
JPH09222592A (en) Driving method for antiferroelectric liquid crystal element
JPH06265906A (en) Ferroelectric liquid crystal panel and ferroelectric liquid crystal display device and production
JPS62134691A (en) Liquid crystal unit
JP2984788B2 (en) Display element device and display element driving method
EP0344753A2 (en) Liquid crystal apparatus and driving method therefor
JPH0448366B2 (en)
JPH04371919A (en) Driving method for liquid crystal electrooptical element
JP2973242B2 (en) Driving method of liquid crystal electro-optical element
JPH0695179B2 (en) Driving method of liquid crystal matrix display panel
JPH04311921A (en) Method of driving liquid crystal electro-optical element
JPS6256933A (en) Driving method for liquid crystal matrix display panel
JP3317244B2 (en) Driving method of liquid crystal electro-optical element
JPH04280220A (en) Driving method of liquid crystal electro-optical element
JP2626973B2 (en) Ferroelectric liquid crystal electro-optical device
JPS62278539A (en) Ferroelectric liquid crystal electrooptical device
JPH11311773A (en) Method for driving liquid crystal element
JPH0843796A (en) Driving method for liquid crystal display element and driving device therefor